1
|
Zhu T, Xiao X, Zhu X, Wang X. Hospitalised Dengue Patients and Risk of Hypertension: A Systematic Review and Meta-Analysis. Rev Med Virol 2025; 35:e70013. [PMID: 39843252 DOI: 10.1002/rmv.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Identification and management of hypertension is a crucial part in hospitalised patients suffering from dengue infection (DV). Several studies with data conflicting have shown that DI may be linked to an elevated risk of hypertension in hospitalised patients. To gain a comprehensive understanding of this association, a systematic review and meta-analysis was performed. A systematic search was conducted across electronic databases including PubMed, SCOPUS, Embase and Web of Science to gather pertinent published data up to 10 November 2024. A total of five articles were incorporated into the systematic review and meta-analysis. DerSimonian and Liard random-effects model was applied to determine the pooled odds ratio (OR). Sensitivity analysis was performed to evaluate the strength of the pooled findings by excluding every individual study from the overall effect size. Subgroup analyses were performed based on age, duration of dengue infection, study design, and geographical area to identify the source of considerable heterogeneity. We included five articles retrieved from the literature search in the meta-analysis. The findings indicate a statistically significant correlation between dengue infection and elevated risk of hypertension (OR: 4.2; 95% CI 1.05-16.9; p = 0.04). A notable degree of heterogeneity was observed among the included studies. The Begg's correlation (p = 0.80) and Egger's linear regression (p = 0.45) tests revealed no evidence of publication bias. Furthermore, meta-regression analysis demonstrated a significant relationship between high blood pressure and age, duration of dengue infection, study design and geographical area. Our finding supports risk of hypertension in patients with dengue infection. This result can help clinicians recognise risk of hypertension in the dengue infection in order to manage and treat it promptly.
Collapse
Affiliation(s)
- Tonggang Zhu
- Department of Respiratory Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xue Xiao
- Department of Cardiology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoming Zhu
- Department of Respiratory Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiujiang Wang
- Department of Respiratory Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Klepac P, Hsieh JL, Ducker CL, Assoum M, Booth M, Byrne I, Dodson S, Martin DL, Turner CMR, van Daalen KR, Abela B, Akamboe J, Alves F, Brooker SJ, Ciceri-Reynolds K, Cole J, Desjardins A, Drakeley C, Ediriweera DS, Ferguson NM, Gabrielli AF, Gahir J, Jain S, John MR, Juma E, Kanayson P, Deribe K, King JD, Kipingu AM, Kiware S, Kolaczinski J, Kulei WJ, Laizer TL, Lal V, Lowe R, Maige JS, Mayer S, McIver L, Mosser JF, Nicholls RS, Nunes-Alves C, Panjwani J, Parameswaran N, Polson K, Radoykova HS, Ramani A, Reimer LJ, Reynolds ZM, Ribeiro I, Robb A, Sanikullah KH, Smith DRM, Shirima GG, Shott JP, Tidman R, Tribe L, Turner J, Vaz Nery S, Velayudhan R, Warusavithana S, Wheeler HS, Yajima A, Abdilleh AR, Hounkpatin B, Wangmo D, Whitty CJM, Campbell-Lendrum D, Hollingsworth TD, Solomon AW, Fall IS. Climate change, malaria and neglected tropical diseases: a scoping review. Trans R Soc Trop Med Hyg 2024; 118:561-579. [PMID: 38724044 PMCID: PMC11367761 DOI: 10.1093/trstmh/trae026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 09/03/2024] Open
Abstract
To explore the effects of climate change on malaria and 20 neglected tropical diseases (NTDs), and potential effect amelioration through mitigation and adaptation, we searched for papers published from January 2010 to October 2023. We descriptively synthesised extracted data. We analysed numbers of papers meeting our inclusion criteria by country and national disease burden, healthcare access and quality index (HAQI), as well as by climate vulnerability score. From 42 693 retrieved records, 1543 full-text papers were assessed. Of 511 papers meeting the inclusion criteria, 185 studied malaria, 181 dengue and chikungunya and 53 leishmaniasis; other NTDs were relatively understudied. Mitigation was considered in 174 papers (34%) and adaption strategies in 24 (5%). Amplitude and direction of effects of climate change on malaria and NTDs are likely to vary by disease and location, be non-linear and evolve over time. Available analyses do not allow confident prediction of the overall global impact of climate change on these diseases. For dengue and chikungunya and the group of non-vector-borne NTDs, the literature privileged consideration of current low-burden countries with a high HAQI. No leishmaniasis papers considered outcomes in East Africa. Comprehensive, collaborative and standardised modelling efforts are needed to better understand how climate change will directly and indirectly affect malaria and NTDs.
Collapse
Affiliation(s)
- Petra Klepac
- Big Data Institute, Oxford University, Oxford, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Jennifer L Hsieh
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Camilla L Ducker
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Mohamad Assoum
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Booth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Isabel Byrne
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Diana L Martin
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - C Michael R Turner
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
- Division of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Kim R van Daalen
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Bernadette Abela
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Jennifer Akamboe
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Fabiana Alves
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Simon J Brooker
- Neglected Tropical Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karen Ciceri-Reynolds
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | | | - Aidan Desjardins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Dileepa S Ediriweera
- CHICAS, Lancaster University, Lancaster, UK
- Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Neil M Ferguson
- School of Public Health, Imperial College London, London, UK
| | | | - Joshua Gahir
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - Saurabh Jain
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Mbaraka R John
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Elizabeth Juma
- Expanded Special Project for Elimination of Neglected Tropical Diseases, Regional Office for Africa, World Health Organization, Brazzaville, Republic of Congo
| | - Priya Kanayson
- Global Institute for Disease Elimination, Abu Dhabi, United Arab Emirates
| | - Kebede Deribe
- Department of Neglected Tropical Diseases, Children's Investment Fund Foundation, Addis Ababa, Ethiopia
| | - Jonathan D King
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Andrea M Kipingu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Samson Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- Research and Knowledge Management, Pan-African Mosquito Control Association, Nairobi, Kenya
| | - Jan Kolaczinski
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Winnie J Kulei
- Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Mathematics, Statistics and Actuarial Science, Karatina University, Karatina, Kenya
| | - Tajiri L Laizer
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Vivek Lal
- Global Leprosy Programme, World Health Organization, New Delhi, India
| | - Rachel Lowe
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centre on Climate Change & Planetary Health and Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Janice S Maige
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Sam Mayer
- Global Strategic Partnerships, The END Fund, New York, NY, USA
| | - Lachlan McIver
- Médecins Sans Frontières, Operational Centre Geneva, Geneva, Switzerland
| | - Jonathan F Mosser
- Institute for Health Metrics and Evaluation, University of Washington, Seattle WA, USA
| | - Ruben Santiago Nicholls
- Department of Communicable Diseases Prevention, Control and Elimination, Pan American Health Organization, Washington DC, USA
| | | | | | - Nishanth Parameswaran
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen Polson
- Department of Social and Environmental Determinants of Health Equity, Pan American Health Organization, Washington DC, USA
