1
|
Mastrocinque F, Bullard G, Alatis JA, Albro JA, Nayak A, Williams NX, Kumbhar A, Meikle H, Widel ZXW, Bai Y, Harvey AK, Atkin JM, Waldeck DH, Franklin AD, Therien MJ. Band gap opening of metallic single-walled carbon nanotubes via noncovalent symmetry breaking. Proc Natl Acad Sci U S A 2024; 121:e2317078121. [PMID: 38466848 PMCID: PMC10962935 DOI: 10.1073/pnas.2317078121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/03/2024] [Indexed: 03/13/2024] Open
Abstract
Covalent bonding interactions determine the energy-momentum (E-k) dispersion (band structure) of solid-state materials. Here, we show that noncovalent interactions can modulate the E-k dispersion near the Fermi level of a low-dimensional nanoscale conductor. We demonstrate that low energy band gaps may be opened in metallic carbon nanotubes through polymer wrapping of the nanotube surface at fixed helical periodicity. Electronic spectral, chiro-optic, potentiometric, electronic device, and work function data corroborate that the magnitude of band gap opening depends on the nature of the polymer electronic structure. Polymer dewrapping reverses the conducting-to-semiconducting phase transition, restoring the native metallic carbon nanotube electronic structure. These results address a long-standing challenge to develop carbon nanotube electronic structures that are not realized through disruption of π conjugation, and establish a roadmap for designing and tuning specialized semiconductors that feature band gaps on the order of a few hundred meV.
Collapse
Affiliation(s)
| | - George Bullard
- Department of Chemistry, Duke University, Durham, NC27708
| | | | - Joseph A. Albro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA15260
| | - Animesh Nayak
- Department of Chemistry, Duke University, Durham, NC27708
| | - Nicholas X. Williams
- Department of Electrical and Computer Engineering, Duke University, Durham, NC27708
| | - Amar Kumbhar
- Department of Chemistry, Chapel Hill Analytical and Nanofabrication Laboratory, University of North Carolina, Chapel Hill, NC27599
| | - Hope Meikle
- Department of Chemistry, Duke University, Durham, NC27708
- Department of Electrical and Computer Engineering, Duke University, Durham, NC27708
| | | | - Yusong Bai
- Department of Chemistry, Duke University, Durham, NC27708
| | - Alexis K. Harvey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599
| | - Joanna M. Atkin
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599
| | - David H. Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA15260
| | - Aaron D. Franklin
- Department of Chemistry, Duke University, Durham, NC27708
- Department of Electrical and Computer Engineering, Duke University, Durham, NC27708
| | | |
Collapse
|
2
|
Krause B, Konidakis I, Stratakis E, Pötschke P. Change of Conduction Mechanism in Polymer/Single Wall Carbon Nanotube Composites upon Introduction of Ionic Liquids and Their Investigation by Transient Absorption Spectroscopy: Implication for Thermoelectric Applications. ACS APPLIED NANO MATERIALS 2023; 6:13027-13036. [PMID: 37533541 PMCID: PMC10391594 DOI: 10.1021/acsanm.3c01735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023]
Abstract
Polymer composites based on polycarbonate (PC) and polyether ether ketone (PEEK) filled with single-walled carbon nanotubes (SWCNTs, 0.5-2.0 wt %) were melt-mixed to investigate their suitability for thermoelectric applications. Both types of polymer composites exhibited positive Seebeck coefficients (S), indicative for p-type thermoelectric materials. As an additive to improve the thermoelectric performance, three different ionic liquids (ILs), specifically THTDPCl, BMIMPF6, and OMIMCl, were added with the aim to change the thermoelectric conduction type of the composites from p-type to n-type. It was found that in both composite types, among the three ILs employed, only the phosphonium-based IL THTDPCl was able to activate the p- to n-type switching. Moreover, it is revealed that for the thermoelectric parameters and performance, the SWCNT:lL ratio plays a role. In the selected systems, S-values between 61.3 μV/K (PEEK/0.75 wt % SWCNT) and -37.1 μV/K (PEEK/0.75 wt % SWCNT + 3 wt % THTDPCl) were reached. In order to shed light on the physical origins of the thermoelectric properties, the PC-based composites were studied using ultrafast laser time-resolved transient absorption spectroscopy (TAS). The TAS studies revealed that the introduction of ILs in the developed PC/CNT composites leads to the formation of biexcitons when compared to the IL-free composites. Moreover, no direct correlation between S and exciton lifetimes was found for the IL-containing composites. Instead, the exciton lifetime decreases while the conductivity seems to increase due to the availability of more free-charge carriers in the polymer matrix.
