1
|
Abdelsalam EEE, Bláhová Z, Baloch AA, Piačková V. Potential to grow carp oedema virus (genogroup I) in monolayers of carp-derived primary cells with further implication in cell analysis. JOURNAL OF FISH DISEASES 2024; 47:e13934. [PMID: 38421376 DOI: 10.1111/jfd.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Carp oedema virus (CEV) has distinct molecularly identified genogroups of viral mutations, denoted as I, IIa, and IIb. Failure to propagate CEV in vitro limits studies towards understanding its interactions with host cells. Here, virus isolates belonging to genogroup I collected during natural outbreaks in the Czech Republic were employed for routine CEV cultivation in monolayers of carp-derived primary cells, common carp brain (CCB) cells, and epithelioma papulosum cyprinid (EPC) cells. Induction of cytopathic effects (CPEs) was observed and recorded in affected cells. Cell survival rate was evaluated under serial dilutions of the CEV inoculum. Virus cell entry was quantified and visualized by qPCR and transmission electron microscopy, respectively. Study findings indicate primary gills epithelia likely present the most suitable matrix for CEV growth in vitro. Cells of the head kidney and spleen facilitate virus entry with microscopically confirmed CPEs and the presence of cytoplasmic pleomorphic virus particles. Cells of the trunk kidney and gonads are unlikely to permit virus cell entry and CPEs development. Although CEV cultivation in cell lines was inconclusive, EPC cells were CEV permissible. Monolayers of carp-derived primary cells show promise for CEV cultivation that could enable elaborate study of mechanisms underlying cellular binding and responses.
Collapse
Affiliation(s)
- Ehdaa Eltayeb Eltigani Abdelsalam
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Zuzana Bláhová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ali Asghar Baloch
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Veronika Piačková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
2
|
Ni X, Wang K, Han Y, Lei J. Structural analysis of conformational changes in the mpox virus A7 protein. Virol Sin 2024; 39:331-334. [PMID: 38159644 PMCID: PMC11074635 DOI: 10.1016/j.virs.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
•Phospholipid-binding abilities of mpox virus A7 protein and its truncations are investigated. •The structures of the N-terminal truncations of A7 protein (A7N121 and A7N137) are determined. •Conformational changes of the conserved linking helix in A7 are illustrated. •A structural model of the full-length A7 protein is proposed.
Collapse
Affiliation(s)
- Xincheng Ni
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Wang
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinze Han
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Lei
- National Clinical Research Center for Geriatrics, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Hernandez-Gonzalez M, Calcraft T, Nans A, Rosenthal PB, Way M. Palisade structure in intact vaccinia virions. mBio 2024; 15:e0313423. [PMID: 38171004 PMCID: PMC10865856 DOI: 10.1128/mbio.03134-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Vaccinia virus assembly in the cytoplasm of infected cells involves the formation of a biconcave viral core inside the maturing viral particle. The boundary of the core is defined by a pseudohexagonal palisade layer, composed of trimers projecting from an inner wall. To understand the assembly of this complex core architecture, we obtained a subnanometer structure of the palisade trimer by cryo-electron tomography and subtomogram averaging of purified intact virions. Using AlphaFold2 structure predictions, we determined that the palisade is formed from trimers of the proteolytically processed form of the viral protein A10. In addition, we found that each A10 protomer associates with an α-helix (residues 24-66) of A4. Cellular localization assays outside the context of infection demonstrate that the A4 N-terminus is necessary and sufficient to interact with A10. The interaction between A4 and A10 provides insights into how the palisade layer might become tightly associated with the viral membrane during virion maturation. Reconstruction of the palisade layer reveals that, despite local hexagonal ordering, the A10/A4 trimers are widely spaced, suggesting that additional components organize the lattice. This spacing would, however, allow the adoption of the characteristic biconcave shape of the viral core. Finally, we also found that the palisade incorporates multiple copies of a hexameric portal structure. We suggest that these portals are formed by E6, a viral protein that is essential for virion assembly and required to release viral mRNA from the core early in infection.IMPORTANCEPoxviruses such as variola virus (smallpox) and monkeypox cause diseases in humans. Other poxviruses, including vaccinia and modified vaccinia Ankara, are used as vaccine vectors. Given their importance, a greater structural understanding of poxvirus virions is needed. We now performed cryo-electron tomography of purified intact vaccinia virions to study the structure of the palisade, a protein lattice that defines the viral core boundary. We identified the main viral proteins that form the palisade and their interaction surfaces and provided new insights into the organization of the viral core.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
| |
Collapse
|
4
|
Aggarwal T, Kondabagil K. Assembly and Evolution of Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:35-54. [PMID: 38801570 DOI: 10.1007/978-3-031-57165-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxvirus assembly has been an intriguing area of research for several decades. While advancements in experimental techniques continue to yield fresh insights, many questions are still unresolved. Large genome sizes of up to 380 kbp, asymmetrical structure, an exterior lipid bilayer, and a cytoplasmic life cycle are some notable characteristics of these viruses. Inside the particle are two lateral bodies and a protein wall-bound-biconcave core containing the viral nucleocapsid. The assembly progresses through five major stages-endoplasmic reticulum (ER) membrane alteration and rupture, crescent formation, immature virion formation, genome encapsidation, virion maturation and in a subset of viruses, additional envelopment of the virion prior to its dissemination. Several large dsDNA viruses have been shown to follow a comparable sequence of events. In this chapter, we recapitulate our understanding of the poxvirus morphogenesis process while reviewing the most recent advances in the field. We also briefly discuss how virion assembly aids in our knowledge of the evolutionary links between poxviruses and other Nucleocytoplasmic Large DNA Viruses (NCLDVs).
