1
|
He F, Svenning JC, Chen X, Tockner K, Kuemmerle T, le Roux E, Moleón M, Gessner J, Jähnig SC. Freshwater megafauna shape ecosystems and facilitate restoration. Biol Rev Camb Philos Soc 2024; 99:1141-1163. [PMID: 38411930 DOI: 10.1111/brv.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Freshwater megafauna, such as sturgeons, giant catfishes, river dolphins, hippopotami, crocodylians, large turtles, and giant salamanders, have experienced severe population declines and range contractions worldwide. Although there is an increasing number of studies investigating the causes of megafauna losses in fresh waters, little attention has been paid to synthesising the impacts of megafauna on the abiotic environment and other organisms in freshwater ecosystems, and hence the consequences of losing these species. This limited understanding may impede the development of policies and actions for their conservation and restoration. In this review, we synthesise how megafauna shape ecological processes in freshwater ecosystems and discuss their potential for enhancing ecosystem restoration. Through activities such as movement, burrowing, and dam and nest building, megafauna have a profound influence on the extent of water bodies, flow dynamics, and the physical structure of shorelines and substrata, increasing habitat heterogeneity. They enhance nutrient cycling within fresh waters, and cross-ecosystem flows of material, through foraging and reproduction activities. Freshwater megafauna are highly connected to other freshwater organisms via direct consumption of species at different trophic levels, indirect trophic cascades, and through their influence on habitat structure. The literature documenting the ecological impacts of freshwater megafauna is not evenly distributed among species, regions, and types of ecological impacts, with a lack of quantitative evidence for large fish, crocodylians, and turtles in the Global South and their impacts on nutrient flows and food-web structure. In addition, population decline, range contraction, and the loss of large individuals have reduced the extent and magnitude of megafaunal impacts in freshwater ecosystems, rendering a posteriori evaluation more difficult. We propose that reinstating freshwater megafauna populations holds the potential for restoring key ecological processes such as disturbances, trophic cascades, and species dispersal, which will, in turn, promote overall biodiversity and enhance nature's contributions to people. Challenges for restoration actions include the shifting baseline syndrome, potential human-megafauna competition for habitats and resources, damage to property, and risk to human life. The current lack of historical baselines for natural distributions and population sizes of freshwater megafauna, their life history, trophic interactions with other freshwater species, and interactions with humans necessitates further investigation. Addressing these knowledge gaps will improve our understanding of the ecological roles of freshwater megafauna and support their full potential for facilitating the development of effective conservation and restoration strategies to achieve the coexistence of humans and megafauna.
Collapse
Affiliation(s)
- Fengzhi He
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, Changchun, 130102, China
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Xing Chen
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Klement Tockner
- Senckenberg Society for Nature Research, Senckenberganlage 25, Frankfurt am Main, 60325, Germany
- Faculty for Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main, 60438, Germany
| | - Tobias Kuemmerle
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade 114, Aarhus, 8000, Denmark
| | - Marcos Moleón
- Department of Zoology, University of Granada, Avenida de Fuente Nueva S/N, Granada, 18071, Spain
| | - Jörn Gessner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| |
Collapse
|
2
|
Pereyra PER, Hallwass G, Begossi A, Giacomin LL, Silvano RAM. Fishers' Knowledge Reveals Ecological Interactions Between Fish and Plants in High Diverse Tropical Rivers. Ecosystems 2023. [DOI: 10.1007/s10021-023-00818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Lustosa do Carmo TL, Moraes de Lima MC, de Vasconcelos Lima JL, Silva de Souza S, Val AL. Tissue distribution of appetite regulation genes and their expression in the Amazon fish Colossoma macropomum exposed to climate change scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158729. [PMID: 36116666 DOI: 10.1016/j.scitotenv.2022.158729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Climate change leads to an increase in water acidification and temperature, two environmental factors that can change fish appetite and metabolism, affecting fish population in both wild and aquaculture facilities. Therefore, our study tested if climate change affects gene expression levels of two appetite-regulating peptides - Neuropeptide Y (NPY) and Cholecystokinin (CCK) - in the brain of tambaqui, Colossoma macropomum. Additionally, we show the distribution of these genes throughout the body. Amino acid sequences of CCK and NPY of tambaqui showed high similarity with other Characiformes, with the closely related order Cypriniformes, and even with the more distantly related order Salmoniformes. High apparent levels of both peptides were expressed in all brain areas, while expression levels varied for peripheral tissues. NPY and CCK mRNA were detected in all peripheral tissues but cephalic kidney for CCK. As for the effects of climate change, we found that fish exposed to extreme climate scenario (800 ppm CO2 and 4.5 °C above current climate scenario) had higher expression levels of NPY and lower expression levels of CCK in the telencephalon. The extreme climate scenario also increased food intake, weight gain, and body length. These results suggest that the telencephalon is probably responsible for sensing the metabolic status of the organism and controlling feeding behavior through NPY, likely an orexigenic hormone, and CCK, which may act as an anorexigenic hormone. To our knowledge, this is the first study showing the effects of climate change on the endocrine regulation of appetite in an endemic and economically important fish from the Amazon. Our results can help us predict the impact of climate change on both wild and farmed fish populations, thus contributing to the elaboration of future policies regarding their conservation and sustainable use.