Collapse
Affiliation(s)
- Beate Krause
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
| | - Ioannis Konidakis
- Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), 70013 Heraklion-Crete, Greece
| | - Emmanuel Stratakis
- Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), 70013 Heraklion-Crete, Greece
| | - Petra Pötschke
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
3
|
Birkmeier K, Hertel T, Hartschuh A. Probing the ultrafast dynamics of excitons in single semiconducting carbon nanotubes. Nat Commun 2022; 13:6290. [PMID: 36271091 PMCID: PMC9586955 DOI: 10.1038/s41467-022-33941-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Excitonic states govern the optical spectra of low-dimensional semiconductor nanomaterials and their dynamics are key for a wide range of applications, such as in solar energy harvesting and lighting. Semiconducting single-walled carbon nanotubes emerged as particularly rich model systems for one-dimensional nanomaterials and as such have been investigated intensively in the past. The exciton decay dynamics in nanotubes has been studied mainly by transient absorption and time-resolved photoluminescence spectroscopy. Since different transitions are monitored with these two techniques, developing a comprehensive model to reconcile different data sets, however, turned out to be a challenge and remarkably, a uniform description seems to remain elusive. In this work, we investigate the exciton decay dynamics in single carbon nanotubes using transient interferometric scattering and time-resolved photoluminescence microscopy with few-exciton detection sensitivity and formulate a unified microscopic model by combining unimolecular exciton decay and ultrafast exciton-exciton annihilation on a time-scale down to 200 fs.
Collapse
Affiliation(s)
- Konrad Birkmeier
- Department of Chemistry and CeNS, LMU Munich, Butenandtstr. 5-13, 81377, Munich, Germany
- TOPTICA Photonics AG, Lochhamer Schlag 19, 82166, Gräfelfing, Germany
| | - Tobias Hertel
- Institute of Physical and Theoretical Chemistry, Julius-Maximilian University Würzburg, 97074, Würzburg, Germany
| | - Achim Hartschuh
- Department of Chemistry and CeNS, LMU Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
4
|
Vong AF, Irgen-Gioro S, Wu Y, Weiss EA. Origin of Low Temperature Trion Emission in CdSe Nanoplatelets. NANO LETTERS 2021; 21:10040-10046. [PMID: 34843260 DOI: 10.1021/acs.nanolett.1c03726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal semiconductor nanoplatelets (NPLs) are a scalable materials platform for optoelectronic applications requiring fast and narrow emission, including spin-to-photon transduction within quantum information networks. In particular, three-particle negative trions of NPLs are appealing emitters since, unlike excitons, they do not have an optically "dark" sublevel. In CdSe NPLs, trion emission dominates the photoluminescence (PL) spectrum at low temperature but using them as single photon-emitting states requires more knowledge about their preparation, since trions in these materials are not directly optically accessible from the ground state. This work demonstrates, using power-dependent time-resolved transient absorptions (TA) of CdSe NPLs, that trions form via biexciton decay in 1.6 ps. The scaling of the trion population and formation lifetime with excitation power indicates that they do not form through collisional mechanisms typical for 2D materials, but rather by a unimolecular hole transfer. This work is a step toward deterministic single photon emission from trions.