Collapse
Affiliation(s)
- Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
5
|
Li P, Pachis ST, Xu G, Schraauwen R, Incitti R, de Vries AC, Bruno MJ, Peppelenbosch MP, Alam I, Raymond K, Pan Q. Mpox virus infection and drug treatment modelled in human skin organoids. Nat Microbiol 2023; 8:2067-2079. [PMID: 37828248 DOI: 10.1038/s41564-023-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
Mpox virus (MPXV) primarily infects human skin to cause lesions. Currently, robust models that recapitulate skin infection by MPXV are lacking. Here we demonstrate that human induced pluripotent stem cell-derived skin organoids are susceptible to MPXV infection and support infectious virus production. Keratinocytes, the predominant cell type of the skin epithelium, effectively support MPXV infection. Using transmission electron microscopy, we visualized the four stages of intracellular virus particle assembly: crescent formation, immature virions, mature virions and wrapped virions. Transcriptional analysis showed that MPXV infection rewires the host transcriptome and triggers abundant expression of viral transcripts. Early treatment with the antiviral drug tecovirimat effectively inhibits infectious virus production and prevents host transcriptome rewiring. Delayed treatment with tecovirimat also inhibits infectious MPXV particle production, albeit to a lesser extent. This study establishes human skin organoids as a robust experimental model for studying MPXV infection, mapping virus-host interactions and testing therapeutics.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Spyridon T Pachis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Guige Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Rick Schraauwen
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Roberto Incitti
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Karine Raymond
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands.
- University of Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Biomics, Grenoble, France.
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Akazawa D, Ohashi H, Hishiki T, Morita T, Iwanami S, Kim KS, Jeong YD, Park ES, Kataoka M, Shionoya K, Mifune J, Tsuchimoto K, Ojima S, Azam AH, Nakajima S, Park H, Yoshikawa T, Shimojima M, Kiga K, Iwami S, Maeda K, Suzuki T, Ebihara H, Takahashi Y, Watashi K. Potential Anti-Mpox Virus Activity of Atovaquone, Mefloquine, and Molnupiravir, and Their Potential Use as Treatments. J Infect Dis 2023; 228:591-603. [PMID: 36892247 PMCID: PMC10469127 DOI: 10.1093/infdis/jiad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Mpox virus (MPXV) is a zoonotic orthopoxvirus and caused an outbreak in 2022. Although tecovirimat and brincidofovir are approved as anti-smallpox drugs, their effects in mpox patients have not been well documented. In this study, by a drug repurposing approach, we identified potential drug candidates for treating mpox and predicted their clinical impacts by mathematical modeling. METHODS We screened 132 approved drugs using an MPXV infection cell system. We quantified antiviral activities of potential drug candidates by measuring intracellular viral DNA and analyzed the modes of action by time-of-addition assay and electron microscopic analysis. We further predicted the efficacy of drugs under clinical concentrations by mathematical simulation and examined combination treatment. RESULTS Atovaquone, mefloquine, and molnupiravir exhibited anti-MPXV activity, with 50% inhibitory concentrations of 0.51-5.2 μM, which was more potent than cidofovir. Whereas mefloquine was suggested to inhibit viral entry, atovaquone and molnupiravir targeted postentry processes. Atovaquone was suggested to exert its activity through inhibiting dihydroorotate dehydrogenase. Combining atovaquone with tecovirimat enhanced the anti-MPXV effect of tecovirimat. Quantitative mathematical simulations predicted that atovaquone can promote viral clearance in patients by 7 days at clinically relevant drug concentrations. CONCLUSIONS These data suggest that atovaquone would be a potential candidate for treating mpox.