Collapse
Affiliation(s)
- Talita Laurie Lustosa do Carmo
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Amazonas, Brazil.
| | - Mayara Cristina Moraes de Lima
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Amazonas, Brazil
| | - José Luiz de Vasconcelos Lima
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Amazonas, Brazil
| | - Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Amazonas, Brazil
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Amazonas, Brazil
| |
Collapse
|
4
|
Donoso I, Fricke EC, Hervías-Parejo S, Rogers HS, Traveset A. Drivers of Ecological and Evolutionary Disruptions in the Seed Dispersal Process: Research Trends and Biases. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.794481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As the sole opportunity for most plants to move, seed dispersal influences the biodiversity and functioning of plant communities. Global change drivers have the potential to disrupt seed dispersal processes, affecting plant communities and ecosystem functions. Even though much information is available on the effects of seed dispersal disruption (SDD), we still lack a comprehensive understanding of its main causes at a global scale, as well as the potential knowledge gaps derived from research biases. Here we present a systematic review of biotic and abiotic SDDs to ascertain the global change drivers addressed, dispersal modes impacted, plant processes affected, and spatial focus of existing research on this topic up-to-date. Although there are many modes of dispersal and global change drivers in temperate and tropical ecosystems worldwide, research efforts have predominantly addressed the effect of alien species for biotic seed dispersal in temperate systems and oceanic islands as well as how defaunation of bird or mammal dispersers has affected seed removal in the Neotropics. SDD studies were also biased toward forest ecosystems, with few in shrublands or grasslands. Finally, the effects of climate change, ecological consequences at the whole community level, and evolutionary changes were largely unrepresented in SDD studies. These trends are likely due to a combination of true geographic and ecological patterns in seed dispersal and global change and bias in research focus. We conclude that increased research investment in the less-studied systems and a better understanding of potential synergies and feedback between multiple global change drivers will be important to forecast the threats to plant biodiversity and those ecosystem functions derived from seed dispersal in the Anthropocene.