| | | | - Aditya Ramani
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Lisa J Reimer
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Isabela Ribeiro
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Alastair Robb
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Kazim Hizbullah Sanikullah
- Integrated Communicable Disease Unit, Regional Office for the Western Pacific, World Health Organization, Manilla, Philippines
| | - David R M Smith
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, UK
| | - GloriaSalome G Shirima
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- School of Computational and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Joseph P Shott
- Division of Neglected Tropical Diseases, Global Health Bureau, United States Agency for International Development, Washington DC, USA
| | - Rachel Tidman
- Science Department, World Organisation for Animal Health, Paris, France
| | - Louisa Tribe
- Department of Communications, Uniting to Combat Neglected Tropical Diseases, London, UK
| | | | - Susana Vaz Nery
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Raman Velayudhan
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Supriya Warusavithana
- Neglected Tropical Disease Control, Regional Office for the Eastern Mediterranean, World Health Organization, Cairo, Egypt
| | - Holly S Wheeler
- Office of Development Affairs, Presidential Court, Abu Dhabi, United Arab Emirates
| | - Aya Yajima
- Vector-Borne and Neglected Tropical Diseases Control, Regional Office for South-East Asia, World Health Organization, New Delhi, India
| | | | | | | | | | | | | | - Anthony W Solomon
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| | - Ibrahima Socé Fall
- Global Neglected Tropical Diseases Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
3
|
Liang Y, Dai X. The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Front Microbiol 2024; 15:1458166. [PMID: 39206366 PMCID: PMC11349664 DOI: 10.3389/fmicb.2024.1458166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Flavivirus pose a continued threat to global health, yet their worldwide burden and trends remain poorly quantified. We aimed to evaluate the global, regional, and national incidence of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Methods Data on the number and rate of incidence for the three common flavivirus infection in 204 countries and territories were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021. The estimated annual percent change (EAPC) was calculated to quantify the temporal trend during 2011-2016, 2016-2019, and 2019-2021, respectively. Results In 2021, an estimated 59,220,428 individuals were infected globally, comprising 58,964,185 cases of dengue, 86,509 cases of yellow fever, and 169,734 cases of Zika virus infection. The age-standardized incidence rate (ASIR) of the three common flavivirus infections increased by an annual average of 5.08% (95% CI 4.12 to 6.05) globally from 2011 to 2016, whereas decreased by an annual average of -8.37% (95% CI -12.46 to -4.08) per year between 2016 to 2019. The ASIR remained stable during 2019-2021, with an average change of 0.69% (95% CI -0.96 to 2.37) per year globally for the three common flavivirus infections. Regionally, the burden of the three common flavivirus infections was primarily concentrated in those regions with middle income, such as South Asia, Southeast Asia, and Tropical Latin America. Additionally, at the country level, there was an inverted "U" relationship between the SDI level and the ASI. Notably, an increase in the average age of infected cases has been observed worldwide, particularly in higher-income regions. Conclusion Flavivirus infections are an expanding public health concern worldwide, with considerable regional and demographic variation in the incidence. Policymakers and healthcare providers must stay vigilant regarding the impact of COVID-19 and other environmental factors on the risk of flavivirus infection and be prepared for potential future outbreaks.
Collapse
Affiliation(s)
- Yuanhao Liang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Abdalgader T, Zheng Z, Banerjee M, Zhang L. The timeline of overseas imported cases acts as a strong indicator of dengue outbreak in mainland China. CHAOS (WOODBURY, N.Y.) 2024; 34:083106. [PMID: 39213011 DOI: 10.1063/5.0204336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The emergence of dengue viruses in new, susceptible human populations worldwide is increasingly influenced by a combination of local and global human movements and favorable environmental conditions. While various mathematical models have explored the impact of environmental factors on dengue outbreaks, the significant role of human mobility both internationally and domestically in transmitting the disease has been less frequently addressed. In this context, we introduce a modeling framework that integrates the effects of international travel-induced imported cases, climatic conditions, and local human movements to assess the spatiotemporal dynamics of dengue transmission. Utilizing the generation matrix method, we calculate the basic reproduction number and its sensitivity to various model parameters. Through numerical simulations using data on climate, human mobility, and reported dengue cases in mainland China, our model demonstrates a good agreement with observed data upon validation. Our findings reveal that while climatic conditions are a key driver for the rapid dengue transmission, human mobility plays a crucial role in its local spread. Importantly, the model highlights the significant impact of imported cases from overseas on the initiation of dengue outbreaks and their contribution to increasing the disease incidence rate by 34.6%. Furthermore, the analysis identifies that dengue cases originating from regions, such as Cambodia and Myanmar internationally, and Guangzhou and Xishuangbanna domestically, have the potential to significantly increase the disease burden in mainland China. These insights emphasize the critical need to include data on imported cases and domestic travel patterns in disease outbreak models to improve the precision of predictions, thereby enhancing dengue prevention, surveillance, and response strategies.
Collapse
Affiliation(s)
- Tarteel Abdalgader
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
- Department of Mathematics, Faculty of Education, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - Zhoumin Zheng
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
5
|
Gibb R, Colón-González FJ, Lan PT, Huong PT, Nam VS, Duoc VT, Hung DT, Dong NT, Chien VC, Trang LTT, Kien Quoc D, Hoa TM, Tai NH, Hang TT, Tsarouchi G, Ainscoe E, Harpham Q, Hofmann B, Lumbroso D, Brady OJ, Lowe R. Interactions between climate change, urban infrastructure and mobility are driving dengue emergence in Vietnam. Nat Commun 2023; 14:8179. [PMID: 38081831 PMCID: PMC10713571 DOI: 10.1038/s41467-023-43954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Dengue is expanding globally, but how dengue emergence is shaped locally by interactions between climatic and socio-environmental factors is not well understood. Here, we investigate the drivers of dengue incidence and emergence in Vietnam, through analysing 23 years of district-level case data spanning a period of significant socioeconomic change (1998-2020). We show that urban infrastructure factors (sanitation, water supply, long-term urban growth) predict local spatial patterns of dengue incidence, while human mobility is a more influential driver in subtropical northern regions than the endemic south. Temperature is the dominant factor shaping dengue's distribution and dynamics, and using long-term reanalysis temperature data we show that warming since 1950 has expanded transmission risk throughout Vietnam, and most strongly in current dengue emergence hotspots (e.g., southern central regions, Ha Noi). In contrast, effects of hydrometeorology are complex, multi-scalar and dependent on local context: risk increases under either short-term precipitation excess or long-term drought, but improvements in water supply mitigate drought-associated risks except under extreme conditions. Our findings challenge the assumption that dengue is an urban disease, instead suggesting that incidence peaks in transitional landscapes with intermediate infrastructure provision, and provide evidence that interactions between recent climate change and mobility are contributing to dengue's expansion throughout Vietnam.