Collapse
Affiliation(s)
- Daisuke Akazawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Morita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shoya Iwanami
- Interdisciplinary Biology Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kwang Su Kim
- Interdisciplinary Biology Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Science System Simulation, Pukyong National University, Busan, South Korea
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Yong Dam Jeong
- Interdisciplinary Biology Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Junki Mifune
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kana Tsuchimoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hyeongki Park
- Interdisciplinary Biology Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shingo Iwami
- Interdisciplinary Biology Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program, RIKEN, Saitama, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Science Groove, Inc, Fukuoka, Japan
- MIRAI, Japan Science and Technology Agency, Saitama, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Interdisciplinary Biology Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- MIRAI, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
7
|
Hishiki T, Morita T, Akazawa D, Ohashi H, Park ES, Kataoka M, Mifune J, Shionoya K, Tsuchimoto K, Ojima S, Azam AH, Nakajima S, Kawahara M, Yoshikawa T, Shimojima M, Kiga K, Maeda K, Suzuki T, Ebihara H, Takahashi Y, Watashi K. Identification of IMP Dehydrogenase as a Potential Target for Anti-Mpox Virus Agents. Microbiol Spectr 2023; 11:e0056623. [PMID: 37409948 PMCID: PMC10434032 DOI: 10.1128/spectrum.00566-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Mpox virus (formerly monkeypox virus [MPXV]) is a neglected zoonotic pathogen that caused a worldwide outbreak in May 2022. Given the lack of an established therapy, the development of an anti-MPXV strategy is of vital importance. To identify drug targets for the development of anti-MPXV agents, we screened a chemical library using an MPXV infection cell assay and found that gemcitabine, trifluridine, and mycophenolic acid (MPA) inhibited MPXV propagation. These compounds showed broad-spectrum anti-orthopoxvirus activities and presented lower 90% inhibitory concentrations (0.026 to 0.89 μM) than brincidofovir, an approved anti-smallpox agent. These three compounds have been suggested to target the postentry step to reduce the intracellular production of virions. Knockdown of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanosine biosynthesis and a target of MPA, dramatically reduced MPXV DNA production. Moreover, supplementation with guanosine recovered the anti-MPXV effect of MPA, suggesting that IMPDH and its guanosine biosynthetic pathway regulate MPXV replication. By targeting IMPDH, we identified a series of compounds with stronger anti-MPXV activity than MPA. This evidence shows that IMPDH is a potential target for the development of anti-MPXV agents. IMPORTANCE Mpox is a zoonotic disease caused by infection with the mpox virus, and a worldwide outbreak occurred in May 2022. The smallpox vaccine has recently been approved for clinical use against mpox in the United States. Although brincidofovir and tecovirimat are drugs approved for the treatment of smallpox by the U.S. Food and Drug Administration, their efficacy against mpox has not been established. Moreover, these drugs may present negative side effects. Therefore, new anti-mpox virus agents are needed. This study revealed that gemcitabine, trifluridine, and mycophenolic acid inhibited mpox virus propagation and exhibited broad-spectrum anti-orthopoxvirus activities. We also suggested IMP dehydrogenase as a potential target for the development of anti-mpox virus agents. By targeting this molecule, we identified a series of compounds with stronger anti-mpox virus activity than mycophenolic acid.
Collapse
Affiliation(s)
- Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Morita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Akazawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Mifune
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kana Tsuchimoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- MIRAI, Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
8
|
Leão TL, Lourenço KL, de Oliveira Queiroz C, Serufo ÂV, da Silva AM, Barbosa-Stancioli EF, da Fonseca FG. Vaccinia virus induces endoplasmic reticulum stress and activates unfolded protein responses through the ATF6α transcription factor. Virol J 2023; 20:145. [PMID: 37434252 DOI: 10.1186/s12985-023-02122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Cell responses to different stress inducers are efficient mechanisms that prevent and fight the accumulation of harmful macromolecules in the cells and also reinforce the defenses of the host against pathogens. Vaccinia virus (VACV) is an enveloped, DNA virus, belonging to the Poxviridae family. Members of this family have evolved numerous strategies to manipulate host responses to stress controlling cell survival and enhancing their replicative success. In this study, we investigated the activation of the response signaling to malformed proteins (UPR) by the VACV virulent strain-Western Reserve (WR)-or the non-virulent strain-Modified Vaccinia Ankara (MVA). METHODS Through RT-PCR RFLP and qPCR assays, we detected negative regulation of XBP1 mRNA processing in VACV-infected cells. On the other hand, through assays of reporter genes for the ATF6 component, we observed its translocation to the nucleus of infected cells and a robust increase in its transcriptional activity, which seems to be important for virus replication. WR strain single-cycle viral multiplication curves in ATF6α-knockout MEFs showed reduced viral yield. RESULTS We observed that VACV WR and MVA strains modulate the UPR pathway, triggering the expression of endoplasmic reticulum chaperones through ATF6α signaling while preventing IRE1α-XBP1 activation. CONCLUSIONS The ATF6α sensor is robustly activated during infection while the IRE1α-XBP1 branch is down-regulated.
Collapse
Affiliation(s)
- Thiago Lima Leão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Karine Lima Lourenço
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Cid de Oliveira Queiroz
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ângela Vieira Serufo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Aristóbolo Mendes da Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edel F Barbosa-Stancioli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Flávio Guimarães da Fonseca
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
9
|
Paniz-Mondolfi A, Reidy J, Pagani N, Lednicky JA, McGrail JP, Kasminskaya Y, Patino LH, Garcia-Sastre A, Palacios G, Gonzalez-Reiche AS, van Bakel H, Firpo Betancourt A, Hernandez MM, Cordon-Cardo C, Simon V, Sordillo EM, Ramírez JD, Guerra S. Genomic and ultrastructural analysis of monkeypox virus in skin lesions and in human/animal infected cells reveals further morphofunctional insights into viral pathogenicity. J Med Virol 2023; 95:e28878. [PMID: 37322614 DOI: 10.1002/jmv.28878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022-2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infection.