Collapse
|
5
|
Araujo JM, Correa SB, Penha J, Anderson J, Traveset A. Implications of overfishing of frugivorous fishes for cryptic function loss in a Neotropical floodplain. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Joisiane Mendes Araujo
- Programa de Pós‐Graduação em Ecologia e Conservação da Biodiversidade Instituto de Biociências Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Sandra Bibiana Correa
- Department of Wildlife, Fisheries and Aquaculture Mississippi State University Starkville MS USA
| | - Jerry Penha
- Centro de Biodiversidade Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Jill Anderson
- Department of Genetics, and Odum School of Ecology University of Georgia Athens GA USA
| | - Anna Traveset
- Mediterranean Institute of Advanced Studies (CSIC‐UIB)Terrestrial Ecology Group Mallorca Balearic Islands Spain
| |
Collapse
|
6
|
Tregidgo D, Parry L, Barlow J, Pompeu PS. Urban market amplifies strong species selectivity in Amazonian artisanal fisheries. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Despite Amazonia possessing the highest freshwater biodiversity on Earth, urban landing data show how huge fishing pressure is placed on only a dozen species. However, truly characterising the fishery and understanding the drivers of species selectivity is challenging, given the neglect of artisanal fishing activity, who may catch most of the Amazon’s fish. We register the catch of 824 fishing trips by interviewing artisanal fishers in their rural riverside communities. We use these data to characterise the artisanal fishery of the Rio Purus, the main fish source sub-system for the Amazon’s largest city (Manaus), and investigate the factors determining catch composition. Fishers caught 80 fish species, yet just four species made up over half of the harvested biomass. Urban markets appear to drive greater selectivity, with a significantly lower species diversity in commercial compared to subsistence catches. Fish catch composition varied significantly both seasonally and with geographical remoteness from Manaus. The spatial turnover in catch composition appears to be driven by urban access, with more commercially important species dominating where Manaus-based fish-buyers frequent. Our data may partially explain observed overfishing in some commercially important species, particularly as most Amazonians now live in urban areas.
Collapse
Affiliation(s)
- Daniel Tregidgo
- Universidade Federal de Lavras (UFLA), Brazil; Lancaster University, United Kingdom; Instituto de Desenvolvimento Sustentável Mamirauá, Brazil
| | - Luke Parry
- Lancaster University, United Kingdom; Universidade Federal do Pará (UFPA), Brazil
| | - Jos Barlow
- Universidade Federal de Lavras (UFLA), Brazil; Lancaster University, United Kingdom
| | | |
Collapse
|
7
|
Acevedo-Quintero JF, Saldaña-Vázquez RA, Mendoza E, Zamora-Abrego JG. Sampling bias affects the relationship between structural importance and species body mass in frugivore-plant interaction networks. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Sorensen MC, Donoso I, Neuschulz EL, Schleuning M, Mueller T. Community‐wide seed dispersal distances peak at low levels of specialisation in size‐structured networks. OIKOS 2020. [DOI: 10.1111/oik.07337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marjorie C. Sorensen
- Senckenberg Biodiversity and Climate Research Centre Frankfurt Germany
- Dept of Integrative Biology, Univ. of Guelph Guelph ON Canada
| | - Isabel Donoso
- Senckenberg Biodiversity and Climate Research Centre Frankfurt Germany
| | | | | | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre Frankfurt Germany
- Dept of Biological Sciences, Goethe Univ. Frankfurt Frankfurt Germany
| |
Collapse
|
9
|
He F, Zarfl C, Bremerich V, David JNW, Hogan Z, Kalinkat G, Tockner K, Jähnig SC. The global decline of freshwater megafauna. GLOBAL CHANGE BIOLOGY 2019; 25:3883-3892. [PMID: 31393076 DOI: 10.1111/gcb.14753] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/05/2019] [Indexed: 05/12/2023]
Abstract
Freshwater ecosystems are among the most diverse and dynamic ecosystems on Earth. At the same time, they are among the most threatened ecosystems but remain underrepresented in biodiversity research and conservation efforts. The rate of decline of vertebrate populations is much higher in freshwaters than in terrestrial or marine realms. Freshwater megafauna (i.e., freshwater animals that can reach a body mass ≥30 kg) are intrinsically prone to extinction due to their large body size, complex habitat requirements and slow life-history strategies such as long life span and late maturity. However, population trends and distribution changes of freshwater megafauna, at continental or global scales, remain unclear. In the present study, we compiled population data of 126 freshwater megafauna species globally from the Living Planet Database and available literature, and distribution data of 44 species inhabiting Europe and the United States from literature and databases of the International Union for Conservation of Nature and NatureServe. We quantified changes in population abundance and distribution range of freshwater megafauna species. Globally, freshwater megafauna populations declined by 88% from 1970 to 2012, with the highest declines in the Indomalaya and Palearctic realms (-99% and -97%, respectively). Among taxonomic groups, mega-fishes exhibited the greatest global decline (-94%). In addition, freshwater megafauna experienced major range contractions. For example, distribution ranges of 42% of all freshwater megafauna species in Europe contracted by more than 40% of historical areas. We highlight the various sources of uncertainty in tracking changes in populations and distributions of freshwater megafauna, such as the lack of monitoring data and taxonomic and spatial biases. The detected trends emphasize the critical plight of freshwater megafauna globally and highlight the broader need for concerted, targeted and timely conservation of freshwater biodiversity.