Collapse
Affiliation(s)
- Rory Gibb
- Department of Infectious Disease Epidemiology & Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK.
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Felipe J Colón-González
- Department of Infectious Disease Epidemiology & Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
- Data for Science and Health, Wellcome Trust, London, UK
| | - Phan Trong Lan
- General Department of Preventative Medicine (GDPM), Ministry of Health, Hanoi, Vietnam
| | - Phan Thi Huong
- General Department of Preventative Medicine (GDPM), Ministry of Health, Hanoi, Vietnam
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology (NIHE), Hanoi, Vietnam
| | - Vu Trong Duoc
- National Institute of Hygiene and Epidemiology (NIHE), Hanoi, Vietnam
| | - Do Thai Hung
- Pasteur Institute Nha Trang, Nha Trang, Khanh Hoa Province, Vietnam
| | | | - Vien Chinh Chien
- Tay Nguyen Institute of Hygiene and Epidemiology (TIHE), Buon Ma Thuot, Dak Lak Province, Vietnam
| | - Ly Thi Thuy Trang
- Tay Nguyen Institute of Hygiene and Epidemiology (TIHE), Buon Ma Thuot, Dak Lak Province, Vietnam
| | - Do Kien Quoc
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tran Minh Hoa
- Center for Disease Control, Dong Nai Province, Vietnam
| | | | | | | | | | | | | | | | - Oliver J Brady
- Department of Infectious Disease Epidemiology & Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Rachel Lowe
- Department of Infectious Disease Epidemiology & Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
6
|
Colón-González FJ, Gibb R, Khan K, Watts A, Lowe R, Brady OJ. Projecting the future incidence and burden of dengue in Southeast Asia. Nat Commun 2023; 14:5439. [PMID: 37673859 PMCID: PMC10482941 DOI: 10.1038/s41467-023-41017-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
The recent global expansion of dengue has been facilitated by changes in urbanisation, mobility, and climate. In this work, we project future changes in dengue incidence and case burden to 2099 under the latest climate change scenarios. We fit a statistical model to province-level monthly dengue case counts from eight countries across Southeast Asia, one of the worst affected regions. We project that dengue incidence will peak this century before declining to lower levels with large variations between and within countries. Our findings reveal that northern Thailand and Cambodia will show the biggest decreases and equatorial areas will show the biggest increases. The impact of climate change will be counterbalanced by income growth, with population growth having the biggest influence on increasing burden. These findings can be used for formulating mitigation and adaptation interventions to reduce the immediate growing impact of dengue virus in the region.
Collapse
Affiliation(s)
- Felipe J Colón-González
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
- Data for Science and Health, Wellcome Trust, London, NW1 2BE, UK.
| | - Rory Gibb
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Kamran Khan
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, ON, M5S 3H2, Canada
- BlueDot, Toronto, ON, M5J 1A7, Canada
| | - Alexander Watts
- BlueDot, Toronto, ON, M5J 1A7, Canada
- Esri Canada, Toronto, ON, M3C 3R8, Canada
| | - Rachel Lowe
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| | - Oliver J Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
7
|
Ding F, Wang Q, Hao M, Maude RJ, John Day NP, Lai S, Chen S, Fang L, Ma T, Zheng C, Jiang D. Climate drives the spatiotemporal dynamics of scrub typhus in China. GLOBAL CHANGE BIOLOGY 2022; 28:6618-6628. [PMID: 36056457 PMCID: PMC9825873 DOI: 10.1111/gcb.16395] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Scrub typhus is a climate-sensitive and life-threatening vector-borne disease that poses a growing public health threat. Although the climate-epidemic associations of many vector-borne diseases have been studied for decades, the impacts of climate on scrub typhus remain poorly understood, especially in the context of global warming. Here we incorporate Chinese national surveillance data on scrub typhus from 2010 to 2019 into a climate-driven generalized additive mixed model to explain the spatiotemporal dynamics of this disease and predict how it may be affected by climate change under various representative concentration pathways (RCPs) for three future time periods (the 2030s, 2050s, and 2080s). Our results demonstrate that temperature, precipitation, and relative humidity play key roles in driving the seasonal epidemic of scrub typhus in mainland China with a 2-month lag. Our findings show that the change of projected spatiotemporal dynamics of scrub typhus will be heterogeneous and will depend on specific combinations of regional climate conditions in future climate scenarios. Our results contribute to a better understanding of spatiotemporal dynamics of scrub typhus, which can help public health authorities refine their prevention and control measures to reduce the risks resulting from climate change.
Collapse
Affiliation(s)
- Fangyu Ding
- Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Qian Wang
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Mengmeng Hao
- Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Richard James Maude
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Harvard TH Chan School of Public HealthHarvard UniversityBostonMassachusettsUSA
| | - Nicholas Philip John Day
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Shengjie Lai
- WorldPop, School of Geography and Environmental ScienceUniversity of SouthamptonSouthamptonUK
| | - Shuai Chen
- Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Liqun Fang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Tian Ma
- Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Canjun Zheng
- Chinese Center for Disease Control and PreventionBeijingChina
| | - Dong Jiang
- Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Abdullah NAMH, Dom NC, Salleh SA, Salim H, Precha N. The association between dengue case and climate: A systematic review and meta-analysis. One Health 2022; 15:100452. [PMID: 36561711 PMCID: PMC9767811 DOI: 10.1016/j.onehlt.2022.100452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022] Open
Abstract
Although previous research frequently indicates that climate factors impact dengue transmission, the results are inconsistent. Therefore, this systematic review and meta-analysis highlights and address the complex global health problems towards the human-environment interface and the inter-relationship between these variables. For this purpose, four online electronic databases were searched to conduct a systematic assessment of published studies reporting the association between dengue cases and climate between 2010 and 2022. The meta-analysis was conducted using random effects to assess correlation, publication bias and heterogeneity. The final assessment included eight studies for both systematic review and meta-analysis. A total of four meta-analyses were conducted to evaluate the correlation of dengue cases with climate variables, namely precipitation, temperature, minimum temperature and relative humidity. The highest correlation is observed for precipitation between 83 mm and 15 mm (r = 0.38, 95% CI = 0.31, 0.45), relative humidity between 60.5% and 88.7% (r = 0.30, 95% CI = 0.23, 0.37), minimum temperature between 6.5 °C and 21.4 °C (r = 0.28, 95% CI = 0.05, 0.48) and mean temperature between 21.0 °C and 29.8 °C (r = 0.07, 95% CI = -0.1, 0.24). Thus, the influence of climate variables on the magnitude of dengue cases in terms of their distribution, frequency, and prevailing variables was established and conceptualised. The results of this meta-analysis enable multidisciplinary collaboration to improve dengue surveillance, epidemiology, and prevention programmes.