Collapse
Affiliation(s)
- Alberto Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jason Reidy
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nina Pagani
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Biotechnology Laboratory Sciences, Valencia College, Orlando, Florida, USA
- Infectious Diseases Research Department, Division of Virology, Venezuelan Science Incubator and The Zoonosis and Emerging Pathogens Regional Collaborative Network, Cabudare, Lara, Venezuela
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Joseph Patrick McGrail
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yana Kasminskaya
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Luz H Patino
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adolfo Garcia-Sastre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gustavo Palacios
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Harm van Bakel
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adolfo Firpo Betancourt
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emilia M Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Hernandez-Gonzalez M, Calcraft T, Nans A, Rosenthal PB, Way M. A succession of two viral lattices drives vaccinia virus assembly. PLoS Biol 2023; 21:e3002005. [PMID: 36862727 PMCID: PMC10013923 DOI: 10.1371/journal.pbio.3002005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/14/2023] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
During its cytoplasmic replication, vaccinia virus assembles non-infectious spherical immature virions (IV) coated by a viral D13 lattice. Subsequently, IV mature into infectious brick-shaped intracellular mature virions (IMV) that lack D13. Here, we performed cryo-electron tomography (cryo-ET) of frozen-hydrated vaccinia-infected cells to structurally characterise the maturation process in situ. During IMV formation, a new viral core forms inside IV with a wall consisting of trimeric pillars arranged in a new pseudohexagonal lattice. This lattice appears as a palisade in cross-section. As maturation occurs, which involves a 50% reduction in particle volume, the viral membrane becomes corrugated as it adapts to the newly formed viral core in a process that does not appear to require membrane removal. Our study suggests that the length of this core is determined by the D13 lattice and that the consecutive D13 and palisade lattices control virion shape and dimensions during vaccinia assembly and maturation.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Guo J, Wang G, Xie L, Wang X, Feng L, Guo W, Tao X, Humbel BM, Zhang Z, Hong J. Three-dimensional analysis of membrane structures associated with tomato spotted wilt virus infection. PLANT, CELL & ENVIRONMENT 2023; 46:650-664. [PMID: 36482792 PMCID: PMC10107360 DOI: 10.1111/pce.14511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
To study viral infection, the direct structural visualization of the viral life cycle consisting of virus attachment, entry, replication, assembly and transport is essential. Although conventional electron microscopy (EM) has been extremely helpful in the investigation of virus-host cell interactions, three-dimensional (3D) EM not only provides important information at the nanometer resolution, but can also create 3D maps of large volumes, even entire virus-infected cells. Here, we determined the ultrastructural details of tomato spotted wilt virus (TSWV)-infected plant cells using focused ion beam scanning EM (FIB-SEM). The viral morphogenesis and dynamic transformation of paired parallel membranes (PPMs) were analyzed. The endoplasmic reticulum (ER) membrane network consisting of tubules and sheets was related to viral intracellular trafficking and virion storage. Abundant lipid-like bodies, clustering mitochondria, cell membrane tubules, and myelin-like bodies were likely associated with viral infection. Additionally, connecting structures between neighboring cells were found only in infected plant tissues and showed the characteristics of tubular structure. These novel connections that formed continuously in the cell wall or were wrapped by the cell membranes of neighboring cells appeared frequently in the large-scale 3D model, suggesting additional strategies for viral trafficking that were difficult to distinguish using conventional EM.
Collapse
Affiliation(s)
- Jiansheng Guo
- Department of Pathology of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Center of Cryo‐Electron MicroscopyZhejiang University School of MedicineHangzhouChina
| | - Guan Wang
- Center of Cryo‐Electron MicroscopyZhejiang University School of MedicineHangzhouChina
| | - Li Xie
- Center of Analysis and MeasurementZhejiang UniversityHangzhouChina
| | - Xinqiu Wang
- Center of Analysis and MeasurementZhejiang UniversityHangzhouChina
| | - Lingchong Feng
- Center of Cryo‐Electron MicroscopyZhejiang University School of MedicineHangzhouChina
| | - Wangbiao Guo
- Center of Cryo‐Electron MicroscopyZhejiang University School of MedicineHangzhouChina
| | - Xiaorong Tao
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Bruno M. Humbel
- Center of Cryo‐Electron MicroscopyZhejiang University School of MedicineHangzhouChina
- Imaging, Okinawa Institute of Science and Technology (OIST)OkinawaJapan
| | - Zhongkai Zhang
- Yunnan Provincial Key Laboratory of Agri‐Biotechnology, Institute of Biotechnology and Genetic ResourcesYunnan Academy of Agricultural SciencesKunmingChina
| | - Jian Hong
- Center of Analysis and MeasurementZhejiang UniversityHangzhouChina
| |
Collapse
|
12
|
Witt ASA, Trindade GDS, Souza FGD, Serafim MSM, da Costa AVB, Silva MVF, de Melo Iani FC, Rodrigues RAL, Kroon EG, Abrahão JS. Ultrastructural analysis of monkeypox virus replication in Vero cells. J Med Virol 2023; 95:e28536. [PMID: 36708101 DOI: 10.1002/jmv.28536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
In early May 2022, the first worldwide monkeypox virus (MPXV) outbreak was reported, with different clinical aspects from previously studied human monkeypox infections. Despite monkeypox medical importance, much of its biological aspects remain to be further investigated. In the present work, we evaluated ultrastructural aspects of MPXV asynchronous infections in Vero cells by transmission electron microscopy (TEM). The viral strain was isolated from a male patient infected during the 2022 outbreak. TEM analysis showed: (i) adhered intracellular mature virus particles before entry of the host cell; (ii) a reorganization of the rough endoplasmic reticulum cisternae into the so-called "mini-nuclei" structure associated with genome replication; and (iii) noticeably different sites within the viral factory presenting granular or fibrillar aspects. We also observed viral crescents, different MPXV particle morphotypes, and cellular alterations induced by infection, such as changes in the cytoskeleton structure and multimembrane vesicles abundance. Taken together, to the best of our knowledge, these results revealed for the first-time ultrastructural aspects of different steps of the MPXV cycle.