Collapse
Affiliation(s)
- Albert F Vong
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Shawn Irgen-Gioro
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yue Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emily A Weiss
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
5
|
Kuang Z, Berger FJ, Lustres JLP, Wollscheid N, Li H, Lüttgens J, Leinen MB, Flavel BS, Zaumseil J, Buckup T. Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:8125-8136. [PMID: 34055124 PMCID: PMC8154833 DOI: 10.1021/acs.jpcc.0c10171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/16/2021] [Indexed: 06/12/2023]
Abstract
As narrow optical bandgap materials, semiconducting single-walled carbon nanotubes (SWCNTs) are rarely regarded as charge donors in photoinduced charge-transfer (PCT) reactions. However, the unique band structure and unusual exciton dynamics of SWCNTs add more possibilities to the classical PCT mechanism. In this work, we demonstrate PCT from photoexcited semiconducting (6,5) SWCNTs to a wide-bandgap wrapping poly-[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(6,6')-(2,2'-bipyridine)] (PFO-BPy) via femtosecond transient absorption spectroscopy. By monitoring the spectral dynamics of the SWCNT polaron, we show that charge transfer from photoexcited SWCNTs to PFO-BPy can be driven not only by the energetically favorable E33 transition but also by the energetically unfavorable E22 excitation under high pump fluence. This unusual PCT from narrow-bandgap SWCNTs toward a wide-bandgap polymer originates from the up-converted high-energy excitonic state (E33 or higher) that is promoted by the Auger recombination of excitons and charge carriers in SWCNTs. These insights provide new pathways for charge separation in SWCNT-based photodetectors and photovoltaic cells.
Collapse
Affiliation(s)
- Zhuoran Kuang
- Physikalisch
Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany
| | - Felix J. Berger
- Physikalisch
Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany
| | - Jose Luis Pérez Lustres
- Physikalisch
Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany
| | - Nikolaus Wollscheid
- Physikalisch
Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany
| | - Han Li
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Jan Lüttgens
- Physikalisch
Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany
| | - Merve Balcı Leinen
- Physikalisch
Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Jana Zaumseil
- Physikalisch
Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany
| | - Tiago Buckup
- Physikalisch
Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany
| |
Collapse
|
6
|
Abstract
ConspectusExcitons and polarons play a central role in the electronic and optical properties of organic semiconducting polymers and molecular aggregates and are of fundamental importance in understanding the operation of organic optoelectronic devices such as solar cells and light-emitting diodes. For many conjugated organic molecules and polymers, the creation of neutral electronic excitations or ionic radicals is associated with significant nuclear relaxation, the bulk of which occurs along the vinyl-stretching mode or the aromatic-quinoidal stretching mode when conjugated rings are present. Within a polymer chain or molecular aggregate, nuclear relaxation competes with energy- and charge-transfer, mediated by electronic interactions between the constituent units (repeat units for polymers and individual chromophores for a molecular aggregate); for neutral electronic excitations, such inter-unit interactions lead to extended excited states or excitons, while for positive (or negative) charges, interactions lead to delocalized hole (or electron) polarons. The electronic coupling as well as the local coupling between electronic and nuclear degrees of freedom in both excitons and polarons can be described with a Holstein Hamiltonian. However, although excitons and polarons derive from similarly structured Hamiltonians, their optical signatures are quite distinct, largely due to differing ground states and optical selection rules.In this Account, we explore the similarities and differences in the spectral response of excitons and polarons in organic polymers and molecular aggregates. We limit our analysis to the subspace of excitons and hole polarons containing at most one excitation; hence we omit the influence of bipolarons, biexcitons, and higher multiparticle excitations. Using a generic linear array of coupled units as a model host for both excitons and polarons, we compare and contrast the optical responses of both quasiparticles, with a particular emphasis on the spatial coherence length, the length over which an exciton or polaron possesses wave-like properties important for more efficient transport. For excitons, the UV-vis absorption spectrum is generally represented by a distorted vibronic progression with H-like or J-like signatures depending on the sign of the electronic coupling, Jex. The spectrum broadens with increasing site disorder, with the spectral area preserved due to an oscillator strength sum rule. For (hole) polarons, the generally stronger