1
|
Park JW, Choi TI, Kim TY, Lee YR, Don DW, George-Abraham JK, Robak LA, Trandafir CC, Liu P, Rosenfeld JA, Kim TH, Petit F, Kim YM, Cheon CK, Lee Y, Kim CH. RFC2 may contribute to the pathogenicity of Williams syndrome revealed in a zebrafish model. J Genet Genomics 2024; 51:1389-1403. [PMID: 39368701 PMCID: PMC11624490 DOI: 10.1016/j.jgg.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Williams syndrome (WS) is a rare multisystemic disorder caused by recurrent microdeletions on 7q11.23, characterized by intellectual disability, distinctive craniofacial and dental features, and cardiovascular problems. Previous studies have explored the roles of individual genes within these microdeletions in contributing to WS phenotypes. Here, we report five patients with WS with 1.4 Mb-1.5 Mb microdeletions that include RFC2, as well as one patient with a 167-kb microdeletion involving RFC2 and six patients with intragenic variants within RFC2. To investigate the potential involvement of RFC2 in WS pathogenicity, we generate a rfc2 knockout (KO) zebrafish using CRISPR-Cas9 technology. Additionally, we generate a KO zebrafish of its paralog gene, rfc5, to better understand the functions of these RFC genes in development and disease. Both rfc2 and rfc5 KO zebrafish exhibit similar phenotypes reminiscent of WS, including small head and brain, jaw and dental defects, and vascular problems. RNA-seq analysis reveals that genes associated with neural cell survival and differentiation are specifically affected in rfc2 KO zebrafish. In addition, heterozygous rfc2 KO adult zebrafish demonstrate an anxiety-like behavior with increased social cohesion. These results suggest that RFC2 may contribute to the pathogenicity of WS, as evidenced by the zebrafish model.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Yoon Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yu-Ri Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dilan Wellalage Don
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaya K George-Abraham
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX 78723, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristina C Trandafir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Tae Hyeong Kim
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Florence Petit
- Univ. Lille, CHU Lille, Clinique de génétique Guy Fontaine, F-59000 Lille, France
| | - Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea.
| | - Chong Kun Cheon
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Lee KH, Stafford AM, Pacheco-Vergara M, Cichewicz K, Canales CP, Seban N, Corea M, Rahbarian D, Bonekamp KE, Gillie GR, Pacheco-Cruz D, Gill AM, Hwang HE, Uhl KL, Jager TE, Shinawi M, Li X, Obenaus A, Crandall S, Jeong J, Nord A, Kim CH, Vogt D. Complimentary vertebrate Wac models exhibit phenotypes relevant to DeSanto-Shinawi Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595966. [PMID: 38826421 PMCID: PMC11142245 DOI: 10.1101/2024.05.26.595966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Monogenic syndromes are associated with neurodevelopmental changes that result in cognitive impairments, neurobehavioral phenotypes including autism and attention deficit hyperactivity disorder (ADHD), and seizures. Limited studies and resources are available to make meaningful headway into the underlying molecular mechanisms that result in these symptoms. One such example is DeSanto-Shinawi Syndrome (DESSH), a rare disorder caused by pathogenic variants in the WAC gene. Individuals with DESSH syndrome exhibit a recognizable craniofacial gestalt, developmental delay/intellectual disability, neurobehavioral symptoms that include autism, ADHD, behavioral difficulties and seizures. However, no thorough studies from a vertebrate model exist to understand how these changes occur. To overcome this, we developed both murine and zebrafish Wac/wac deletion mutants and studied whether their phenotypes recapitulate those described in individuals with DESSH syndrome. We show that the two Wac models exhibit craniofacial and behavioral changes, reminiscent of abnormalities found in DESSH syndrome. In addition, each model revealed impacts to GABAergic neurons and further studies showed that the mouse mutants are susceptible to seizures, changes in brain volumes that are different between sexes and relevant behaviors. Finally, we uncovered transcriptional impacts of Wac loss of function that will pave the way for future molecular studies into DESSH. These studies begin to uncover some biological underpinnings of DESSH syndrome and elucidate the biology of Wac, with advantages in each model.
Collapse
Affiliation(s)
- Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - April M Stafford
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Maria Pacheco-Vergara
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Nicolas Seban
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Melissa Corea
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Darlene Rahbarian
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Kelly E. Bonekamp
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Grant R. Gillie
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Dariangelly Pacheco-Cruz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Alyssa M Gill
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Hye-Eun Hwang
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Andre Obenaus
- Director, Preclinical and Translational Imaging Center, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Shane Crandall
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Juhee Jeong
- Department of Molecular Pathology, New York University College of Dentistry, New York, NY 10010, USA
| | - Alex Nord
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis 95618, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis 95618, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Daniel Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Wellalage Don D, Kim TY, Hong BN, Lee JS, Kang TH, Gerlai R, Kim CH. A Simple Tube Escape Assay to Test Learning and Memory in Zebrafish with Minimized Habituation. Zebrafish 2024; 21:329-337. [PMID: 38748396 DOI: 10.1089/zeb.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024] Open
Abstract
Various methods have been used in rodents to evaluate learning and memory. Although much less frequently used, the zebrafish emerges as an alternative model organism in this context. For example, it allows assessing potential behavioral deficits because of neurodevelopmental disorders or environmental neurotoxins. A variety of learning tasks have been employed in previous studies that required extensive habituation and training sessions. Here, we introduce a simpler and faster method to evaluate learning and memory of zebrafish with minimum habituation. A new apparatus, a transparent L-shaped tube, was developed in which we trained each zebrafish to swim through a long arm and measured the time to swim through this arm. We demonstrate that in this task, zebrafish could acquire both short-term (1 h) and long-term memory (4 days). We also studied learning and memory of a gene knockout (KO) zebrafish that showed social impairments related to autism. We found KO mutant zebrafish to show a quantitative impairment in habituation, learning, and memory performance compared with wild-type control fish. In conclusion, we established a novel learning apparatus and sensitive paradigm that allowed us to evaluate learning and memory of adult zebrafish that required only a brief habituation period and minimal training.