Collapse
Affiliation(s)
- Amanda Stéphanie Arantes Witt
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giliane de Souza Trindade
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Gil de Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alana Vitor Barbosa da Costa
- Fundação Ezequiel Dias, Diretoria do Instituto Octávio Magalhães, Serviço de Virologia e Riquetsioses, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Vinícius Ferreira Silva
- Fundação Ezequiel Dias, Diretoria do Instituto Octávio Magalhães, Serviço de Virologia e Riquetsioses, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Campos de Melo Iani
- Fundação Ezequiel Dias, Diretoria do Instituto Octávio Magalhães, Serviço de Virologia e Riquetsioses, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
Hyun J. Poxvirus under the eyes of electron microscope. Appl Microsc 2022; 52:11. [DOI: 10.1186/s42649-022-00080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractZoonotic poxvirus infections pose significant threat to human health as we have witnessed recent spread of monkeypox. Therefore, insights into molecular mechanism behind poxvirus replication cycle are needed for the development of efficient antiviral strategies. Virion assembly is one of the key steps that determine the fate of replicating poxviruses. However, in-depth understanding of poxvirus assembly is challenging due to the complex nature of multi-step morphogenesis and heterogeneous virion structures. Despite these challenges, decades of research have revealed virion morphologies at various maturation stages, critical protein components and interactions with host cell compartments. Transmission electron microscopy has been employed as an indispensable tool for the examination of virion morphology, and more recently for the structure determination of protein complexes. In this review, we describe some of the major findings in poxvirus morphogenesis and the contributions of continuously advancing electron microscopy techniques.
Collapse
|
14
|
Hyun J, Matsunami H, Kim TG, Wolf M. Assembly mechanism of the pleomorphic immature poxvirus scaffold. Nat Commun 2022; 13:1704. [PMID: 35361762 PMCID: PMC8971458 DOI: 10.1038/s41467-022-29305-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
In Vaccinia virus (VACV), the prototype poxvirus, scaffold protein D13 forms a honeycomb-like lattice on the viral membrane that results in formation of the pleomorphic immature virion (IV). The structure of D13 is similar to those of major capsid proteins that readily form icosahedral capsids in nucleocytoplasmic large DNA viruses (NCLDVs). However, the detailed assembly mechanism of the nonicosahedral poxvirus scaffold has never been understood. Here we show the cryo-EM structures of the D13 trimer and scaffold intermediates produced in vitro. The structures reveal that the displacement of the short N-terminal α-helix is critical for initiation of D13 self-assembly. The continuous curvature of the IV is mediated by electrostatic interactions that induce torsion between trimers. The assembly mechanism explains the semiordered capsid-like arrangement of D13 that is distinct from icosahedral NCLDVs. Our structures explain how a single protein can self-assemble into different capsid morphologies and represent a local exception to the universal Caspar-Klug theory of quasi-equivalence. Immature poxviruses are characterized by nonicosahedral semiordered protein scaffolds critical for morphogenesis. Here, the authors use cryo-EM structures of Vaccinia virus D13 scaffold intermediates to explain their assembly mechanism.
Collapse
Affiliation(s)
- Jaekyung Hyun
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, 904-0495, Onna-son, Okinawa, Japan. .,Department of Convergence Medicine, School of Medicine, Pusan National University, 50612, Yangsan-si, Gyeongsangnamdo, Republic of Korea.
| | - Hideyuki Matsunami
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, 904-0495, Onna-son, Okinawa, Japan
| | - Tae Gyun Kim
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, 904-0495, Onna-son, Okinawa, Japan.,Center for Vaccine Commercialization, R&D Planning Team, Gyeongbuk Institute for Bio Industry, 36618, Andong-si, Gyeongsanbukdo, Republic of Korea
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, 904-0495, Onna-son, Okinawa, Japan. .,Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, 115, Taipei, Taiwan.
| |
Collapse
|
15
|
Rodrigues RA, de Souza FG, de Azevedo BL, da Silva LC, Abrahão JS. The morphogenesis of different giant viruses as additional evidence for a common origin of Nucleocytoviricota. Curr Opin Virol 2021; 49:102-110. [PMID: 34116391 DOI: 10.1016/j.coviro.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Large and giant DNA viruses are a monophyletic group constituting the recently established phylum Nucleocytoviricota. The virus particle morphogenesis of these viruses exhibit striking similarities. Viral factories are established in the host cells where new virions are assembled by recruiting host membranes, forming an inner lipid layer. An outer protein layer starts as a lamellar structure, commonly referred to as viral crescents, coded by the major capsid protein gene. Also, these viruses have a conserved ATPase-coding gene related to genome encapsidation. Similar properties are described for tectiviruses, putative small ancestors of giant viruses. Here we review the morphogenesis of giant viruses and discuss how the process similarities constitute additional evidence to the common origin of Nucleocytoviricota.
