1
|
Pamela BE, Thamizhmaran S, Jackson E, Vasudevan P, Moorthy RK, Manoj J, Thanigachalam A, Drevets DA, Carabin H, Oommen A, Rajshekhar V. Serum Proteomic Predictors of Calcification of Solitary Cysticercus Granuloma. Am J Trop Med Hyg 2024; 111:1015-1019. [PMID: 39255805 PMCID: PMC11542509 DOI: 10.4269/ajtmh.24-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 09/12/2024] Open
Abstract
Solitary cysticercus granulomas (SCG), prevalent among Indian patients with new-onset seizures, either resolve completely or transform into calcified granulomas. This study aimed to identify serum proteins through liquid chromatography-tandem mass spectrometry that could predict calcification of SCGs in 20 patients with SCG with at least 6-months of follow-up. At a median follow-up of 14 months, the SCG had calcified (n = 5), resolved (n = 11), or persisted (n = 4). Two serum proteins, ECM1 and MST1, were present in significantly higher serum concentrations, and AZGP1 in significantly lower concentration in subjects with calcifying SCGs than in those with lesions that resolved or persisted. On multivariate analysis, only ECM1 (odds ratio: 1.7, 95% CI: 0-2.8) and MST1 (odds ratio: 3.3, 95% CI: 0-4.1) were independent predictors of calcification of SCG. Combining elevated levels of serum ECM1 and MST1 had a sensitivity of 100% and specificity of 100% in differentiating granulomas that calcified from those that resolved/persisted. Increased expression of serum ECM1 and MST1 in patients with SCG might predict calcification.
Collapse
Affiliation(s)
| | - Subashini Thamizhmaran
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Elias Jackson
- Department of Pathology and Microbiology, University of Montreal, Canada
| | - Prabhakaran Vasudevan
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ranjith K. Moorthy
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Josephin Manoj
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anupriya Thanigachalam
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Douglas A. Drevets
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hélène Carabin
- Department of Pathology and Microbiology, University of Montreal, Canada
- Department of Social and Preventive Medicine, University of Montreal, Canada
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Centre, Oklahoma City, Oklahoma
- Centre de Recherche en Santé Publique (CReSP), Quebec, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Saint-Hyacinthe, Canada
| | - Anna Oommen
- Gudalur Adivasi Hospital, Gudalur, Tamil Nadu, India
| | - Vedantam Rajshekhar
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Zhao J, Liu H, Chen Q, Xia M, Wan L, Yu W, Liu C, Hao X, Tang C, Chen G, Liu Y, Yuan F, Liu H. Mechanistic study of celastrol-mediated inhibition of proinflammatory activation of macrophages in IgA nephropathy via down-regulating ECM1. Int J Biol Sci 2024; 20:5731-5746. [PMID: 39494325 PMCID: PMC11528456 DOI: 10.7150/ijbs.99738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Increasing evidence suggests that the mononuclear/macrophage system is vital in amplifying the inflammatory cascade in IgA Nephropathy (IgAN). However, the pathogenic mechanism of macrophages in IgAN and targeted treatment strategies still need to be explored. This study found that botanical triterpene celastrol (CLT) effectively alleviated renal lesions, M1-like macrophage infiltration, inflammatory factors production, and improved renal function in IgAN mice. We found that the renal macrophages of IgAN patients had high expression of ECM1, a crucial molecule involved in macrophage inflammatory polarization, positively correlated with the IgAN clinical severity. In murine macrophage Raw 264.7 cells, CLT inhibited macrophage M1-like polarization and the output of TNF-α and IL-6 by downregulating the ECM1/STAT5 pathway. Mechanistically, molecular docking, CESTA, and immunoprecipitation verified that CLT directly bound to ECM1 and increased the ubiquitination of ECM1. Collectively, these results illustrated that CLT inhibited proinflammatory macrophage in IgAN by directly targeting ECM1 to promote ubiquitination degradation of ECM1. Therefore, this study may provide a theoretical basis for exploring the pathogenesis of IgAN and identifying new perspectives for targeted therapy of IgAN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fang Yuan