Collapse
Affiliation(s)
- Dilan Wellalage Don
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Yoon Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Bin Na Hong
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Jeong-Soo Lee
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Kim TY, Roychaudhury A, Kim HT, Choi TI, Baek ST, Thyme SB, Kim CH. Impairments of cerebellar structure and function in a zebrafish KO of neuropsychiatric risk gene znf536. Transl Psychiatry 2024; 14:82. [PMID: 38331943 PMCID: PMC10853220 DOI: 10.1038/s41398-024-02806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tae-Yoon Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | | | - Hyun-Taek Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Summer B Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
5
|
Sanni O, Fasemore T, Nkomozepi P. Non-Genetic-Induced Zebrafish Model for Type 2 Diabetes with Emphasis on Tools in Model Validation. Int J Mol Sci 2023; 25:240. [PMID: 38203409 PMCID: PMC10778736 DOI: 10.3390/ijms25010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The unrelenting increase in the incidence of type 2 diabetes (T2D) necessitates the urgent need for effective animal models to mimic its pathophysiology. Zebrafish possess human-like metabolic traits and share significant genetic similarities, making them valuable candidates for studying metabolic disorders, including T2D. This review emphasizes the critical role of animal models in diabetes research, especially focusing on zebrafish as an alternative model organism. Different approaches to a non-genetic model of T2D in zebrafish, such as the glucose solution, diet-induced, chemical-induced, and combined diet-induced and glucose solution methods, with an emphasis on model validation using indicators of T2D, were highlighted. However, a significant drawback lies in the validation of these models. Some of these models have not extensively demonstrated persistent hyperglycemia or response to insulin resistance and glucose tolerance tests, depicted the morphology of the pancreatic β-cell, or showed their response to antidiabetic drugs. These tools are crucial in T2D pathology. Future research on non-genetic models of T2D in zebrafish must extensively focus on validating the metabolic deficits existing in the model with the same metabolic defects in humans and improve on the existing models for a better understanding of the molecular mechanisms underlying T2D and exploring potential therapeutic interventions.
Collapse
Affiliation(s)
- Olakunle Sanni
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein 2028, South Africa; (T.F.); (P.N.)
| | | | | |
Collapse
|
6
|
Liang H, Tang LY, Ge HY, Chen MM, Lu SY, Zhang HX, Shen CL, Shen Y, Fei J, Wang ZG. Neuronal survival factor TAFA2 suppresses apoptosis through binding to ADGRL1 and activating cAMP/PKA/CREB/BCL2 signaling pathway. Life Sci 2023; 334:122241. [PMID: 37944639 DOI: 10.1016/j.lfs.2023.122241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
AIMS TAFA2, a cytokine specifically expressed in the central nervous system, plays a vital role in neuronal cell survival. TAFA2 deficiency has been correlated to various neurological disorders in mice and humans. However, the underlying mechanism remains elusive, especially its membrane-binding receptor through which TAFA2 functions. This study aimed to identify the specific binding receptor responsible for the anti-apoptotic effects of TAFA2. MAIN METHOD Co-immunoprecipitation (Co-IP) and quantitative mass spectrometry-based proteomic analysis were employed to identify potential TAFA2 binding proteins in V5 knockin mouse brain lysates. Subsequent validation involved in vitro and in vivo Co-IP and pull-down using specific antibodies. The functional analysis included evaluating the effects of ADGRL1 knockout, overexpression, and Lectin-like domain (Lec) deletion mutant on TAFA2's anti-apoptotic activity and analyzing the intracellular signaling pathways mediated by TAFA2 through ADGRL1. KEY FINDINGS Our study identified ADGRL1 as a potential receptor for TAFA2, which directly binds to TAFA2 through its lectin-like domain. Overexpression ADGRL1, but not ADGRL1ΔLec, induced apoptosis, which could be effectively suppressed by recombinant TAFA2 (rTAFA2). In ADGRL1-/- cells or re-introducing with ADGRL1ΔLec, responses to rTAFA2 in suppressing cell apoptosis were compromised. Increased cAMP, p-PKA, p-CREB, and BCL2 levels were also observed in response to rTAFA2 treatment, with these responses attenuated in ADGRL1-/- or ADGRL1ΔLec-expressing cells. SIGNIFICANCE Our results demonstrated that TAFA2 directly binds to the lectin-like domain of ADGRL1, activating cAMP/PKA/CREB/BCL2 signaling pathway, which is crucial in preventing cell death. These results implicate TAFA2 and its receptor ADGRL1 as potential therapeutic targets for neurological disorders.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling Yun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Yang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Mei Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shun Yuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Xin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chun Ling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Fei
- Tongji University, Shanghai 200092, China
| | - Zhu Gang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
7
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
8
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
9
|
Eachus H, Ryu S, Placzek M, Wood J. Zebrafish as a model to investigate the CRH axis and interactions with DISC1. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100383. [PMID: 36632608 PMCID: PMC9823094 DOI: 10.1016/j.coemr.2022.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Release of corticotropin-releasing hormone (CRH) from CRH neurons activates the hypothalamo-pituitary-adrenal (HPA) axis, one of the main physiological stress response systems. Complex feedback loops operate in the HPA axis and understanding the neurobiological mechanisms regulating CRH neurons is of great importance in the context of stress disorders. In this article, we review how in vivo studies in zebrafish have advanced knowledge of the neurobiology of CRH neurons. Disrupted-in-schizophrenia 1 (DISC1) mutant zebrafish have blunted stress responses and can be used to model human stress disorders. We propose that DISC1 influences the development and functioning of CRH neurons as a mechanism linking DISC1 to psychiatric disorders.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marysia Placzek
- School of Biosciences and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan Wood
- Sheffield Institute for Translational Neuroscience and Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Henríquez Martínez A, Ávila LC, Pulido MA, Ardila YA, Akle V, Bloch NI. Age-Dependent Effects of Chronic Stress on Zebrafish Behavior and Regeneration. Front Physiol 2022; 13:856778. [PMID: 35574490 PMCID: PMC9106366 DOI: 10.3389/fphys.2022.856778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Stress can have a significant impact on many aspects of an organism’s physiology and behavior. However, the relationship between stress and regeneration, and how this relationship changes with age remains poorly understood. Here, we subjected young and old zebrafish to a chronic stress protocol and evaluated the impact of stress exposure on multiple measures of zebrafish behavior, specifically thigmotaxis (open field test) and scototaxis (light/dark preference test), and on regeneration ability after partial tail amputation. We found evidence that young and older adult fish are differentially impacted by stress. Only young fish showed a significant change in anxiety-like behaviors after being exposed to chronic stress, while their regeneration ability was not affected by the stress protocol. On the other hand, older fish regenerated their caudal fin significantly slower compared to young fish, but their behavior remained unaffected after being exposed to stress. We further investigated the expression of two candidate genes (nlgn1 and sam2) expressed in the central nervous system, and known to be associated with stress and anxiety-like behavior. The expression of stress-related gene candidate sam2 increased in the brain of older individuals exposed to stress. Our results suggest there is a close relationship between chronic stress, regeneration, and behavior in zebrafish (Danio rerio), and that the impact of stress is age-dependent.