Collapse
Affiliation(s)
- Nur Athen Mohd Hardy Abdullah
- Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Nazri Che Dom
- Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Integrated Mosquito Research Group (I-MeRGe), Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Institute for Biodiversity and Sustainable Development (IBSD), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
- Corresponding author at: Faculty of Health Sciences, Universiti Teknologi MARA, Malaysia.
| | - Siti Aekball Salleh
- Institute for Biodiversity and Sustainable Development (IBSD), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Hasber Salim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
10
|
Liu Z, Xu Y, Li Y, Xu S, Li Y, Xiao L, Chen X, He C, Zheng K. Transcriptome analysis of Aedes albopictus midguts infected by dengue virus identifies a gene network module highly associated with temperature. Parasit Vectors 2022; 15:173. [PMID: 35590344 PMCID: PMC9118615 DOI: 10.1186/s13071-022-05282-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue is prevalent worldwide and is transmitted by Aedes mosquitoes. Temperature is a strong driver of dengue transmission. However, little is known about the underlying mechanisms. METHODS Aedes albopictus mosquitoes exposed or not exposed to dengue virus serotype 2 (DENV-2) were reared at 23 °C, 28 °C and 32 °C, and midguts and residual tissues were evaluated at 7 days after infection. RNA sequencing of midgut pools from the control group, midgut breakthrough group and midgut nonbreakthrough group at different temperatures was performed. The transcriptomic profiles were analyzed using the R package, followed by weighted gene correlation network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify the important molecular mechanisms regulated by temperature. RESULTS The midgut infection rate and midgut breakthrough rate at 28 °C and 32 °C were significantly higher than those at 23 °C, which indicates that high temperature facilitates DENV-2 breakthrough in the Ae. albopictus midgut. Transcriptome sequencing was performed to investigate the antiviral mechanism in the midgut. The midgut gene expression datasets clustered with respect to temperature, blood-feeding and midgut breakthrough. Over 1500 differentially expressed genes were identified by pairwise comparisons of midguts at different temperatures. To assess key molecules regulated by temperature, we used WGCNA, which identified 28 modules of coexpressed genes; the ME3 module correlated with temperature. KEGG analysis indicated that RNA degradation, Toll and immunodeficiency factor signaling and other pathways are regulated by temperature. CONCLUSIONS Temperature affects the infection and breakthrough of Ae. albopictus midguts invaded by DENV-2, and Ae. albopictus midgut transcriptomes change with temperature. The candidate genes and key pathways regulated by temperature provide targets for the prevention and control of dengue.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Ye Xu
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Shihong Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yiji Li
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Ling Xiao
- Taiyuan Central Hospital, Shanxi, China
| | - Xiaoguang Chen
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng He
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
11
|
Wu Y, Huang C. Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management. BIOLOGY 2022; 11:biology11030370. [PMID: 35336744 PMCID: PMC8945209 DOI: 10.3390/biology11030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Vector-borne diseases are among the most rapidly spreading infectious diseases and are widespread all around the world. In China, many types of vector-borne diseases have been prevalent in different regions, which is a serious public health problem with significant association with meteorological factors and weather events. Under the background of current severe climate change, the outbreaks and transmission of vector-borne diseases have been proven to be impacted greatly due to rapidly changing weather conditions. This study summarizes research progress on the association between climate conditions and all types of vector-borne diseases in China. A total of seven insect-borne diseases, two rodent-borne diseases, and a snail-borne disease were included, among which dengue fever is the most concerning mosquito-borne disease. Temperature, rainfall, and humidity have the most significant effect on vector-borne disease transmission, while the association between weather conditions and vector-borne diseases shows vast differences in China. We also make suggestions about future research based on a review of current studies. Abstract Vector-borne diseases have posed a heavy threat to public health, especially in the context of climate change. Currently, there is no comprehensive review of the impact of meteorological factors on all types of vector-borne diseases in China. Through a systematic review of literature between 2000 and 2021, this study summarizes the relationship between climate factors and vector-borne diseases and potential mechanisms of climate change affecting vector-borne diseases. It further examines the regional differences of climate impact. A total of 131 studies in both Chinese and English on 10 vector-borne diseases were included. The number of publications on mosquito-borne diseases is the largest and is increasing, while the number of studies on rodent-borne diseases has been decreasing in the past two decades. Temperature, precipitation, and humidity are the main parameters contributing to the transmission of vector-borne diseases. Both the association and mechanism show vast differences between northern and southern China resulting from nature and social factors. We recommend that more future research should focus on the effect of meteorological factors on mosquito-borne diseases in the era of climate change. Such information will be crucial in facilitating a multi-sectorial response to climate-sensitive diseases in China.