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Chagas ACS, Ribeiro DM, Osório H, Abreu AAP, Okino CH, Niciura SCM, Amarante AFT, Bello HJS, Melito GR, Esteves SN, Almeida AM. Molecular signatures of Haemonchus contortus infection in sheep: A comparative serum proteomic study on susceptible and resistant sheep breeds. Vet Parasitol 2024; 331:110280. [PMID: 39116550 DOI: 10.1016/j.vetpar.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Due to the negative impact of Haemonchus contortus in the tropics and subtropics, the detection of serum protein profiles that occur in infected sheep is of high relevance for targeted selective treatment strategies (TST). Herein, we integrated proteomics with phenotypic traits to elucidate physiological mechanisms associated to H. contortus infection in susceptible (Dorper - D) and resistant (Santa Inês - S) sheep breeds. Naïve female lambs were infected with H. contortus third-stage larvae on day zero (D0), and samples were collected weekly, for 28 days. Feces were used for individual fecal egg counts (FEC) blood for packed cell volume (PCV) and serum for specific antibody quantification through ELISA. Sera was collected on D0 (-) and D21 (+), and analyzed using a LC-MS/MS based proteomics approach. FEC, PCV, and anti-H. contortus antibody levels confirmed the absence of infection on D0. On D28 there was a significant difference between the two breeds for logFEC means (D = 3774 and S = 3141, p=0.033) and PCV means (D = 16.3 % and S = 24.3 %, p=0.038). From a total of 754 proteins identified, 68 differentially abundant proteins (DAPs) were noted. Phosphopyruvate hydratase (ENO3) was a DAP in all comparisons, while S+ vs D+ and S- vs D- shared the highest number of DAPs (8). Each of the four experimental groups clustered separately in a principal component analysis (PCA) of protein profile. Among the DAPs, proteins associated with the innate and adaptive immune system were detected when comparing S- vs D- and S+ vs D+. In D-, some proteins were linked to stress response to handling, sampling and heat. Focusing on the consequences of infection in each breed, in the D+ vs D- comparison, upregulated proteins were associated with inflammation control and immune response, where downregulated proteins pointed to a negative impact of infection on tissue anabolism, compromising muscle growth and fat deposition. In the S+ vs S- comparison, upregulated proteins were related to immune response, while the downregulated proteins were possibly linked to muscular development and growth, impaired by infection. Collectively, it can be concluded that ENO3 regulation emerges as a potential factor underlying the differential immune response observed between Santa Inês and Dorper sheep infected with H. contortus. In turn, detected acute phase proteins (APPs) reinforce their relation with infection, inflammation and stress conditions, whereas THEMIS-like may contribute to the immune system in Dorper. GSDMD, Guanylate-binding protein and ACAN warrant further investigation as possible biomarkers for TST strategy development.
Collapse
Affiliation(s)
- Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil.
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana A P Abreu
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cintia H Okino
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Simone C M Niciura
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | | | - Hornblenda J S Bello
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Gláucia R Melito
- Centro Universitário Central Paulista (UNICEP), São Carlos, SP, Brazil
| | - Sérgio N Esteves
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Cheng Q, Yang X, Zou T, Sun L, Zhang X, Deng L, Wu M, Gai W, Jiang H, Guo T, Lu Y, Dong J, Niu C, Pan W, Zhang J. RACK1 enhances STAT3 stability and promotes T follicular helper cell development and function during blood-stage Plasmodium infection in mice. PLoS Pathog 2024; 20:e1012352. [PMID: 39024388 PMCID: PMC11288429 DOI: 10.1371/journal.ppat.1012352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/30/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.