Collapse
Affiliation(s)
- Angie Henríquez Martínez
- Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
- School of Medicine, University of Los Andes, Bogotá, Colombia
| | - Laura C. Ávila
- Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
- School of Medicine, University of Los Andes, Bogotá, Colombia
| | - María A. Pulido
- School of Medicine, University of Los Andes, Bogotá, Colombia
| | | | - Veronica Akle
- School of Medicine, University of Los Andes, Bogotá, Colombia
| | - Natasha I. Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
- *Correspondence: Natasha I. Bloch,
| |
Collapse
|
11
|
Disease Modeling of Rare Neurological Disorders in Zebrafish. Int J Mol Sci 2022; 23:ijms23073946. [PMID: 35409306 PMCID: PMC9000079 DOI: 10.3390/ijms23073946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are those which affect a small number of people compared to the general population. However, many patients with a rare disease remain undiagnosed, and a large majority of rare diseases still have no form of viable treatment. Approximately 40% of rare diseases include neurologic and neurodevelopmental disorders. In order to understand the characteristics of rare neurological disorders and identify causative genes, various model organisms have been utilized extensively. In this review, the characteristics of model organisms, such as roundworms, fruit flies, and zebrafish, are examined, with an emphasis on zebrafish disease modeling in rare neurological disorders.
Collapse
|
12
|
Saitoh A, Nagayama Y, Yamada D, Makino K, Yoshioka T, Yamanaka N, Nakatani M, Takahashi Y, Yamazaki M, Shigemoto C, Ohashi M, Okano K, Omata T, Toda E, Sano Y, Takahashi H, Matsushima K, Terashima Y. Disulfiram Produces Potent Anxiolytic-Like Effects Without Benzodiazepine Anxiolytics-Related Adverse Effects in Mice. Front Pharmacol 2022; 13:826783. [PMID: 35330835 PMCID: PMC8940232 DOI: 10.3389/fphar.2022.826783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Disulfiram is an FDA approved drug for the treatment of alcoholism. The drug acts by inhibiting aldehyde dehydrogenase, an enzyme essential to alcohol metabolism. However, a recent study has demonstrated that disulfiram also potently inhibits the cytoplasmic protein FROUNT, a common regulator of chemokine receptor CCR2 and CCR5 signaling. Several studies have reported that chemokine receptors are associated with the regulation of emotional behaviors in rodents, such as anxiety. Therefore, this study was performed to clarify the effect of disulfiram on emotional behavior in rodents. The anxiolytic-like effects of disulfiram were investigated using an elevated plus-maze (EPM) test, a typical screening model for anxiolytics. Disulfiram (40 or 80 mg/kg) significantly increased the amount of time spent in the open arms of the maze and the number of open arm entries without affecting the total open arms entries. Similar results were obtained in mice treated with a selective FROUNT inhibitor, disulfiram-41 (10 mg/kg). These disulfiram-associated behavioral changes were similar to those observed following treatment with the benzodiazepine anxiolytic diazepam (1.5 mg/kg). Moreover, disulfiram (40 mg/kg) significantly and completely attenuated increased extracellular glutamate levels in the prelimbic-prefrontal cortex (PL-PFC) during stress exposure on the elevated open-platform. However, no effect in the EPM test was seen following administration of the selective aldehyde dehydrogenase inhibitor cyanamide (40 mg/kg). In contrast to diazepam, disulfiram caused no sedation effects in the open-field, coordination disorder on a rotarod, or amnesia in a Y-maze. This is the first report suggesting that disulfiram produces anxiolytic-like effects in rodents. We found that the presynaptic inhibitory effects on glutaminergic neurons in the PL-PFC may be involved in its underlying mechanism. Disulfiram could therefore be an effective and novel anxiolytic drug that does not produce benzodiazepine-related adverse effects, such as amnesia, coordination disorder, or sedation, as found with diazepam. We propose that the inhibitory activity of disulfiram against FROUNT function provides an effective therapeutic option in anxiety.
Collapse
Affiliation(s)
- Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshifumi Nagayama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kosho Makino
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Toshinori Yoshioka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nanami Yamanaka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Momoka Nakatani
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshino Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Mayuna Yamazaki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chihiro Shigemoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Misaki Ohashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kotaro Okano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tomoki Omata
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Etsuko Toda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hideyo Takahashi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, Japan
| | - Yuya Terashima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba, Japan
| |
Collapse
|
13
|
Haynes EM, Burnett KH, He J, Jean-Pierre MW, Jarzyna M, Eliceiri KW, Huisken J, Halloran MC. KLC4 shapes axon arbors during development and mediates adult behavior. eLife 2022; 11:74270. [PMID: 36222498 PMCID: PMC9596160 DOI: 10.7554/elife.74270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Development of elaborate and polarized neuronal morphology requires precisely regulated transport of cellular cargos by motor proteins such as kinesin-1. Kinesin-1 has numerous cellular cargos which must be delivered to unique neuronal compartments. The process by which this motor selectively transports and delivers cargo to regulate neuronal morphogenesis is poorly understood, although the cargo-binding kinesin light chain (KLC) subunits contribute to specificity. Our work implicates one such subunit, KLC4, as an essential regulator of axon branching and arborization pattern of sensory neurons during development. Using live imaging approaches in klc4 mutant zebrafish, we show that KLC4 is required for stabilization of nascent axon branches, proper microtubule (MT) dynamics, and endosomal transport. Furthermore, KLC4 is required for proper tiling of peripheral axon arbors: in klc4 mutants, peripheral axons showed abnormal fasciculation, a behavior characteristic of central axons. This result suggests that KLC4 patterns axonal compartments and helps establish molecular differences between central and peripheral axons. Finally, we find that klc4 mutant larva are hypersensitive to touch and adults show anxiety-like behavior in a novel tank test, implicating klc4 as a new gene involved in stress response circuits.