Collapse
Affiliation(s)
- Yurong Wu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
- School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
- School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
- Institute of Healthy China, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
12
|
Wei KC, Sy CL, Wang WH, Wu CL, Chang SH, Huang YT. Major acute cardiovascular events after dengue infection-A population-based observational study. PLoS Negl Trop Dis 2022; 16:e0010134. [PMID: 35130277 PMCID: PMC8853534 DOI: 10.1371/journal.pntd.0010134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/17/2022] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background Dengue virus (DENV) infection may be associated with increased risks of major adverse cardiovascular effect (MACE), but a large-scale study evaluating the association between DENV infection and MACEs is still lacking. Methods and findings All laboratory confirmed dengue cases in Taiwan during 2009 and 2015 were included by CDC notifiable database. The self-controlled case-series design was used to evaluate the association between DENV infection and MACE (including acute myocardial infarction [AMI], heart failure and stroke). The "risk interval" was defined as the first 7 days after the diagnosis of DENV infection and the "control interval" as 1 year before and 1 year after the risk interval. The incidence rate ratio (IRR) and 95% confidence interval (CI) for MACE were estimated by conditional Poisson regression. Finally, the primary outcome of the incidence of MACEs within one year of dengue was observed in 1,247 patients. The IRR of MACEs was 17.9 (95% CI 15.80–20.37) during the first week after the onset of DENV infection observed from 1,244 eligible patients. IRR were significantly higher for hemorrhagic stroke (10.9, 95% CI 6.80–17.49), ischemic stroke (15.56, 95% CI 12.44–19.47), AMI (13.53, 95% CI 10.13–18.06), and heart failure (27.24, 95% CI 22.67–32.73). No increased IRR was observed after day 14. Conclusions The risks for MACEs are significantly higher in the immediate time period after dengue infection. Since dengue infection is potentially preventable by early recognition and vaccination, the dengue-associated MACE should be taken into consideration when making public health management policies. Dengue infection is the most rapidly spreading mosquito-borne viral illness worldwide and becomes a vivid threat to non-tropical countries. Previous research has documented that viral infection can increase risks of adverse cardiovascular events. There were sporadic reports about the association of cardiovascular events and dengue infection in the endemic tropical countries. Our study analyzed the risks for major adverse cardiovascular events, and found that acute myocardial infarction, stroke and heart failure were significantly higher in the immediate time period (within one week) after dengue infection, especially in patients with ≥60 years of age, female gender and severe admission dengue cases.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Len Sy
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wen-Hwa Wang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Health Management Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- College of Management, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Ling Wu
- Department of Medical Research and Development, Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Shang-Hung Chang
- Department of Medical Research and Development, Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
- Department of Internal Medicine, Division of Cardiology, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (SH-C); (YT-H)
| | - Yu-Tung Huang
- Department of Medical Research and Development, Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
- * E-mail: (SH-C); (YT-H)
| |
Collapse
|
13
|
Ochida N, Mangeas M, Dupont-Rouzeyrol M, Dutheil C, Forfait C, Peltier A, Descloux E, Menkes C. Modeling present and future climate risk of dengue outbreak, a case study in New Caledonia. Environ Health 2022; 21:20. [PMID: 35057822 PMCID: PMC8772089 DOI: 10.1186/s12940-022-00829-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Dengue dynamics result from the complex interactions between the virus, the host and the vector, all being under the influence of the environment. Several studies explored the link between weather and dengue dynamics and some investigated the impact of climate change on these dynamics. Most attempted to predict incidence rate at a country scale or assess the environmental suitability at a global or regional scale. Here, we propose a new approach which consists in modeling the risk of dengue outbreak at a local scale according to climate conditions and study the evolution of this risk taking climate change into account. We apply this approach in New Caledonia, where high quality data are available. METHODS We used a statistical estimation of the effective reproduction number (Rt) based on case counts to create a categorical target variable : epidemic week/non-epidemic week. A machine learning classifier has been trained using relevant climate indicators in order to estimate the probability for a week to be epidemic under current climate data and this probability was then estimated under climate change scenarios. RESULTS Weekly probability of dengue outbreak was best predicted with the number of days when maximal temperature exceeded 30.8°C and the mean of daily precipitation over 80 and 60 days prior to the predicted week respectively. According to scenario RCP8.5, climate will allow dengue outbreak every year in New Caledonia if the epidemiological and entomological contexts remain the same. CONCLUSION We identified locally relevant climatic factor driving dengue outbreaks in New Caledonia and assessed the inter-annual and seasonal risk of dengue outbreak under different climate change scenarios up to the year 2100. We introduced a new modeling approach to estimate the risk of dengue outbreak depending on climate conditions. This approach is easily reproducible in other countries provided that reliable epidemiological and climate data are available.
Collapse
Affiliation(s)
- Noé Ochida
- UMR ENTROPIE (IRD, Université de la Réunion, CNRS, Ifremer, Université de la Nouvelle-Calédonie), Nouméa, New Caledonia.
- URE-Dengue et Arboviroses, Institut Pasteur de Nouvelle-Calédonie, Pasteur Network, Nouméa, New Caledonia.
| | - Morgan Mangeas
- UMR ENTROPIE (IRD, Université de la Réunion, CNRS, Ifremer, Université de la Nouvelle-Calédonie), Nouméa, New Caledonia
| | - Myrielle Dupont-Rouzeyrol
- URE-Dengue et Arboviroses, Institut Pasteur de Nouvelle-Calédonie, Pasteur Network, Nouméa, New Caledonia
| | - Cyril Dutheil
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research, Warnemünde, Rostock, Germany
| | - Carole Forfait
- Direction des Affaires Sanitaires et Sociales, Nouméa, New Caledonia
| | | | - Elodie Descloux
- Service de Médecine interne, Centre Hospitalier Territorial Gaston-Bourret, 988935, Dumbea-Sur-Mer, New Caledonia
| | - Christophe Menkes
- UMR ENTROPIE (IRD, Université de la Réunion, CNRS, Ifremer, Université de la Nouvelle-Calédonie), Nouméa, New Caledonia
| |
Collapse
|
14
|
A Review of Dengue's Historical and Future Health Risk from a Changing Climate. Curr Environ Health Rep 2021; 8:245-265. [PMID: 34269994 PMCID: PMC8416809 DOI: 10.1007/s40572-021-00322-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize research articles that provide risk estimates for the historical and future impact that climate change has had upon dengue published from 2007 through 2019. RECENT FINDINGS Findings from 30 studies on historical health estimates, with the majority of the studies conducted in Asia, emphasized the importance of temperature, precipitation, and relative humidity, as well as lag effects, when trying to understand how climate change can impact the risk of contracting dengue. Furthermore, 35 studies presented findings on future health risk based upon climate projection scenarios, with a third of them showcasing global level estimates and findings across the articles emphasizing the need to understand risk at a localized level as the impacts from climate change will be experienced inequitably across different geographies in the future. Dengue is one of the most rapidly spreading viral diseases in the world, with ~390 million people infected worldwide annually. Several factors have contributed towards its proliferation, including climate change. Multiple studies have previously been conducted examining the relationship between dengue and climate change, both from a historical and a future risk perspective. We searched the U.S. National Institute of Environmental Health (NIEHS) Climate Change and Health Portal for literature (spanning January 2007 to September 2019) providing historical and future health risk estimates of contracting dengue infection in relation to climate variables worldwide. With an overview of the evidence of the historical and future health risk posed by dengue from climate change across different regions of the world, this review article enables the research and policy community to understand where the knowledge gaps are and what areas need to be addressed in order to implement localized adaptation measures to mitigate the health risks posed by future dengue infection.
Collapse
|
15
|
Colón-González FJ, Sewe MO, Tompkins AM, Sjödin H, Casallas A, Rocklöv J, Caminade C, Lowe R. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planet Health 2021; 5:e404-e414. [PMID: 34245711 PMCID: PMC8280459 DOI: 10.1016/s2542-5196(21)00132-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/07/2023]
Abstract
BACKGROUND Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient. METHODS Using a multi-model multi-scenario framework, we estimated changes in the length of the transmission season and global population at risk of malaria and dengue for different altitudes and population densities for the period 1951-99. We generated projections from six mosquito-borne disease models, driven by four global circulation models, using four representative concentration pathways, and three shared socioeconomic pathways. FINDINGS We show that malaria suitability will increase by 1·6 additional months (mean 0·5, SE 0·03) in tropical highlands in the African region, the Eastern Mediterranean region, and the region of the Americas. Dengue suitability will increase in lowlands in the Western Pacific region and the Eastern Mediterranean region by 4·0 additional months (mean 1·7, SE 0·2). Increases in the climatic suitability of both diseases will be greater in rural areas than in urban areas. The epidemic belt for both diseases will expand towards temperate areas. The population at risk of both diseases might increase by up to 4·7 additional billion people by 2070 relative to 1970-99, particularly in lowlands and urban areas. INTERPRETATION Rising global mean temperature will increase the climatic suitability of both diseases particularly in already endemic areas. The predicted expansion towards higher altitudes and temperate regions suggests that outbreaks can occur in areas where people might be immunologically naive and public health systems unprepared. The population at risk of malaria and dengue will be higher in densely populated urban areas in the WHO African region, South-East Asia region, and the region of the Americas, although we did not account for urban-heat island effects, which can further alter the risk of disease transmission. FUNDING UK Space Agency, Royal Society, UK National Institute for Health Research, and Swedish Research Council.