Collapse
Affiliation(s)
- Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Sun
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mengyao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenbin Gai
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tingting Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuchen Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Weiqing Pan
- Department of Tropical Diseases, Navy Medical University, Shanghai, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
5
|
Lu J, Zhou H, Chen Y, Xia X, Yang J, Ma J, Tian J, Wang S. Tfh cell-derived small extracellular vesicles exacerbate the severity of collagen-induced arthritis by enhancing B-cell responses. J Autoimmun 2024; 146:103235. [PMID: 38696926 DOI: 10.1016/j.jaut.2024.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuxuan Chen
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Johnston KJA, Cote AC, Hicks E, Johnson J, Huckins LM. Genetically Regulated Gene Expression in the Brain Associated With Chronic Pain: Relationships With Clinical Traits and Potential for Drug Repurposing. Biol Psychiatry 2024; 95:745-761. [PMID: 37678542 PMCID: PMC10924073 DOI: 10.1016/j.biopsych.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Chronic pain is a common, poorly understood condition. Genetic studies including genome-wide association studies have identified many relevant variants, which have yet to be translated into full understanding of chronic pain. Transcriptome-wide association studies using transcriptomic imputation methods such as S-PrediXcan can help bridge this genotype-phenotype gap. METHODS We carried out transcriptomic imputation using S-PrediXcan to identify genetically regulated gene expression associated with multisite chronic pain in 13 brain tissues and whole blood. Then, we imputed genetically regulated gene expression for over 31,000 Mount Sinai BioMe participants and performed a phenome-wide association study to investigate clinical relationships in chronic pain-associated gene expression changes. RESULTS We identified 95 experiment-wide significant gene-tissue associations (p < 7.97 × 10-7), including 36 unique genes and an additional 134 gene-tissue associations reaching within-tissue significance, including 53 additional unique genes. Of the 89 unique genes in total, 59 were novel for multisite chronic pain and 18 are established drug targets. Chronic pain genetically regulated gene expression for 10 unique genes was significantly associated with cardiac dysrhythmia, metabolic syndrome, disc disorders/dorsopathies, joint/ligament sprain, anemias, and neurologic disorder phecodes. Phenome-wide association study analyses adjusting for mean pain score showed that associations were not driven by mean pain score. CONCLUSIONS We carried out the largest transcriptomic imputation study of any chronic pain trait to date. Results highlight potential causal genes in chronic pain development and tissue and direction of effect. Several gene results were also drug targets. Phenome-wide association study results showed significant associations for phecodes including cardiac dysrhythmia and metabolic syndrome, thereby indicating potential shared mechanisms.
Collapse
Affiliation(s)
- Keira J A Johnston
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Alanna C Cote
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily Hicks
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Johnson
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura M Huckins
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
7
|
Urbiola-Salvador V, Lima de Souza S, Macur K, Czaplewska P, Chen Z. Plasma Proteomics Elucidated a Protein Signature in COVID-19 Patients with Comorbidities and Early-Diagnosis Biomarkers. Biomedicines 2024; 12:840. [PMID: 38672194 PMCID: PMC11048573 DOI: 10.3390/biomedicines12040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Despite great scientific efforts, deep understanding of coronavirus-19 disease (COVID-19) immunopathology and clinical biomarkers remains a challenge. Pre-existing comorbidities increase the mortality rate and aggravate the exacerbated immune response against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, which can result in more severe symptoms as well as long-COVID and post-COVID complications. In this study, we applied proteomics analysis of plasma samples from 28 patients with SARS-CoV-2, with and without pre-existing comorbidities, as well as their corresponding controls to determine the systemic protein changes caused by the SARS-CoV-2 infection. As a result, the protein signature shared amongst COVID-19 patients with comorbidities was revealed to be characterized by alterations in the coagulation and complement pathways, acute-phase response proteins, tissue damage and remodeling, as well as cholesterol metabolism. These altered proteins may play a relevant role in COVID-19 pathophysiology. Moreover, several novel potential biomarkers for early diagnosis of the SARS-CoV-2 infection were detected, such as increased levels of keratin K22E, extracellular matrix protein-1 (ECM1), and acute-phase response protein α-2-antiplasmin (A2AP). Importantly, elevated A2AP may contribute to persistent clotting complications associated with the long-COVID syndrome in patients with comorbidities. This study provides new insights into COVID-19 pathogenesis and proposes novel potential biomarkers for early diagnosis that could be facilitated for clinical application by further validation studies.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Poland;
| | - Suiane Lima de Souza
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-309 Gdańsk, Poland; (K.M.); (P.C.)