Collapse
Affiliation(s)
- Elizabeth M Haynes
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Korri H Burnett
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Jiaye He
- Morgridge Institute for ResearchMadisonUnited States,National Innovation Center for Advanced Medical DevicesShenzenChina
| | - Marcel W Jean-Pierre
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Martin Jarzyna
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Jan Huisken
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States,Department of Biology and Psychology, Georg-August-UniversityGöttingenGermany
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
14
|
Mufford MS, van der Meer D, Andreassen OA, Ramesar R, Stein DJ, Dalvie S. A review of systems biology research of anxiety disorders. ACTA ACUST UNITED AC 2021; 43:414-423. [PMID: 33053074 PMCID: PMC8352731 DOI: 10.1590/1516-4446-2020-1090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023]
Abstract
The development of "omic" technologies and deep phenotyping may facilitate a systems biology approach to understanding anxiety disorders. Systems biology approaches incorporate data from multiple modalities (e.g., genomic, neuroimaging) with functional analyses (e.g., animal and tissue culture models) and mathematical modeling (e.g., machine learning) to investigate pathological biophysical networks at various scales. Here we review: i) the neurobiology of anxiety disorders; ii) how systems biology approaches have advanced this work; and iii) the clinical implications and future directions of this research. Systems biology approaches have provided an improved functional understanding of candidate biomarkers and have suggested future potential for refining the diagnosis, prognosis, and treatment of anxiety disorders. The systems biology approach for anxiety disorders is, however, in its infancy and in some instances is characterized by insufficient power and replication. The studies reviewed here represent important steps to further untangling the pathophysiology of anxiety disorders.
Collapse
Affiliation(s)
- Mary S Mufford
- South African Medical Research Council Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Dennis van der Meer
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Raj Ramesar
- South African Medical Research Council Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- South African Medical Research Council (SAMRC), Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Shareefa Dalvie
- South African Medical Research Council (SAMRC), Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Hong TI, Hwang KS, Choi TI, Kleinau G, Scheerer P, Bang JK, Jung SH, Kim CH. Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity. Int J Mol Sci 2021; 22:9313. [PMID: 34502223 PMCID: PMC8431389 DOI: 10.3390/ijms22179313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, we used the zebrafish animal model to establish a bioassay by which physiological efficacy differential of alpha-melanocyte-stimulating hormone (α-MSH) analogues could be measured by melanosome dispersion in zebrafish larvae. Brain-skin connection research has purported the interconnectedness between the nervous system and skin physiology. Accordingly, the neuropeptide α-MSH is a key regulator in several physiological processes, such as skin pigmentation in fish. In mammals, α-MSH has been found to regulate motivated behavior, appetite, and emotion, including stimulation of satiety and anxiety. Several clinical and animal model studies of autism spectrum disorder (ASD) have already demonstrated the effectiveness of α-MSH in restoring the social deficits of autism. Therefore, we sought to analyze the effect of synthetic and naturally-occurring α-MSH variants amongst different species. Our results showed that unique α-MSH derivatives from several fish species produced differential effects on the degree of melanophore dispersion. Using α-MSH human form as a standard, we could identify derivatives that induced greater physiological effects; particularly, the synthetic analogue melanotan-II (MT-II) exhibited a higher capacity for melanophore dispersion than human α-MSH. This was consistent with previous findings in an ASD mouse model demonstrating the effectiveness of MT-II in improving ASD behavioral symptoms. Thus, the melanophore assay may serve as a useful screening tool for therapeutic candidates for novel drug discovery.
Collapse
Affiliation(s)
- Ted I. Hong
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| | - Kyu-Seok Hwang
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (G.K.); (P.S.)
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (G.K.); (P.S.)
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea;
| | - Seung-Hyun Jung
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| |
Collapse
|
16
|
Regulation of habenular G-protein gamma 8 on learning and memory via modulation of the central acetylcholine system. Mol Psychiatry 2021; 26:3737-3750. [PMID: 32989244 DOI: 10.1038/s41380-020-00893-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023]
Abstract
Guanine nucleotide binding protein (G protein) gamma 8 (Gng8) is a subunit of G proteins and expressed in the medial habenula (MHb) and interpeduncular nucleus (IPN). Recent studies have demonstrated that Gng8 is involved in brain development; however, the roles of Gng8 on cognitive function have not yet been addressed. In the present study, we investigated the expression of Gng8 in the brain and found that Gng8 was predominantly expressed in the MHb-IPN circuit of the mouse brain. We generated Gng8 knockout (KO) mice by CRISPR/Cas9 system in order to assess the role of Gng8 on cognitive function. Gng8 KO mice exhibited deficiency in learning and memory in passive avoidance and Morris water maze tests. In addition, Gng8 KO mice significantly reduced long-term potentiation (LTP) in the hippocampus compared to that of wild-type (WT) mice. Furthermore, we observed that levels of acetylcholine (ACh) and choline acetyltransferase (ChAT) in the MHb and IPN of Gng8 KO mice were significantly decreased, compared to WT mice. The administration of nAChR α4β2 agonist A85380 rescued memory impairment in the Gng8 KO mice, suggesting that Gng8 regulates cognitive function via modulation of cholinergic activity. Taken together, Gng8 is a potential therapeutic target for memory-related diseases and/or neurodevelopmental diseases.