Collapse
Affiliation(s)
- Felipe J Colón-González
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK; Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK.
| | - Maquins Odhiambo Sewe
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Adrian M Tompkins
- Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Henrik Sjödin
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Alejandro Casallas
- Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden; Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Cyril Caminade
- Department of Livestock and one Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rachel Lowe
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
16
|
Tidman R, Abela-Ridder B, de Castañeda RR. The impact of climate change on neglected tropical diseases: a systematic review. Trans R Soc Trop Med Hyg 2021; 115:147-168. [PMID: 33508094 PMCID: PMC7842100 DOI: 10.1093/trstmh/traa192] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/09/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Neglected tropical diseases (NTDs) are a diverse group of diseases that continue to affect >1 billion people, with these diseases disproportionately impacting vulnerable populations and territories. Climate change is having an increasing impact on public health in tropical and subtropical areas and across the world and can affect disease distribution and transmission in potentially diverse ways. Improving our understanding of how climate change influences NTDs can help identify populations at risk to include in future public health interventions. Articles were identified by searching electronic databases for reports of climate change and NTDs between 1 January 2010 and 1 March 2020. Climate change may influence the emergence and re-emergence of multiple NTDs, particularly those that involve a vector or intermediate host for transmission. Although specific predictions are conflicting depending on the geographic area, the type of NTD and associated vectors and hosts, it is anticipated that multiple NTDs will have changes in their transmission period and geographic range and will likely encroach on regions and populations that have been previously unaffected. There is a need for improved surveillance and monitoring to identify areas of NTD incursion and emergence and include these in future public health interventions.
Collapse
Affiliation(s)
- Rachel Tidman
- Consultant, World Health Organization, Geneva, Switzerland
| | - Bernadette Abela-Ridder
- Department of the Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Rafael Ruiz de Castañeda
- Department of the Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland.,Institute of Global Health, Department of Community Health and Medicine, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
17
|
Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models. Sci Rep 2021; 11:9916. [PMID: 33972597 PMCID: PMC8110805 DOI: 10.1038/s41598-021-89096-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
The Asian tiger mosquito (Aedes albopictus), a vector of dengue, Zika and other diseases, was introduced in Europe in the 1970s, where it is still widening its range. Spurred by public health concerns, several studies have delivered predictions of the current and future distribution of the species for this region, often with differing results. We provide the first joint analysis of these predictions, to identify consensus hotspots of high and low suitability, as well as areas with high uncertainty. The analysis focused on current and future climate conditions and was carried out for the whole of Europe and for 65 major urban areas. High consensus on current suitability was found for the northwest of the Iberian Peninsula, southern France, Italy and the coastline between the western Balkans and Greece. Most models also agree on a substantial future expansion of suitable areas into northern and eastern Europe. About 83% of urban areas are expected to become suitable in the future, in contrast with ~ 49% nowadays. Our findings show that previous research is congruent in identifying wide suitable areas for Aedes albopictus across Europe and in the need to effectively account for climate change in managing and preventing its future spread.
Collapse
|
18
|
Cheng J, Bambrick H, Yakob L, Devine G, Frentiu FD, Williams G, Li Z, Yang W, Hu W. Extreme weather conditions and dengue outbreak in Guangdong, China: Spatial heterogeneity based on climate variability. ENVIRONMENTAL RESEARCH 2021; 196:110900. [PMID: 33636184 DOI: 10.1016/j.envres.2021.110900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/19/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Previous studies have shown associations between local weather factors and dengue incidence in tropical and subtropical regions. However, spatial variability in those associations remains unclear and evidence is scarce regarding the effects of weather extremes. OBJECTIVES We examined spatial variability in the effects of various weather conditions on the unprecedented dengue outbreak in Guangdong province of China in 2014 and explored how city characteristics modify weather-related risk. METHODS A Bayesian spatial conditional autoregressive model was used to examine the overall and city-specific associations of dengue incidence with weather conditions including (1) average temperature, temperature variation, and average rainfall; and (2) weather extremes including numbers of days of extremely high temperature and high rainfall (both used 95th percentile as the cut-off). This model was run for cumulative dengue cases during five months from July to November (accounting for 99.8% of all dengue cases). A further analysis based on spatial variability was used to validate the modification effects by economic, demographic and environmental factors. RESULTS We found a positive association of dengue incidence with average temperature in seven cities (relative risk (RR) range: 1.032 to 1.153), a positive association with average rainfall in seven cities (RR range: 1.237 to 1.974), and a negative association with temperature variation in four cities (RR range: 0.315 to 0.593). There was an overall positive association of dengue incidence with extremely high temperature (RR:1.054, 95% credible interval (CI): 1.016 to 1.094), without evidence of variation across cities, and an overall positive association of dengue with extremely high rainfall (RR:1.505, 95% CI: 1.096 to 2.080), with seven regions having stronger associations (RR range: 1.237 to 1.418). Greater effects of weather conditions appeared to occur in cities with higher economic level, lower green space coverage and lower elevation. CONCLUSIONS Spatially varied effects of weather conditions on dengue outbreaks necessitate area-specific dengue prevention and control measures. Extremes of temperature and rainfall have strong and positive associations with dengue outbreaks.