Collapse
Affiliation(s)
- Rodrigo Al Rodrigues
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda G de Souza
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruna L de Azevedo
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lorena Cf da Silva
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jônatas S Abrahão
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
16
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
17
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
18
|
Moss B. Investigating Viruses During the Transformation of Molecular Biology: Part II. Annu Rev Virol 2020; 7:15-36. [PMID: 32392458 DOI: 10.1146/annurev-virology-021020-100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My scientific career started at an extraordinary time, shortly after the discoveries of the helical structure of DNA, the central dogma of DNA to RNA to protein, and the genetic code. Part I of this series emphasizes my education and early studies highlighted by the isolation and characterization of numerous vaccinia virus enzymes, determination of the cap structure of messenger RNA, and development of poxviruses as gene expression vectors for use as recombinant vaccines. Here I describe a shift in my research focus to combine molecular biology and genetics for a comprehensive understanding of poxvirus biology. The dominant paradigm during the early years was to select a function, isolate the responsible proteins, and locate the corresponding gene, whereas later the common paradigm was to select a gene, make a mutation, and determine the altered function. Motivations, behind-the-scenes insights, importance of new technologies, and the vital roles of trainees and coworkers are emphasized.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
19
|
Experimental Evolution To Isolate Vaccinia Virus Adaptive G9 Mutants That Overcome Membrane Fusion Inhibition via the Vaccinia Virus A56/K2 Protein Complex. J Virol 2020; 94:JVI.00093-20. [PMID: 32132237 DOI: 10.1128/jvi.00093-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/28/2020] [Indexed: 11/20/2022] Open
Abstract
For cell entry, vaccinia virus requires fusion with the host membrane via a viral fusion complex of 11 proteins, but the mechanism remains unclear. It was shown previously that the viral proteins A56 and K2 are expressed on infected cells to prevent superinfection by extracellular vaccinia virus through binding to two components of the viral fusion complex (G9 and A16), thereby inhibiting membrane fusion. To investigate how the A56/K2 complex inhibits membrane fusion, we performed experimental evolutionary analyses by repeatedly passaging vaccinia virus in HeLa cells overexpressing the A56 and K2 proteins to isolate adaptive mutant viruses. Genome sequencing of adaptive mutants revealed that they had accumulated a unique G9R open reading frame (ORF) mutation, resulting in a single His44Tyr amino acid change. We engineered a recombinant vaccinia virus to express the G9H44Y mutant protein, and it readily infected HeLa-A56/K2 cells. Moreover, similar to the ΔA56 virus, the G9H44Y mutant virus on HeLa cells had a cell fusion phenotype, indicating that G9H44Y-mediated membrane fusion was less prone to inhibition by A56/K2. Coimmunoprecipitation experiments demonstrated that the G9H44Y protein bound to A56/K2 at neutral pH, suggesting that the H44Y mutation did not eliminate the binding of G9 to A56/K2. Interestingly, upon acid treatment to inactivate A56/K2-mediated fusion inhibition, the G9H44Y mutant virus induced robust cell-cell fusion at pH 6, unlike the pH 4.7 required for control and revertant vaccinia viruses. Thus, A56/K2 fusion suppression mainly targets the G9 protein. Moreover, the G9H44Y mutant protein escapes A56/K2-mediated membrane fusion inhibition most likely because it mimics an acid-induced intermediate conformation more prone to membrane fusion.IMPORTANCE It remains unclear how the multiprotein entry fusion complex of vaccinia virus mediates membrane fusion. Moreover, vaccinia virus contains fusion suppressor proteins to prevent the aberrant activation of this multiprotein complex. Here, we used experimental evolution to identify adaptive mutant viruses that overcome membrane fusion inhibition mediated by the A56/K2 protein complex. We show that the H44Y mutation of the G9 protein is sufficient to overcome A56/K2-mediated membrane fusion inhibition. Treatment of virus-infected cells at different pHs indicated that the H44Y mutation lowers the threshold of fusion inhibition by A56/K2. Our study provides evidence that A56/K2 inhibits the viral fusion complex via the latter's G9 subcomponent. Although the G9H44Y mutant protein still binds to A56/K2 at neutral pH, it is less dependent on low pH for fusion activation, implying that it may adopt a subtle conformational change that mimics a structural intermediate induced by low pH.