electronic coupling results in a mid-IR spectrum consisting of a narrow, low-energy peak (A) with energy near a vibrational quantum of the vinyl stretching mode, and a broader, higher-energy feature (B). In contrast to the UV-vis spectrum, the mid-IR spectrum is invariant to the sign of the electronic coupling, th, and completely resistant to long-range disorder, where it remains entirely homogeneously broadened. Even in the presence of short-range disorder, the width of peak A remains surprisingly narrow as long as |th| remains sufficiently large, a property that can be understood in terms of Herzberg-Teller coupling. Unlike for excitons, for polarons, the absorption spectral area decreases with increasing short-range disorder σ (i.e., there is no oscillator sum rule) reflective of a decreasing polaron coherence length. The intensity of the low-energy peak A in relation to B is an important signature of polaron coherence. By contrast, for excitons, the absorption spectrum contains no unambiguous signs of exciton coherence. One must instead resort to the shape of the steady-state photoluminescence spectrum. The Holstein-based model has been highly successful in accounting for the spectral properties of molecular aggregates as well as conjugated polymers like poly(3-hexylthiophene) (P3HT) in the mid-IR and UV-vis spectral regions.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Frank C. Spano
- Department of Chemistry Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
7
|
Lutter L, Serpell CJ, Tuite MF, Serpell LC, Xue WF. Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs. Biomol Concepts 2020; 11:102-115. [PMID: 32374275 DOI: 10.1515/bmc-2020-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/30/2020] [Indexed: 08/19/2023] Open
Abstract
Atomic force microscopy, AFM, is a powerful tool that can produce detailed topographical images of individual nano-structures with a high signal-to-noise ratio without the need for ensemble averaging. However, the application of AFM in structural biology has been hampered by the tip-sample convolution effect, which distorts images of nano-structures, particularly those that are of similar dimensions to the cantilever probe tips used in AFM. Here we show that the tip-sample convolution results in a feature-dependent and non-uniform distribution of image resolution on AFM topographs. We show how this effect can be utilised in structural studies of nano-sized upward convex objects such as spherical or filamentous molecular assemblies deposited on a flat surface, because it causes 'magnification' of such objects in AFM topographs. Subsequently, this enhancement effect is harnessed through contact-point based deconvolution of AFM topographs. Here, the application of this approach is demonstrated through the 3D reconstruction of the surface envelope of individual helical amyloid filaments without the need of cross-particle averaging using the contact-deconvoluted AFM topographs. Resolving the structural variations of individual macromolecular assemblies within inherently heterogeneous populations is paramount for mechanistic understanding of many biological phenomena such as amyloid toxicity and prion strains. The approach presented here will also facilitate the use of AFM for high-resolution structural studies and integrative structural biology analysis of single molecular assemblies.
Collapse
Affiliation(s)
- Liisa Lutter
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK
| | | | - Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG, Falmer, Brighton, UK
| | - Wei-Feng Xue
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK
| |
Collapse
|
8
|
Nitrogen-Doped Carbon Nanotube/Polypropylene Composites with Negative Seebeck Coefficient. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4010014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study describes the application of multi-walled carbon nanotubes that were nitrogen-doped during their synthesis (N-MWCNTs) in melt-mixed polypropylene (PP) composites. Different types of N-MWCNTs, synthesized using different methods, were used and compared. Four of the five MWCNT grades showed negative Seebeck coefficients (S), indicating n-type charge carrier behavior. All prepared composites (with a concentration between 2 and 7.5 wt% N-MWCNTs) also showed negative S values, which in most cases had a higher negative value than the corresponding nanotubes. The S values achieved were between 1.0 μV/K and −13.8 μV/K for the N-MWCNT buckypapers or powders and between −4.7 μV/K and −22.8 μV/K for the corresponding composites. With a higher content of N-MWCNTs, the increase in electrical conductivity led to increasing values of the power factor (PF) despite the unstable behavior of the Seebeck coefficient. The highest power factor was achieved with 4 wt% N-MWCNT, where a suitable combination of high electrical conductivity and acceptable Seebeck coefficient led to a PF value of 6.1 × 10−3 µW/(m·K2). First experiments have shown that transient absorption spectroscopy (TAS) is a useful tool to study the carrier transfer process in CNTs in composites and to correlate it with the Seebeck coefficient.