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-309 Gdańsk, Poland; (K.M.); (P.C.)
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland;
| |
Collapse
|
8
|
Hardy SA, Liesinger L, Patrick R, Poettler M, Rech L, Gindlhuber J, Mabotuwana NS, Ashour D, Stangl V, Bigland M, Murtha LA, Starkey MR, Scherr D, Hansbro PM, Hoefler G, Campos Ramos G, Cochain C, Harvey RP, Birner-Gruenberger R, Boyle AJ, Rainer PP. Extracellular Matrix Protein-1 as a Mediator of Inflammation-Induced Fibrosis After Myocardial Infarction. JACC Basic Transl Sci 2023; 8:1539-1554. [PMID: 38205347 PMCID: PMC10774582 DOI: 10.1016/j.jacbts.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 01/12/2024]
Abstract
Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk.
Collapse
Affiliation(s)
- Sean A. Hardy
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Ralph Patrick
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Maria Poettler
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Nishani S. Mabotuwana
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - DiyaaEldin Ashour
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Verena Stangl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Mark Bigland
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lucy A. Murtha
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Malcolm R. Starkey
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Daniel Scherr
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine 1, University Hospital of Würzburg, Würzburg, Germany
| | - Clement Cochain
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Richard P. Harvey
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, Australia
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J. Boyle
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Peter P. Rainer
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Department of Medicine, St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| |
Collapse
|
9
|
Ju Y, Jin C, Chen S, Wang J, Li C, Wang X, Wang P, Yue L, Jiang X, Tuohetaerbaike B, Li Y, Sheng Y, Qimanguli W, Wang J, Chen F. Proteomic analyses of smear-positive/negative tuberculosis patients uncover differential antigen-presenting cell activation and lipid metabolism. Front Cell Infect Microbiol 2023; 13:1240516. [PMID: 37908762 PMCID: PMC10613889 DOI: 10.3389/fcimb.2023.1240516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tuberculosis (TB) remains a major global health concern, ranking as the second most lethal infectious disease following COVID-19. Smear-Negative Pulmonary Tuberculosis (SNPT) and Smear-Positive Pulmonary Tuberculosis (SPPT) are two common types of pulmonary tuberculosis characterized by distinct bacterial loads. To date, the precise molecular mechanisms underlying the differences between SNPT and SPPT patients remain unclear. In this study, we aimed to utilize proteomics analysis for identifying specific protein signatures in the plasma of SPPT and SNPT patients and further elucidate the molecular mechanisms contributing to different disease pathogenesis. Methods Plasma samples from 27 SPPT, 37 SNPT patients and 36 controls were collected and subjected to TMT-labeled quantitative proteomic analyses and targeted GC-MS-based lipidomic analysis. Ingenuity Pathway Analysis (IPA) was then performed to uncover enriched pathways and functionals of differentially expressed proteins. Results Proteomic analysis uncovered differential protein expression profiles among the SPPT, SNPT, and Ctrl groups, demonstrating dysfunctional immune response and metabolism in both SPPT and SNPT patients. Both groups exhibited activated innate immune responses and inhibited fatty acid metabolism, but SPPT patients displayed stronger innate immune activation and lipid metabolic inhibition compared to SNPT patients. Notably, our analysis uncovered activated antigen-presenting cells (APCs) in SNPT patients but inhibited APCs in SPPT patients, suggesting their critical role in determining different bacterial loads/phenotypes in SNPT and SPPT. Furthermore, some specific proteins were detected to be involved in the APC activation/acquired immune response, providing some promising therapeutic targets for TB. Conclusion Our study provides valuable insights into the differential molecular mechanisms underlying SNPT and SPPT, reveals the critical role of antigen-presenting cell activation in SNPT for effectively clearing the majority of Mtb in bodies, and shows the possibility of APC activation as a novel TB treatment strategy.