Collapse
Affiliation(s)
- Fengzhi He
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- School of Geography, Queen Mary University of London, London, UK
| | - Christiane Zarfl
- Center for Applied Geosciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Vanessa Bremerich
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Jonathan N W David
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Zeb Hogan
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Gregor Kalinkat
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Klement Tockner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Austrian Science Fund (FWF), Vienna, Austria
| | - Sonja C Jähnig
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
10
|
Costa-Pereira R, Pruitt J. Behaviour, morphology and microhabitat use: what drives individual niche variation? Biol Lett 2019; 15:20190266. [PMID: 31164064 PMCID: PMC6597513 DOI: 10.1098/rsbl.2019.0266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/14/2019] [Indexed: 01/21/2023] Open
Abstract
Generalist populations are often composed of individuals each specialized on only a subset of the resources exploited by the entire population. However, the traits underlying such niche variation remain underexplored. Classically, ecologists have focused on understanding why populations vary in their degree of intraspecific niche variation, with less attention paid to how individual-level traits lead to intraspecific differences in niches. We investigated how differences in behaviour, morphology and microhabitat affect niche variation between and within individuals in two species of spider Anelosimus studiosus and Theridion murarium. Our results convey that behaviour (i.e. individual aggressiveness) was a key driver of intraspecific trophic variation in both species. More aggressive individuals capture more prey, but particularly more Coleoptera, Hymenoptera and Diptera. These findings suggest that behavioural traits play a critical role in determining individuals' diet and that behaviour can be a powerful force in driving intraspecific niche variation.
Collapse
Affiliation(s)
- Raul Costa-Pereira
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| | | |
Collapse
|
11
|
Brodie JF, Redford KH, Doak DF. Ecological Function Analysis: Incorporating Species Roles into Conservation. Trends Ecol Evol 2018; 33:840-850. [PMID: 30292431 DOI: 10.1016/j.tree.2018.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Effective conservation strategies must ensure that species remain not just extant, but able to maintain key roles in species interactions and in the maintenance of communities and ecosystems. Such ecological functions, however, have not been well incorporated into management or policy. We present a framework for quantifying ecological function that is complementary to population viability analysis (PVA) and that allows function to be integrated into strategic planning processes. Ecological function analysis (EFA) focuses on preventing secondary extinctions and maintaining ecosystem structure, biogeochemical processes, and resiliency. EFA can use a range of modeling approaches and, because most species interactions are relatively weak, EFA needs to be performed for relatively few species or functions, making it a realistic way to improve conservation management.
Collapse
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences, University of Montana, Missoula, MT 59802, USA; Wildlife Biology Program, University of Montana, Missoula, MT 59802, USA.
| | - Kent H Redford
- Archipelago Consulting, Portland, ME 04112, USA; Department of Environmental Studies, University of New England, Biddeford, ME 04005, USA; Environmental Futures Research Institute, Griffith University, Brisbane 4222, Australia
| | - Daniel F Doak
- Environmental Studies Program, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
12
|
Costa-Pereira R, Rudolf VHW, Souza FL, Araújo MS. Drivers of individual niche variation in coexisting species. J Anim Ecol 2018; 87:1452-1464. [DOI: 10.1111/1365-2656.12879] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Raul Costa-Pereira
- Instituto de Biociências; Universidade Estadual Paulista (UNESP); Rio Claro SP Brazil
- Programa de Pós-Graduação em Ecologia e Biodiversidade; UNESP; Rio Claro SP Brazil
- BioSciences; Rice University; Houston Texas
| | | | - Franco L. Souza
- Instituto de Biociências; Universidade Federal de Mato Grosso do Sul; Campo Grande MS Brazil
| | - Márcio S. Araújo
- Instituto de Biociências; Universidade Estadual Paulista (UNESP); Rio Claro SP Brazil
| |
Collapse
|