Collapse
|
20
|
Armién AG, Wolf TM, Mor SK, Ng TFF, Bracht AJ, Goyal SM, Rasmussen JM. Molecular and Biological Characterization of a Cervidpoxvirus Isolated From Moose with Necrotizing Dermatitis. Vet Pathol 2020; 57:296-310. [PMID: 32096438 DOI: 10.1177/0300985819891240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cervidpoxvirus is one of the more recently designated genera within the subfamily Chordopoxvirinae, with Deerpox virus (DPV) as the only recognized species to date. In this study, the authors describe spontaneous disease and infection in the North American moose (Alces americanus) by a novel Cervidpoxvirus, here named Moosepox virus (MPV). Three 4-month-old moose calves developed a multifocal subacute-to-chronic, necrotizing, suppurative-to-granulomatous dermatitis that affected the face and the extremities. Ultrastructurally, all stages of MPV morphogenesis-that is, crescents, spherical immature particles, mature particles, and enveloped mature virus-were observed in skin tissue. In vitro infection with MPV confirmed that its morphogenesis was similar to that of the prototype vaccinia virus. The entire coding region, including 170 putative genes of this MPV, was sequenced and annotated. The sequence length was 164,258 bp with 98.5% nucleotide identity with DPV (strain W-1170-84) based on the whole genome. The genome of the study virus was distinct from that of the reference strain (W-1170-84) in certain genes, including the CD30-like protein (83.9% nucleotide, 81.6% amino acid), the endothelin precursor (73.2% nucleotide including some indels, 51.4% amino acid), and major histocompatibility class (MHC) class I-like protein (81.0% nucleotide, 68.2% amino acid). This study provides biological characterization of a new Cervidpoxvirus attained through in vivo and in vitro ultrastructural analyses. It also demonstrates the importance of whole-genome sequencing in the molecular characterization of poxviruses identified in taxonomically related hosts.
Collapse
Affiliation(s)
- Anibal G Armién
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA.,Minnesota Zoological Garden, Apple Valley, MN, USA
| | - Sunil Kumar Mor
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Terry Fei Fan Ng
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Alexa J Bracht
- United State Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratory, Foreign Animal Disease Diagnostic Laboratory, Greenport, NY, USA
| | - Sagar M Goyal
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
21
|
Kieser Q, Noyce RS, Shenouda M, Lin YCJ, Evans DH. Cytoplasmic factories, virus assembly, and DNA replication kinetics collectively constrain the formation of poxvirus recombinants. PLoS One 2020; 15:e0228028. [PMID: 31945138 PMCID: PMC6964908 DOI: 10.1371/journal.pone.0228028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Poxviruses replicate in cytoplasmic structures called factories and each factory begins as a single infecting particle. Sixty-years ago Cairns predicted that this might have effects on vaccinia virus (VACV) recombination because the factories would have to collide and mix their contents to permit recombination. We've since shown that factories collide irregularly and that even then the viroplasm mixes poorly. We’ve also observed that while intragenic recombination occurs frequently early in infection, intergenic recombination is less efficient and happens late in infection. Something inhibits factory fusion and viroplasm mixing but what is unclear. To study this, we’ve used optical and electron microscopy to track factory movement in co-infected cells and correlate these observations with virus development and recombinant formation. While the technical complexity of the experiments limited the number of cells that are amenable to extensive statistical analysis, these studies do show that intergenic recombination coincides with virion assembly and when VACV replication has declined to ≤10% of earlier levels. Along the boundaries between colliding factories, one sees ER membrane remnants and other cell constituents like mitochondria. These collisions don't always cause factory fusion, but when factories do fuse, they still entrain cell constituents like mitochondria and ER-wrapped microtubules. However, these materials wouldn’t seem to pose much of a further barrier to DNA mixing and so it’s likely that the viroplasm also presents an omnipresent impediment to DNA mixing. Late packaging reactions might help to disrupt the viroplasm, but packaging would sequester the DNA just as the replication and recombination machinery goes into decline and further reduce recombinant yields. Many factors thus appear to conspire to limit recombination between co-infecting poxviruses.
Collapse
Affiliation(s)
- Quinten Kieser
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Mira Shenouda
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Y.-C. James Lin
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - David H. Evans
- The Dept. of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
22
|
Complex Membrane Remodeling during Virion Assembly of the 30,000-Year-Old Mollivirus Sibericum. J Virol 2019; 93:JVI.00388-19. [PMID: 30996095 DOI: 10.1128/jvi.00388-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
Cellular membranes ensure functional compartmentalization by dynamic fusion-fission remodeling and are often targeted by viruses during entry, replication, assembly, and egress. Nucleocytoplasmic large DNA viruses (NCLDVs) can recruit host-derived open membrane precursors to form their inner viral membrane. Using complementary three-dimensional (3D)-electron microscopy techniques, including focused-ion beam scanning electron microscopy and electron tomography, we show that the giant Mollivirus sibericum utilizes the same strategy but also displays unique features. Indeed, assembly is specifically triggered by an open cisterna with a flat pole in its center and open curling ends that grow by recruitment of vesicles never reported for NCLDVs. These vesicles, abundant in the viral factory (VF), are initially closed but open once in close proximity to the open curling ends of the growing viral membrane. The flat pole appears to play a central role during the entire virus assembly process. While additional capsid layers are assembled from it, it also shapes the growing cisterna into immature crescent-like virions and is located opposite to the membrane elongation and closure sites, thereby providing virions with a polarity. In the VF, DNA-associated filaments are abundant, and DNA is packed within virions prior to particle closure. Altogether, our results highlight the complexity of the interaction between giant viruses and their host. Mollivirus assembly relies on the general strategy of vesicle recruitment, opening, and shaping by capsid layers similar to all NCLDVs studied until now. However, the specific features of its assembly suggest that the molecular mechanisms for cellular membrane remodeling and persistence are unique.IMPORTANCE Since the first giant virus Mimivirus was identified, other giant representatives are isolated regularly around the world and appear to be unique in several aspects. They belong to at least four viral families, and the ways they interact with their hosts remain poorly understood. We focused on Mollivirus sibericum, the sole representative of "Molliviridae," which was isolated from a 30,000-year-old permafrost sample and exhibits spherical virions of complex composition. In particular, we show that (i) assembly is initiated by a unique structure containing a flat pole positioned at the center of an open cisterna, (ii) core packing involves another cisterna-like element seemingly pushing core proteins into particles being assembled, and (iii) specific filamentous structures contain the viral genome before packaging. Altogether, our findings increase our understanding of how complex giant viruses interact with their host and provide the foundation for future studies to elucidate the molecular mechanisms of Mollivirus assembly.