Collapse
|
17
|
Pol-Fuster J, Cañellas F, Ruiz-Guerra L, Medina-Dols A, Bisbal-Carrió B, Ortega-Vila B, Llinàs J, Hernandez-Rodriguez J, Lladó J, Olmos G, Strauch K, Heine-Suñer D, Vives-Bauzà C, Flaquer A. The conserved ASTN2/BRINP1 locus at 9q33.1-33.2 is associated with major psychiatric disorders in a large pedigree from Southern Spain. Sci Rep 2021; 11:14529. [PMID: 34267256 PMCID: PMC8282839 DOI: 10.1038/s41598-021-93555-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022] Open
Abstract
We investigated the genetic causes of major mental disorders (MMDs) including schizophrenia, bipolar disorder I, major depressive disorder and attention deficit hyperactive disorder, in a large family pedigree from Alpujarras, South of Spain, a region with high prevalence of psychotic disorders. We applied a systematic genomic approach based on karyotyping (n = 4), genotyping by genome-wide SNP array (n = 34) and whole-genome sequencing (n = 12). We performed genome-wide linkage analysis, family-based association analysis and polygenic risk score estimates. Significant linkage was obtained at chromosome 9 (9q33.1–33.2, LOD score = 4.11), a suggestive region that contains five candidate genes ASTN2, BRINP1, C5, TLR4 and TRIM32, previously associated with MMDs. Comprehensive analysis associated the MMD phenotype with genes of the immune system with dual brain functions. Moreover, the psychotic phenotype was enriched for genes involved in synapsis. These results should be considered once studying the genetics of psychiatric disorders in other families, especially the ones from the same region, since founder effects may be related to the high prevalence.
Collapse
Affiliation(s)
- Josep Pol-Fuster
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Francesca Cañellas
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Department of Psychiatry, HUSE, IdISBa, Palma, Spain
| | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bàrbara Bisbal-Carrió
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bernat Ortega-Vila
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jaume Llinàs
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jessica Hernandez-Rodriguez
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jerònia Lladó
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Gabriel Olmos
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| | - Damià Heine-Suñer
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Cristòfol Vives-Bauzà
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain. .,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.
| | - Antònia Flaquer
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| |
Collapse
|
18
|
Ariyasiri K, Choi TI, Gerlai R, Kim CH. Acute ethanol induces behavioral changes and alters c-fos expression in specific brain regions, including the mammillary body, in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110264. [PMID: 33545226 DOI: 10.1016/j.pnpbp.2021.110264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Ethanol is one of the most commonly abused substances in the world, and ethanol abuse and dependence disorders represent major societal problems. However, appropriate treatment is lacking as we still do not fully understand the molecular bases of these disorders. The zebrafish is one of the model organisms utilized for studying such mechanisms. In this study, we examined the effects of acute ethanol administration on the behavior of zebrafish, and we also analyzed correlated gene expression changes using whole-mount in situ hybridization focusing on a number of genes associated with different neurotransmitter systems, stress response, and neuronal activity. We found ethanol treatment to result in hyperactivity and reduced shoal cohesion compared to control. Analysis of c-fos expression demonstrated altered activity patterns in certain brain regions, including intense activation of the mammillary body in zebrafish with acute ethanol treatment. We also found reduced level of gad1b expression in the cerebellum of ethanol treated fish compared to control. However, we could not detect significant changes in the expression level of other genes, including vglut2b, th, crh, hdc, avp, pomc, and galn in ethanol treated fish compared controls. Our results suggest that zebrafish is a promising animal model for the study of mechanisms underlying alcohol induced behavioral changes and alcohol related human disorders.
Collapse
Affiliation(s)
- Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
19
|
FAM19A5l Affects Mustard Oil-Induced Peripheral Nociception in Zebrafish. Mol Neurobiol 2021; 58:4770-4785. [PMID: 34176096 DOI: 10.1007/s12035-021-02449-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Family with sequence similarity 19 (chemokine (C-C motif)-like) member A5 (FAM19A5) is a chemokine-like secretory protein recently identified as involved in the regulation of osteoclast formation, post-injury neointima formation, and depression. Although roles for FAM19A5 have been described in nervous system development and psychiatric disorders, its role in the nervous system remains poorly understood. Here, we analyzed the evolutionary history of FAM19A genes in vertebrates and identified FAM19A5l, a paralogous zebrafish gene originating from a common ancestral FAM19A5 gene. Further, zebrafish FAM19A5l is expressed in trigeminal and dorsal root ganglion neurons as well as distinct neuronal subsets of the central nervous system. Interestingly, FAM19A5l+ trigeminal neurons are nociceptive neurons that localized with TRPA1b and TRPV1 and respond to mustard oil treatment. Behavioral analysis further revealed that the nociceptive response to mustard oil decreases in FAM19A5l-knockout zebrafish larvae. In addition, TRPA1b and NGFa mRNA levels are down- and upregulated in FAM19A5l-knockout and -overexpressing transgenic zebrafish, respectively. Together, our data suggest that FAM19A5l plays a role in nociceptive responses to mustard oil by regulating TRPA1b and NGFa expression in zebrafish.
Collapse
|
20
|
Khalaj AJ, Sterky FH, Sclip A, Schwenk J, Brunger AT, Fakler B, Südhof TC. Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. J Cell Biol 2021; 219:151974. [PMID: 32706374 PMCID: PMC7480106 DOI: 10.1083/jcb.202004164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Neurexins are presynaptic adhesion molecules that organize synapses by binding to diverse trans-synaptic ligands, but how neurexins are regulated is incompletely understood. Here we identify FAM19A/TAFA proteins, “orphan" cytokines, as neurexin regulators that interact with all neurexins, except for neurexin-1γ, via an unusual mechanism. Specifically, we show that FAM19A1-A4 bind to the cysteine-loop domain of neurexins by forming intermolecular disulfide bonds during transport through the secretory pathway. FAM19A-binding required both the cysteines of the cysteine-loop domain and an adjacent sequence of neurexins. Genetic deletion of neurexins suppressed FAM19A1 expression, demonstrating that FAM19As physiologically interact with neurexins. In hippocampal cultures, expression of exogenous FAM19A1 decreased neurexin O-glycosylation and suppressed its heparan sulfate modification, suggesting that FAM19As regulate the post-translational modification of neurexins. Given the selective expression of FAM19As in specific subtypes of neurons and their activity-dependent regulation, these results suggest that FAM19As serve as cell type–specific regulators of neurexin modifications.