Collapse
Affiliation(s)
- Yingjiao Ju
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengji Jin
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shan Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jie Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaotong Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Peihan Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liya Yue
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaoyuan Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Bahetibieke Tuohetaerbaike
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Ying Li
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Yongjie Sheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wushou’er Qimanguli
- Department of Respiratory Medicine, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Fei Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Respiratory Department, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| |
Collapse
|
10
|
Gu W, Zhang J, Li Q, Zhang Y, Lin X, Wu B, Yin Q, Sun J, Lu Y, Sun X, Jia C, Li C, Zhang Y, Wang M, Yin X, Wang S, Xu J, Wang R, Zhu S, Cheng S, Chen S, Liu L, Zhu L, Yan C, Yi C, Li X, Lian Q, Lin G, Ling Z, Ma L, Zhou M, Xiao K, Wei H, Hu R, Zhou W, Ye L, Wang H, Li J, Sun B. The TRIM37 variants in Mulibrey nanism patients paralyze follicular helper T cell differentiation. Cell Discov 2023; 9:82. [PMID: 37528081 PMCID: PMC10394018 DOI: 10.1038/s41421-023-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 08/03/2023] Open
Abstract
The Mulibrey (Muscle-liver-brain-eye) nanism caused by loss-of-function variants in TRIM37 gene is an autosomal recessive disorder characterized by severe growth failure and constrictive pericarditis. These patients also suffer from severe respiratory infections, co-incident with an increased mortality rate. Here, we revealed that TRIM37 variants were associated with recurrent infection. Trim37 FINmajor (a representative variant of Mulibrey nanism patients) and Trim37 knockout mice were susceptible to influenza virus infection. These mice showed defects in follicular helper T (TFH) cell development and antibody production. The effects of Trim37 on TFH cell differentiation relied on its E3 ligase activity catalyzing the K27/29-linked polyubiquitination of Bcl6 and its MATH domain-mediated interactions with Bcl6, thereby protecting Bcl6 from proteasome-mediated degradation. Collectively, these findings highlight the importance of the Trim37-Bcl6 axis in controlling the development of TFH cells and the production of high-affinity antibodies, and further unveil the immunologic mechanism underlying recurrent respiratory infection in Mulibrey nanism.
Collapse
Affiliation(s)
- Wangpeng Gu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Xuan Lin
- Institute of Pasteur of Shanghai, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qi Yin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinqiao Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaoyu Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caiwei Jia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chuanyin Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- Institute of Pasteur of Shanghai, Shanghai, China
| | - Meng Wang
- Institute of Pasteur of Shanghai, Shanghai, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Su Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ran Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Songling Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuangfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lian Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenghua Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xuezhen Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoshi Lian
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guomei Lin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min Zhou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Kuanlin Xiao
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Haiming Wei
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ronggui Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
- Beijing Changping Laboratory, Beijing, China.
| | - Haikun Wang
- Institute of Pasteur of Shanghai, Shanghai, China.