Collapse
|
23
|
Abstract
Like most viruses that replicate in the cytoplasm, mammalian reoviruses assemble membranous neo-organelles called inclusions that serve as sites of viral genome replication and particle morphogenesis. Viral inclusion formation is essential for viral infection, but how these organelles form is not well understood. We investigated the biogenesis of reovirus inclusions. Correlative light and electron microscopy showed that endoplasmic reticulum (ER) membranes are in contact with nascent inclusions, which form by collections of membranous tubules and vesicles as revealed by electron tomography. ER markers and newly synthesized viral RNA are detected in inclusion internal membranes. Live-cell imaging showed that early in infection, the ER is transformed into thin cisternae that fragment into small tubules and vesicles. We discovered that ER tubulation and vesiculation are mediated by the reovirus σNS and μNS proteins, respectively. Our results enhance an understanding of how viruses remodel cellular compartments to build functional replication organelles. Viruses modify cellular structures to build replication organelles. These organelles serve as sites of viral genome replication and particle morphogenesis and are essential for viral infection. However, how these organelles are constructed is not well understood. We found that the replication organelles of mammalian reoviruses are formed by collections of membranous tubules and vesicles derived from extensive remodeling of the peripheral endoplasmic reticulum (ER). We also observed that ER tubulation and vesiculation are triggered by the reovirus σNS and μNS proteins, respectively. Our results enhance an understanding of how viruses remodel cellular compartments to build functional replication organelles and provide functions for two enigmatic reovirus replication proteins. Most importantly, this research uncovers a new mechanism by which viruses form factories for particle assembly.
Collapse
|
24
|
Pathak PK, Peng S, Meng X, Han Y, Zhang B, Zhang F, Xiang Y, Deng J. Structure of a lipid-bound viral membrane assembly protein reveals a modality for enclosing the lipid bilayer. Proc Natl Acad Sci U S A 2018; 115:7028-7032. [PMID: 29915071 PMCID: PMC6142198 DOI: 10.1073/pnas.1805855115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cellular membranes are maintained as closed compartments, broken up only transiently during membrane reorganization or lipid transportation. However, open-ended membranes, likely derived from scissions of the endoplasmic reticulum, persist in vaccinia virus-infected cells during the assembly of the viral envelope. A group of viral membrane assembly proteins (VMAPs) were identified as essential for this process. To understand the mechanism of VMAPs, we determined the 2.2-Å crystal structure of the largest member, named A6, which is a soluble protein with two distinct domains. The structure of A6 displays a novel protein fold composed mainly of alpha helices. The larger C-terminal domain forms a unique cage that encloses multiple glycerophospholipids with a lipid bilayer-like configuration. The smaller N-terminal domain does not bind lipid but negatively affects lipid binding by A6. Mutations of key hydrophobic residues lining the lipid-binding cage disrupt lipid binding and abolish viral replication. Our results reveal a protein modality for enclosing the lipid bilayer and provide molecular insight into a viral machinery involved in generating and/or stabilizing open-ended membranes.
Collapse
Affiliation(s)
- Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yue Han
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
| | - Fushun Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yan Xiang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
25
|
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
26
|
Meng X, Kaever T, Yan B, Traktman P, Zajonc DM, Peters B, Crotty S, Xiang Y. Characterization of murine antibody responses to vaccinia virus envelope protein A14 reveals an immunodominant antigen lacking of effective neutralization targets. Virology 2018; 518:284-292. [PMID: 29558682 PMCID: PMC5911218 DOI: 10.1016/j.virol.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023]
Abstract
Vaccinia virus (VACV) A14 is a major envelope protein and a dominant antibody target in the smallpox vaccine. However, the role of anti-A14 antibodies in immunity against orthopoxviruses is unclear. Here, we characterized 22 A14 monoclonal antibodies (mAb) from two mice immunized with VACV. Epitope mapping showed that 21 mAbs targeted the C-terminal hydrophilic region, while one mAb recognized the middle region predicted to be across the viral envelope from the C-terminus. However, none of the mAbs bound to virions in studies with electron microscopy. Interestingly, some mAbs showed low VACV neutralization activities in the presence of complement and provided protection to SCID mice challenged with VACV ACAM2000. Our data showed that, although A14 is an immunodominant antigen in smallpox vaccine, its B cell epitopes are either enclosed within the virions or are inaccessible on virion surface. Anti-A14 antibodies, however, could contribute to protection against VACV through a complement-dependent pathway.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas Kaever
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Bo Yan
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Paula Traktman
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Bjoern Peters
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|