Collapse
Affiliation(s)
- Anna J Khalaj
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Fredrik H Sterky
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Alessandra Sclip
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centres for Biological Signalling Studies (BIOSS) and Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.,Center for Basics in NeuroModulation, Freiburg, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
21
|
Sarver DC, Lei X, Wong GW. FAM19A (TAFA): An Emerging Family of Neurokines with Diverse Functions in the Central and Peripheral Nervous System. ACS Chem Neurosci 2021; 12:945-958. [PMID: 33621067 DOI: 10.1021/acschemneuro.0c00757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokines and chemokines have diverse and pleiotropic functions in peripheral tissues and in the brain. Recent studies uncovered a novel family of neuron-derived secretory proteins, or neurokines, distantly related to chemokines. The FAM19A family comprises five ∼12-15 kDa secretory proteins (FAM19A1-5), also known as TAFA1-5, that are predominantly detected in the central and peripheral nervous system. FAM19A expression in the central nervous system is dynamically regulated during development and in the postnatal brain. As secreted ligands, FAM19A proteins appear to bind to different classes of cell surface receptors (e.g., GPCRs and neurexins). Functional studies using gain- and loss-of-function mouse models established nonredundant roles for each FAM19A family member in regulating diverse physiological processes ranging from locomotor activity and food intake to learning and memory, anxiety- and depressive-like behaviors, social communication, repetitive behaviors, and somatosensory functions. This review summarizes major advances as well as the limitations and knowledge gaps in understanding the regulation and diverse biological functions of this conserved family of neurokines.
Collapse
Affiliation(s)
- Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xia Lei
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
22
|
Zebrafish as an animal model for biomedical research. Exp Mol Med 2021; 53:310-317. [PMID: 33649498 PMCID: PMC8080808 DOI: 10.1038/s12276-021-00571-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish have several advantages compared to other vertebrate models used in modeling human diseases, particularly for large-scale genetic mutant and therapeutic compound screenings, and other biomedical research applications. With the impactful developments of CRISPR and next-generation sequencing technology, disease modeling in zebrafish is accelerating the understanding of the molecular mechanisms of human genetic diseases. These efforts are fundamental for the future of precision medicine because they provide new diagnostic and therapeutic solutions. This review focuses on zebrafish disease models for biomedical research, mainly in developmental disorders, mental disorders, and metabolic diseases.
Collapse
|
23
|
Lee YR, Kim SH, Ben-Mahmoud A, Kim OH, Choi TI, Lee KH, Ku B, Eum J, Kee Y, Lee S, Cha J, Won D, Lee ST, Choi JR, Lee JS, Kim HD, Kim HG, Bonkowsky JL, Kang HC, Kim CH. Eif2b3 mutants recapitulate phenotypes of vanishing white matter disease and validate novel disease alleles in zebrafish. Hum Mol Genet 2021; 30:331-342. [PMID: 33517449 DOI: 10.1093/hmg/ddab033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Leukodystrophy with vanishing white matter (VWM), also called Childhood Ataxia with Central Nervous System Hypomyelination, is caused by mutations in the subunits of the eukaryotic translation initiation factor, EIF2B1, EIF2B2, EIF2B3, EIF2B4 or EIF2B5. However, little is known regarding the underlying pathogenetic mechanisms, and there is no curative treatment for VWM. In this study, we established the first EIF2B3 animal model for VWM disease in vertebrates by CRISPR mutagenesis of the highly conserved zebrafish ortholog eif2b3. Using CRISPR, we generated two mutant alleles in zebrafish eif2b3, 10- and 16-bp deletions, respectively. The eif2b3 mutants showed defects in myelin development and glial cell differentiation, and increased expression of genes in the induced stress response pathway. Interestingly, we also found ectopic angiogenesis and increased VEGF expression. Ectopic angiogenesis in the eif2b3 mutants was reduced by the administration of VEGF receptor inhibitor SU5416. Using the eif2b3 mutant zebrafish model together with in silico protein modeling analysis, we demonstrated the pathogenicity of 18 reported mutations in EIF2B3, as well as of a novel variant identified in a 19-month-old female patient: c.503 T > C (p.Leu168Pro). In summary, our zebrafish mutant model of eif2b3 provides novel insights into VWM pathogenesis and offers rapid functional analysis of human EIF2B3 gene variants.
Collapse
Affiliation(s)
- Yu-Ri Lee
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Se Hee Kim
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Bonsu Ku
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Juneyong Eum
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Korea
| | - Yun Kee
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, Korea
| | - Jihoon Cha
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - DongJu Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Heung Dong Kim
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine and Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Hoon-Chul Kang
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
24
|
Koh A, Tao S, Jing Goh Y, Chaganty V, See K, Purushothaman K, Orbán L, Mathuru AS, Wohland T, Winkler C. A Neurexin2aa deficiency results in axon pathfinding defects and increased anxiety in zebrafish. Hum Mol Genet 2020; 29:3765-3780. [PMID: 33276371 DOI: 10.1093/hmg/ddaa260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Neurexins are presynaptic transmembrane proteins that control synapse activity and are risk factors for autism spectrum disorder. Zebrafish, a popular model for behavioral studies, has six neurexin genes, but their functions in embryogenesis and behavior remain largely unknown. We have previously reported that nrxn2a is aberrantly spliced and specifically dysregulated in motor neurons (MNs) in models of spinal muscular atrophy. In this study, we generated nrxn2aa-/- mutants by CRISPR/Cas9 to understand nrxn2aa function at the zebrafish neuromuscular junction (NMJ) and to determine the effects of its deficiency on adult behavior. Homozygous mutant embryos derived from heterozygous parents did not show obvious defects in axon outgrowth or synaptogenesis of MNs. In contrast, maternal-zygotic (MZ) nrxn2aa-/- mutants displayed extensively branched axons and defective MNs, suggesting a cell-autonomous role for maternally provided nrxn2aa in MN development. Analysis of the NMJs revealed enlarged choice points in MNs of mutant larvae and reduced co-localization of pre- and post-synaptic terminals, indicating impaired synapse formation. Severe early NMJ defects partially recovered in late embryos when mutant transcripts became strongly upregulated. Ultimately, however, the induced defects resulted in muscular atrophy symptoms in adult MZ mutants. Zygotic homozygous mutants developed normally but displayed increased anxiety at adult stages. Together, our data demonstrate an essential role for maternal nrxn2aa in NMJ synapse establishment, while zygotic nrxn2aa expression appears dispensable for synapse maintenance. The viable nrxn2aa-/- mutant furthermore serves as a novel model to study how an increase in anxiety-like behaviors impacts other deficits.