Collapse
|
9
|
Chiu CW, Chung YL, Yang CH, Liu CT, Lin CY. Coulomb decay rates in monolayer doped graphene. RSC Adv 2020; 10:2337-2346. [PMID: 35494571 PMCID: PMC9048988 DOI: 10.1039/c9ra05953a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022] Open
Abstract
Excited conduction electrons, conduction holes, and valence holes in monolayer electron-doped graphene exhibit unusual Coulomb decay rates. The deexcitation processes are studied using the screened exchange energy. They might utilize the intraband and interband single-particle excitations, as well as the plasmon modes, depending on the quasiparticle states and the Fermi energies. The low-lying valence holes can decay through the undamped acoustic plasmon, so that they present very fast Coulomb deexcitations, nonmonotonous energy dependence, and anisotropic behavior. However, the low-energy conduction electrons and holes are similar to those in a two-dimensional electron gas. The higher-energy conduction states and the deeper-energy valence ones behave similarly in the available deexcitation channels and have a similar dependence of decay rate on the wave vector.
Collapse
Affiliation(s)
- Chih-Wei Chiu
- Department of Physics, National Kaohsiung Normal University Kaohsiung 824 Taiwan
| | - Yue-Lin Chung
- Department of Physics, National Kaohsiung Normal University Kaohsiung 824 Taiwan
| | - Cheng-Hsueh Yang
- Department of Physics, National Cheng Kung University Tainan 701 Taiwan
| | - Chang-Ting Liu
- Department of Physics, National Kaohsiung Normal University Kaohsiung 824 Taiwan
| | - Chiun-Yan Lin
- Department of Physics, National Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
10
|
Eremin TV, Obraztsov PA, Velikanov VA, Shubina TV, Obraztsova ED. Many-particle excitations in non-covalently doped single-walled carbon nanotubes. Sci Rep 2019; 9:14985. [PMID: 31628351 PMCID: PMC6802218 DOI: 10.1038/s41598-019-50333-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 11/10/2022] Open
Abstract
Doping of single-walled carbon nanotubes leads to the formation of new energy levels which are able to participate in optical processes. Here, we investigate (6,5)-single walled carbon nanotubes doped in a solution of hydrochloric acid using optical absorption, photoluminescence, and pump-probe transient absorption techniques. We find that, beyond a certain level of doping, the optical spectra of such nanotubes exhibit the spectral features related to two doping-induced levels, which we assign to a localized exciton [Formula: see text] and a trion T, appearing in addition to an ordinary exciton [Formula: see text]. We evaluate the formation and relaxation kinetics of respective states and demonstrate that the kinetics difference between E1 and X energy levels perfectly matches the kinetics of the state T. This original finding evidences the formation of trions through nonradiative relaxation via the [Formula: see text] level, rather than via a direct optical excitation from the ground energy state of nanotubes.
Collapse
Affiliation(s)
- Timofei V Eremin
- Faculty of Physics of M.V. Lomonosov Moscow State University, Leninskie Gory str. 1, Moscow, 119991, Russia.
- A.M. Prokhorov General Physics Institute of RAS, Vavilov str. 38, Moscow, 119991, Russia.
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.
| | - Petr A Obraztsov
- A.M. Prokhorov General Physics Institute of RAS, Vavilov str. 38, Moscow, 119991, Russia
- Department of Physics and Mathematics, University of Eastern Finland, Yliopistokatu 7, Joensuu, 80101, Finland
| | - Vladimir A Velikanov
- A.M. Prokhorov General Physics Institute of RAS, Vavilov str. 38, Moscow, 119991, Russia
- National Research Nuclear University, Moscow Engineering Physics Institute, 31 Kashirskoe Highway, Moscow, 115409, Russia
| | - Tatiana V Shubina
- Ioffe Institute of RAS, Politechnicheskaya str. 26, St Petersburg, 194021, Russia
| | - Elena D Obraztsova
- A.M. Prokhorov General Physics Institute of RAS, Vavilov str. 38, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
11
|
Tichnell CR, Daley DR, Stein BW, Shultz DA, Kirk ML, Danilov EO. Wave Function Control of Charge-Separated Excited-State Lifetimes. J Am Chem Soc 2019; 141:3986-3992. [DOI: 10.1021/jacs.8b13011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher R. Tichnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David R. Daley
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Benjamin W. Stein
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - David A. Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Evgeny O. Danilov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
12
|