Collapse
Affiliation(s)
- Jian Cheng
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia; Department of Epidemiology and Biostatistics & Anhui Province Key Laboratory of Major Autoimmune Disease, School of Public Health, Anhui Medical University, Anhui, China
| | - Hilary Bambrick
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gregor Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Francesca D Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Gail Williams
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Zhongjie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning of Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weizhong Yang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early Warning of Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China; School of Population Medicine & Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
19
|
Colón-González FJ, Soares Bastos L, Hofmann B, Hopkin A, Harpham Q, Crocker T, Amato R, Ferrario I, Moschini F, James S, Malde S, Ainscoe E, Sinh Nam V, Quang Tan D, Duc Khoa N, Harrison M, Tsarouchi G, Lumbroso D, Brady OJ, Lowe R. Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles. PLoS Med 2021; 18:e1003542. [PMID: 33661904 PMCID: PMC7971894 DOI: 10.1371/journal.pmed.1003542] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/18/2021] [Accepted: 01/22/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND With enough advanced notice, dengue outbreaks can be mitigated. As a climate-sensitive disease, environmental conditions and past patterns of dengue can be used to make predictions about future outbreak risk. These predictions improve public health planning and decision-making to ultimately reduce the burden of disease. Past approaches to dengue forecasting have used seasonal climate forecasts, but the predictive ability of a system using different lead times in a year-round prediction system has been seldom explored. Moreover, the transition from theoretical to operational systems integrated with disease control activities is rare. METHODS AND FINDINGS We introduce an operational seasonal dengue forecasting system for Vietnam where Earth observations, seasonal climate forecasts, and lagged dengue cases are used to drive a superensemble of probabilistic dengue models to predict dengue risk up to 6 months ahead. Bayesian spatiotemporal models were fit to 19 years (2002-2020) of dengue data at the province level across Vietnam. A superensemble of these models then makes probabilistic predictions of dengue incidence at various future time points aligned with key Vietnamese decision and planning deadlines. We demonstrate that the superensemble generates more accurate predictions of dengue incidence than the individual models it incorporates across a suite of time horizons and transmission settings. Using historical data, the superensemble made slightly more accurate predictions (continuous rank probability score [CRPS] = 66.8, 95% CI 60.6-148.0) than a baseline model which forecasts the same incidence rate every month (CRPS = 79.4, 95% CI 78.5-80.5) at lead times of 1 to 3 months, albeit with larger uncertainty. The outbreak detection capability of the superensemble was considerably larger (69%) than that of the baseline model (54.5%). Predictions were most accurate in southern Vietnam, an area that experiences semi-regular seasonal dengue transmission. The system also demonstrated added value across multiple areas compared to previous practice of not using a forecast. We use the system to make a prospective prediction for dengue incidence in Vietnam for the period May to October 2020. Prospective predictions made with the superensemble were slightly more accurate (CRPS = 110, 95% CI 102-575) than those made with the baseline model (CRPS = 125, 95% CI 120-168) but had larger uncertainty. Finally, we propose a framework for the evaluation of probabilistic predictions. Despite the demonstrated value of our forecasting system, the approach is limited by the consistency of the dengue case data, as well as the lack of publicly available, continuous, and long-term data sets on mosquito control efforts and serotype-specific case data. CONCLUSIONS This study shows that by combining detailed Earth observation data, seasonal climate forecasts, and state-of-the-art models, dengue outbreaks can be predicted across a broad range of settings, with enough lead time to meaningfully inform dengue control. While our system omits some important variables not currently available at a subnational scale, the majority of past outbreaks could be predicted up to 3 months ahead. Over the next 2 years, the system will be prospectively evaluated and, if successful, potentially extended to other areas and other climate-sensitive disease systems.
Collapse
Affiliation(s)
- Felipe J. Colón-González
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| | - Leonardo Soares Bastos
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Scientific Computing Programme, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro
| | | | - Alison Hopkin
- HR Wallingford, Wallingford, Oxfordshire, United Kingdom
| | | | | | | | | | | | - Samuel James
- HR Wallingford, Wallingford, Oxfordshire, United Kingdom
| | - Sajni Malde
- HR Wallingford, Wallingford, Oxfordshire, United Kingdom
| | | | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dang Quang Tan
- General Department of Preventive Medicine, Hanoi, Vietnam
| | | | | | - Gina Tsarouchi
- HR Wallingford, Wallingford, Oxfordshire, United Kingdom
| | | | - Oliver J. Brady
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Rachel Lowe
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
20
|
Qin W, Wang CY, Ma YX, Shen MJ, Li J, Jiao K, Tay FR, Niu LN. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907833. [PMID: 32270552 DOI: 10.1002/adma.201907833] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
21
|
Rodríguez-Verdugo A, Lozano-Huntelman N, Cruz-Loya M, Savage V, Yeh P. Compounding Effects of Climate Warming and Antibiotic Resistance. iScience 2020; 23:101024. [PMID: 32299057 PMCID: PMC7160571 DOI: 10.1016/j.isci.2020.101024] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria have evolved diverse mechanisms to survive environments with antibiotics. Temperature is both a key factor that affects the survival of bacteria in the presence of antibiotics and an environmental trait that is drastically increasing due to climate change. Therefore, it is timely and important to understand links between temperature changes and selection of antibiotic resistance. This review examines these links by synthesizing results from laboratories, hospitals, and environmental studies. First, we describe the transient physiological responses to temperature that alter cellular behavior and lead to antibiotic tolerance and persistence. Second, we focus on the link between thermal stress and the evolution and maintenance of antibiotic resistance mutations. Finally, we explore how local and global changes in temperature are associated with increases in antibiotic resistance and its spread. We suggest that a multidisciplinary, multiscale approach is critical to fully understand how temperature changes are contributing to the antibiotic crisis.
Collapse
Affiliation(s)
| | - Natalie Lozano-Huntelman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mauricio Cruz-Loya
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Van Savage
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
22
|
Bradatan C, Dennis JA, Flores-Yeffal N, Swain S. Child health, household environment, temperature and rainfall anomalies in Honduras: a socio-climate data linked analysis. Environ Health 2020; 19:10. [PMID: 31992324 PMCID: PMC6986158 DOI: 10.1186/s12940-020-0560-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/02/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND As climate research continues to highlight the global shifts in temperature and precipitation, more research is needed to understand how climate anomalies impact human health outcomes. In this paper, we analyze one of the paths through which climate anomalies affect health (in particular, child's health) within one of poorest countries in the world (Honduras). METHODS Using the GPS location of the household, we link information on child health and house amenities from the Honduras Demographic Health Survey 2011-2012 dataset (a nationally representative sample) with climate data (1981-2012) from the Climate Research Unit (CRU TS3.21). We use generalized estimating equations for binary logistic models and spatial association to analyze these data. RESULTS We show that 1) areas experiencing significant temperature anomalies are also the ones with the worst child respiratory problems and 2) in households with poor amenities - such as access to sanitation and clean water, children tend to have a high incidence of respiratory diseases and diarrhea . CONCLUSIONS We conclude that, as climate change increases the incidence of climate anomalies, tackling in advance those household environmental factors responsible for poor child health outcomes (better sanitation and clean cooking fuel) can prevent a further deterioration of children's health in Honduras.