Collapse
Affiliation(s)
- Angela Koh
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Shijie Tao
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yun Jing Goh
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Vindhya Chaganty
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Kelvin See
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Ajay S Mathuru
- Yale-NUS College, Singapore 138527, Singapore.,Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
25
|
Matsuda K, Yoshida D, Watanabe K, Yokobori E, Konno N, Nakamachi T. Effect of intracerebroventricular administration of two molecular forms of sulfated CCK octapeptide on anxiety-like behavior in the zebrafish danio rerio. Peptides 2020; 130:170330. [PMID: 32445877 DOI: 10.1016/j.peptides.2020.170330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022]
Abstract
Cholecystokinin octapeptide with sulfate (CCK-8s) regulates feeding behavior and psychomotor activity. In rodents and goldfish, intracerebroventricular (ICV) injection of CCK-8s decreases food intake and also induces anxiety-like behavior. The zebrafish has several merits for investigating the psychophysiological roles of neuropeptides. However, little is known about the brain localization of CCK and the behavioral action of CCK-8s in this species. Here we investigated the brain localization of CCK-like immunoreactivity and found that it was distributed throughout the brain. As CCK-like immunoreactivity was particularly evident in the ventral habenular nucleus, the interpeduncular nucleus and superior raphe, we subsequently examined the effect of zebrafish (zf) CCK-8s on psychomotor control. Since the zebrafish possesses two molecular forms of zfCCK-8s (zfCCKA-8s and zfCCKB-8s), two synthetic peptides were administered intracerebroventricularly at 1, 5 and 10 pmol g-1 body weight (BW). As the zebrafish shows a greater preference for the lower area of a tank than for to the upper area, we used this preference for assessment of anxiety-like behavior. ICV administration of zfCCKA-8 s or zfCCKB-8s at 10 pmol g-1 BW significantly shortened the time spent in the upper area. The actions of these peptides mimicked that of the central-type benzodiazepine receptor inverse agonist FG-7142 (an anxiogenic agent) at 10 pmol g-1 BW. The anxiogenic-like action of the two peptides was attenuated by treatment with the CCK receptor antagonist proglumide at 200 pmol g-1 BW. These results indicate that zfCCKA-8s and zfCCKB-8s potently induce anxiety-like behavior via the CCK receptor-signaling pathway in the zebrafish brain.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama 930-8555, Japan.
| | - Daisuke Yoshida
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Eri Yokobori
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
26
|
Yong HJ, Ha N, Cho EB, Yun S, Kim H, Hwang JI, Seong JY. The unique expression profile of FAM19A1 in the mouse brain and its association with hyperactivity, long-term memory and fear acquisition. Sci Rep 2020; 10:3969. [PMID: 32123192 PMCID: PMC7052240 DOI: 10.1038/s41598-020-60266-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Neurodevelopment and mature brain function are spatiotemporally regulated by various cytokines and chemokines. The chemokine-like neuropeptide FAM19A1 is a member of family with sequence similarity 19 (FAM19), which is predominantly expressed in the brain. Its highly conserved amino acid sequence among vertebrates suggests that FAM19A1 may play important physiological roles in neurodevelopment and brain function. Here we used a LacZ reporter gene system to map the expression pattern of the FAM19A1 gene in the mouse brain. The FAM19A1 expression was observed in several brain regions starting during embryonic brain development. As the brain matured, the FAM19A1 expression was detected in the pyramidal cells of cortical layers 2/3 and 5 and in several limbic areas, including the hippocampus and the amygdala. FAM19A1-deficient mice were used to evaluate the physiological contribution of FAM19A1 to various brain functions. In behavior analysis, FAM19A1-deficient mice exhibited several abnormal behaviors, including hyperactive locomotor behavior, long-term memory deficits and fear acquisition failure. These findings provide insight into the potential contributions of FAM19A1 to neurodevelopment and mature brain function.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Nui Ha
- Neuracle Science Co. Ltd., Seoul, 02841, Republic of Korea
| | - Eun Bee Cho
- Neuracle Science Co. Ltd., Seoul, 02841, Republic of Korea
| | - Seongsik Yun
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jong-Ik Hwang
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Jae Young Seong
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Yang L, Jiang H, Chen J, Lei Y, Sun N, Lv W, Near TJ, He S. Comparative Genomics Reveals Accelerated Evolution of Fright Reaction Genes in Ostariophysan Fishes. Front Genet 2019; 10:1283. [PMID: 31921316 PMCID: PMC6936194 DOI: 10.3389/fgene.2019.01283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
The ostariophysian fishes are the most species-rich clade in freshwaters. This diversification has been suggested to be associated with the fright reaction presented in most ostariophysians. However, the genetic forces that underlie fright reaction remains poorly understood. In the present study, through integrating behavioral, physiological, transcriptomic, and evolutionary genomic analyses, we found that the fright reaction has a broad impact on zebrafish at multiple levels, including changes in swimming behaviors, cortisol levels, and gene expression patterns. In total, 1,555 and 1,599 differentially expressed genes were identified in olfactory mucosae and brain of zebrafish, respectively, with a greater number upregulated after the fright reaction. Functional annotation showed that response to stress and signal transduction were strongly represented, which is directly associated with the fright reaction. These differentially expressed genes were shown to be evolved accelerated under the influence of positive selection, indicating that protein-coding evolution has played a major role in fright reaction. We found the basal vomeronasal type 2 receptors (v2r) gene, v2rl1, displayed significantly decrease expression after fright reaction, which suggests that v2rs may be important to detect the alarm substance and induce the fright reaction. Collectively, based on our transcriptome and evolutionary genomics analyses, we suggest that transcriptional plasticity of gene may play an important role in fright reaction in ostariophysian fishes.