Bai Y, Bullard G, Olivier JH, Therien MJ. Quantitative Evaluation of Optical Free Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes. J Am Chem Soc 2018; 140:14619-14626. [PMID: 30289256 DOI: 10.1021/jacs.8b05598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gauging free carrier generation (FCG) in optically excited, charge-neutral single-walled carbon nanotubes (SWNTs) has important implications for SWNT-based optoelectronics that rely upon conversion of photons to electrical current. Earlier investigations have largely provided only qualitative insights into optically triggered SWNT FCG, due to the heterogeneous nature of commonly interrogated SWNT samples and the lack of direct, unambiguous spectroscopic signatures that could be used to quantify charges. Here, employing ultrafast pump-probe spectroscopy in conjunction with chirality-enriched, length-sorted, ionic-polymer-wrapped SWNTs, we develop a straightforward approach for quantitatively evaluating the extent of optically driven FCG in SWNTs. Owing to the previously identified trion transient absorptive hallmark (Tr+11 → Tr+nm) and the rapid nature of trion formation dynamics (<1 ps) relative to established free-carrier decay time scales (>ns), we correlate FCG with trion formation dynamics. Experimental determination of the trion absorptive cross section further enables evaluation of the quantum yields for optically driven FCG [Φ(E nn→h ++e -)] as a function of optical excitation energy and medium dielectric strength. We show that (i) E33 excitons give rise to dramatically enhanced Φ(E nn→h ++e -) relative to those derived from E22 and E11 excitons and (ii) Φ(E33→h ++e -) monotonically increases from ∼5% to 18% as the solvent dielectric constant increases from ∼32 to 80. This work highlights the extent to which the nature of the medium and excitation conditions control FCG quantum yields in SWNTs: such studies have the potential to provide new design insights for SWNT-based compositions for optoelectronic applications that include photodetectors and photovoltaics.
Collapse
Affiliation(s)
- Yusong Bai
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708-0346 , United States
| | - George Bullard
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Jean-Hubert Olivier
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Michael J Therien
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708-0346 , United States
| |
Collapse
|
13
|
He X, Velizhanin KA, Bullard G, Bai Y, Olivier JH, Hartmann NF, Gifford BJ, Kilina S, Tretiak S, Htoon H, Therien MJ, Doorn SK. Solvent- and Wavelength-Dependent Photoluminescence Relaxation Dynamics of Carbon Nanotube sp 3 Defect States. ACS NANO 2018; 12:8060-8070. [PMID: 29995379 DOI: 10.1021/acsnano.8b02909] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photoluminescent sp3 defect states introduced to single wall carbon nanotubes (SWCNTs) through low-level covalent functionalization create new photophysical behaviors and functionality as a result of defect sites acting as exciton traps. Evaluation of relaxation dynamics in varying dielectric environments can aid in advancing a more complete description of defect-state relaxation pathways and electronic structure. Here, we exploit helical wrapping polymers as a route to suspending (6,5) SWCNTs covalently functionalized with 4-methoxybenzene in solvent systems including H2O, D2O, methanol, dimethylformamide, tetrahydrofuran, and toluene, spanning a range of dielectric constants from 80 to 3. Defect-state photoluminescence decays were measured as a function of emission wavelength and solvent environment. Emission decays are biexponential, with short lifetime components on the order of 65 ps and long components ranging from around 100 to 350 ps. Both short and long decay components increase as emission wavelength increases, while only the long lifetime component shows a solvent dependence. We demonstrate that the wavelength dependence is a consequence of thermal detrapping of defect-state excitons to produce mobile E11 excitons, providing an important mechanism for loss of defect-state population. Deeper trap states (i.e., those emitting at longer wavelengths) result in a decreased rate for thermal loss. The solvent-independent behavior of the short lifetime component is consistent with its assignment as the characteristic time for redistribution of exciton population between bright and dark defect states. The solvent dependence of the long lifetime component is shown to be consistent with relaxation via an electronic to vibrational energy transfer mechanism, in which energy is resonantly lost to solvent vibrations in a complementary mechanism to multiphonon decay processes.
Collapse
Affiliation(s)
- Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Kirill A Velizhanin
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - George Bullard
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708 , United States
| | - Yusong Bai
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708 , United States
| | - Jean-Hubert Olivier
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708 , United States
| | - Nicolai F Hartmann
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Brendan J Gifford
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Center for Nonlinear Sciences , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Michael J Therien
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708 , United States
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|