Collapse
Affiliation(s)
- Cristina Bradatan
- Department of SASW, Texas Tech University, Holden Hall 158, Lubbock, TX 79409 USA
- Climate Science Center, Texas Tech University, Lubbock, USA
| | - Jeffrey A. Dennis
- Department of Public Health, Texas Tech University Health Sciences Center, Odessa, USA
| | - Nadia Flores-Yeffal
- Department of SASW, Texas Tech University, Holden Hall 158, Lubbock, TX 79409 USA
| | | |
Collapse
|
23
|
Cheng J, Bambrick H, Yakob L, Devine G, Frentiu FD, Toan DTT, Thai PQ, Xu Z, Hu W. Heatwaves and dengue outbreaks in Hanoi, Vietnam: New evidence on early warning. PLoS Negl Trop Dis 2020; 14:e0007997. [PMID: 31961869 PMCID: PMC6994101 DOI: 10.1371/journal.pntd.0007997] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/31/2020] [Accepted: 12/16/2019] [Indexed: 01/15/2023] Open
Abstract
Background Many studies have shown associations between rising temperatures, El Niño events and dengue incidence, but the effect of sustained periods of extreme high temperatures (i.e., heatwaves) on dengue outbreaks has not yet been investigated. This study aimed to compare the short-term temperature-dengue associations during different dengue outbreak periods, estimate the dengue cases attributable to temperature, and ascertain if there was an association between heatwaves and dengue outbreaks in Hanoi, Vietnam. Methodology/Principal findings Dengue outbreaks were assigned to one of three categories (small, medium and large) based on the 50th, 75th, and 90th percentiles of distribution of weekly dengue cases during 2008–2016. Using a generalised linear regression model with a negative binomial link that controlled for temporal trends, temperature variation, rainfall and population size over time, we examined and compared associations between weekly average temperature and weekly dengue incidence for different outbreak categories. The same model using weeks with or without heatwaves as binary variables was applied to examine the potential effects of extreme heatwaves, defined as seven or more days with temperatures above the 95th percentile of daily temperature distribution during the study period. This study included 55,801 dengue cases, with an average of 119 (range: 0 to 1454) cases per week. The exposure-response relationship between temperature and dengue risk was non-linear and differed with dengue category. After considering the delayed effects of temperature (one week lag), we estimated that 4.6%, 11.6%, and 21.9% of incident cases during small, medium, and large outbreaks were attributable to temperature. We found evidence of an association between heatwaves and dengue outbreaks, with longer delayed effects on large outbreaks (around 14 weeks later) than small and medium outbreaks (4 to 9 weeks later). Compared with non-heatwave years, dengue outbreaks (i.e., small, moderate and large outbreaks combined) in heatwave years had higher weekly number of dengue cases (p<0.05). Findings were robust under different sensitivity analyses. Conclusions The short-term association between temperature and dengue risk varied by the level of outbreaks and temperature seems more likely affect large outbreaks. Moreover, heatwaves may delay the timing and increase the magnitude of dengue outbreaks. Dengue fever is one of the most common mosquito-borne viral diseases. Weather extremes such as El Niño event and extreme hot summer can affect dengue incidence rate and dengue outbreaks. More frequent, more intensive and longer lasting heatwaves in the 21st century is anticipated because of global warming, making it necessary to investigate the association between heatwaves and dengue outbreaks. In this study, we estimated 4.6%, 11.6%, and 21.9% of incident dengue cases during small, medium, and large outbreaks attributable to temperature in Hanoi, Vietnam. We also found evidence of an association between heatwaves and dengue outbreaks, with longer delayed effects on large outbreaks than small and medium outbreaks. Compared with non-heatwave years, dengue outbreaks in heatwave years had higher number of dengue cases. Heatwave weather may represent an emerging risk factor or predicator of dengue outbreaks in tropical regions. Future dengue prediction models incorporating heatwaves may help increase the accuracy of predictability.
Collapse
Affiliation(s)
- Jian Cheng
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Hilary Bambrick
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gregor Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Francesca D. Frentiu
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Do Thi Thanh Toan
- Institute of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Pham Quang Thai
- Institute of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
- Communicable Disease Control Department, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- * E-mail:
| |
Collapse
|
24
|
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS. Scientists' warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019; 17:569-586. [PMID: 31213707 PMCID: PMC7136171 DOI: 10.1038/s41579-019-0222-5] [Citation(s) in RCA: 736] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 11/27/2022]
Abstract
In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial 'unseen majority'. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Antje Boetius
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Aimée T Classen
- Rubenstein School of Environment and Natural Resources, and The Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | | | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Christine M Foreman
- Center for Biofilm Engineering, and Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - David A Hutchins
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science & Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David S Reay
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Virginia I Rich
- Microbiology Department, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, and Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew B Sullivan
- Department of Microbiology, and Department of Civil, Environmental and Geodetic Engineering, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric A Webb
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Silva-Caso W, Espinoza-Espíritu W, Espejo-Evaristo J, Carrillo-Ng H, Aguilar-Luis MA, Stimmler L, Del Valle-Mendoza J. Geographical distribution, evaluation of risk of dengue and its relationship with the El Niño Southern Oscillation in an endemic region of Peru between 2004 and 2015. BMC Res Notes 2019; 12:498. [PMID: 31409399 PMCID: PMC6692953 DOI: 10.1186/s13104-019-4537-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective To determine the geographical distribution and risk stratification of dengue infection in an endemic region of Peru, and its relationship with the presence of El Niño Southern Oscillation (ENSO). Results For the analysis, the definition and information about the ENSO events in Peru was obtained from the SENAMHI and IGP reports. The geographical distribution of dengue cases in the territory comprising the 11 districts is homogeneous. There were 1 498 confirmed cases of dengue reported, the highest incidence was determined in Puerto Inca where it reached an incidence of 3210.14/100,000 hab. Of the 11 districts, 2 were classified as a high risk of transmission, 3 as moderate risk, 3 as low risk and in 3 of them the risk of virus transmission could not be determined. Electronic supplementary material The online version of this article (10.1186/s13104-019-4537-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wilmer Silva-Caso
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru. .,Centro de Salud Las Palmas - Red de Salud Leoncio Prado - Ministerio de Salud, Huanuco, Peru.
| | - Walter Espinoza-Espíritu
- Puesto de Salud Tambillo Grande, Red de Salud Leoncio Prado, Ministerio de Salud, Tingo María, Peru.,Instituto Superior Tecnológico Público Naranjillo, Tingo María, Peru
| | - Jaquelin Espejo-Evaristo
- Salud Pública y Gestión Sanitaria, Universidad Nacional Hermilio Valdizán, Huanuco, Peru.,Puesto de Salud Alto San Juan de Tulumayo - Red de Salud Leoncio Prado - Ministerio de Salud, Huanuco, Peru
| | | | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Instituto de Investigación Nutricional, Lima, Peru
| | | | - Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Centre of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru. .,Instituto de Investigación Nutricional, Lima, Peru.
| |
Collapse
|
26
|
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis 2019; 13:e0007213. [PMID: 30921321 PMCID: PMC6438455 DOI: 10.1371/journal.pntd.0007213] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
Collapse
Affiliation(s)
- Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Colin J. Carlson
- Department of Biology, Georgetown University, Washington, DC, United States of America
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Leah R. Johnson
- Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|