Collapse
Affiliation(s)
- Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Sun
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT, United States
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
28
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
29
|
Maximino C, do Carmo Silva RX, Dos Santos Campos K, de Oliveira JS, Rocha SP, Pyterson MP, Dos Santos Souza DP, Feitosa LM, Ikeda SR, Pimentel AFN, Ramos PNF, Costa BPD, Herculano AM, Rosemberg DB, Siqueira-Silva DH, Lima-Maximino M. Sensory ecology of ostariophysan alarm substances. JOURNAL OF FISH BIOLOGY 2019; 95:274-286. [PMID: 30345536 DOI: 10.1111/jfb.13844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Chemical communication of predation risk has evolved multiple times in fish species, with conspecific alarm substance (CAS) being the most well understood mechanism. CAS is released after epithelial damage, usually when prey fish are captured by a predator and elicits neurobehavioural adjustments in conspecifics which increase the probability of avoiding predation. As such, CAS is a partial predator stimulus, eliciting risk assessment-like and avoidance behaviours and disrupting the predation sequence. The present paper reviews the distribution and putative composition of CAS in fish and presents a model for the neural processing of these structures by the olfactory and the brain aversive systems. Applications of CAS in the behavioural neurosciences and neuropharmacology are also presented, exploiting the potential of model fish [e.g., zebrafish Danio rerio, guppies Poecilia reticulata, minnows Phoxinus phoxinus) in neurobehavioural research.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Nova Marabá, Brazil
| | - Rhayra X do Carmo Silva
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Nova Marabá, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Kimberly Dos Santos Campos
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII/Marabá, Marabá, Brazil
| | - Jeisiane S de Oliveira
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII/Marabá, Marabá, Brazil
| | - Sueslene P Rocha
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII/Marabá, Marabá, Brazil
| | - Maryana P Pyterson
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Nova Marabá, Brazil
| | - Dainara P Dos Santos Souza
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Nova Marabá, Brazil
| | - Leonardo M Feitosa
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII/Marabá, Marabá, Brazil
| | - Saulo R Ikeda
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII/Marabá, Marabá, Brazil
| | - Ana F N Pimentel
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Nova Marabá, Brazil
| | - Pâmila N F Ramos
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII/Marabá, Marabá, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Universidade Estadual do Maranhão - Cidade Universitária Paulo VI - Predio da Veterinária, São Luis, Brazil
| | - Bruna P D Costa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Nova Marabá, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Universidade Estadual do Maranhão - Cidade Universitária Paulo VI - Predio da Veterinária, São Luis, Brazil
| | - Anderson M Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Denis B Rosemberg
- Laboratório de Neuropsicobiologia Experimental, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Diógenes H Siqueira-Silva
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Nova Marabá, Brazil
| | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará - Campus VIII/Marabá, Marabá, Brazil
| |
Collapse
|
30
|
Alcohol exposure during embryonic development: An opportunity to conduct systematic developmental time course analyses in zebrafish. Neurosci Biobehav Rev 2019; 98:185-193. [PMID: 30641117 DOI: 10.1016/j.neubiorev.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
Abstract
Ethanol affects numerous neurobiological processes depending upon the developmental stage at which it reaches the vertebrate embryo. Exposure time dependency may explain the variable severity and manifestation of life-long symptoms observed in fetal alcohol spectrum disorder (FASD) patients. Characterization of behavioural deficits will help us understand developmental stage-dependency and its underlying biological mechanisms. Here we highlight pioneering studies that model FASD using zebrafish, including those that demonstrated developmental stage-dependency of alcohol effects on some behaviours. We also succinctly review the more expansive mammalian literature, briefly discuss potential developmental stage dependent biological mechanisms alcohol alters, and review some of the disadvantages of mammalian systems versus the zebrafish. We stress that the temporal control of alcohol administration in the externally developing zebrafish gives unprecedented precision and is a major advantage of this species over other model organisms employed so far. We also emphasize that the zebrafish is well suited for high throughput screening and will allow systematic exploration of embryonic-stage dependent alcohol effects via mutagenesis and drug screens.
Collapse
|
31
|
Ariyasiri K, Choi TI, Kim OH, Hong TI, Gerlai R, Kim CH. Pharmacological (ethanol) and mutation (sam2 KO) induced impairment of novelty preference in zebrafish quantified using a new three-chamber social choice task. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:53-65. [PMID: 29958859 DOI: 10.1016/j.pnpbp.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Social behavior is a fundamental aspect of our own species, a feature without which our society would not function. There are numerous human brain disorders associated with abnormal social behavior, among them are the autism spectrum disorders whose causal factors include a genetic component. Environmental factors, including drugs of abuse such as alcohol, also contribute to numerous abnormalities related to social behavior. Several such disorders have been modeled using laboratory animals. Perhaps one of the newest among them is the zebrafish. However, the paucity of standardized behavioral assays specifically developed for the zebrafish have hindered progress. Here, we present a newly developed zebrafish behavioral paradigm, the three-chamber social choice task. This task, which was adapted from a murine model, assesses sociality and social novelty preference in zebrafish in three phases: habituation, phase-I to evaluate sociality, and phase-II to quantify social novelty preference. Test fish are placed in the middle chamber, while conspecifics are introduced to the flanking chambers during phase-I and II. Both male and female zebrafish displayed sociality (preference for conspecifics) during phase-I and social novelty preference (preference for unfamiliar conspecifics) during phase-II. We found the paradigm to be able to detect both environmentally (alcohol) as well as genetically (targeted knock out of sam2) induced alterations of behavioral phenotypes. Although ethanol-treated fish displayed similar levels of sociality to those of control (not alcohol exposed) male and female zebrafish, they were found to exhibit significantly impaired social novelty preference, a finding compatible with altered motivational or perhaps mnemonic processes. Moreover, we found that knock out of sam2, previously shown to lead to emotional dysregulation, also disrupted social novelty preference, while leaving sociality relatively intact. We conclude that our novel behavioral paradigm is appropriate for the modeling and quantification of social behavior deficits in zebrafish.
Collapse
Affiliation(s)
- Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|