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Lichen Sclerosus: A Current Landscape of Autoimmune and Genetic Interplay. Diagnostics (Basel) 2022; 12:diagnostics12123070. [PMID: 36553077 PMCID: PMC9777366 DOI: 10.3390/diagnostics12123070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Lichen sclerosus (LS) is an acquired chronic inflammatory dermatosis predominantly affecting the anogenital area with recalcitrant itching and soreness. Progressive or persistent LS may cause urinary and sexual disturbances and an increased risk of local skin malignancy with a prevalence of up to 11%. Investigations on lipoid proteinosis, an autosomal recessive genodermatosis caused by loss-of-function mutations in the extracellular matrix protein 1 (ECM1) gene, led to the discovery of a humoral autoimmune response to the identical molecule in LS, providing evidence for an autoimmune and genetic counterpart targeting ECM1. This paper provides an overview of the fundamental importance and current issue of better understanding the immunopathology attributed to ECM1 in LS. Furthermore, we highlight the pleiotropic action of ECM1 in homeostatic and structural maintenance of skin biology as well as in a variety of human disorders possibly associated with impaired or gained ECM1 function, including the inflammatory bowel disease ulcerative colitis, Th2 cell-dependent airway allergies, T-cell and B-cell activation, and the demyelinating central nervous system disease multiple sclerosis, to facilitate sharing the concept as a plausible therapeutic target of this attractive molecule.
Collapse
|
12
|
Braham MV, van Binnendijk RS, Buisman AMM, Mebius RE, de Wit J, van Els CA. A synthetic human 3D in vitro lymphoid model enhancing B-cell survival and functional differentiation. iScience 2022; 26:105741. [PMID: 36590159 PMCID: PMC9794978 DOI: 10.1016/j.isci.2022.105741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
To investigate B-cell differentiation and maturation occurring in the germinal center (GC) using in vitro culture systems, key factors and interactions of the GC reaction need to be accurately simulated. This study aims at improving in vitro GC simulation using 3D culture techniques. Human B-cells were incorporated into PEG-4MAL hydrogels, to create a synthetic extracellular matrix, supported by CD40L cells, human tonsil-derived lymphoid stromal cells, and cytokines. The differentiation and antibody production of CD19+B-cells was best supported in a 5.0%-PEG-4MAL, 2.0 mM-RGD-peptide composition. The 3D culture significantly increased plasmablast and plasma cell numbers as well as antibody production, with less B-cell death compared to 2D cultures. Class switching of naive CD19+IgD+B-cells toward IgG+ and IgA+B-cells was observed. The formation of large B-cell clusters indicates the formation of GC-like structures. In conclusion, a well-characterized and controllable hydrogel-based human 3D lymphoid model is presented that supports enhanced B-cell survival, proliferation, differentiation, and antibody production.
Collapse
Affiliation(s)
- Maaike V.J. Braham
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rob S. van Binnendijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Anne-Marie M. Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Reina E. Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands,Corresponding author
| | - Cécile A.C.M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands,Corresponding author
| |
Collapse
|
13
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
14
|
Ribeiro F, Perucha E, Graca L. T follicular cells: the regulators of germinal centre homeostasis. Immunol Lett 2022; 244:1-11. [DOI: 10.1016/j.imlet.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
15
|
Cui M, Xia Q, Zhang X, Yan W, Meng D, Xie S, Shen S, Jin H, Wang S. Development and Validation of a Tumor Mutation Burden-Related Immune Prognostic Signature for Ovarian Cancers. Front Genet 2022; 12:688207. [PMID: 35087563 PMCID: PMC8787320 DOI: 10.3389/fgene.2021.688207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC), one of the most common malignancies of the female reproductive system, is characterized by high incidence and poor prognosis. Tumor mutation burden (TMB), as an important biomarker that can represent the degree of tumor mutation, is emerging as a key indicator for predicting the efficacy of tumor immunotherapy. In our study, the gene expression profiles of OC were downloaded from TCGA and GEO databases. Subsequently, we analyzed the prognostic value of TMB in OC and found that a higher TMB score was significantly associated with a better prognosis (p = 0.004). According to the median score of TMB, 9 key TMB related immune prognostic genes were selected by LASSO regression for constructing a TMB associated immune risk score (TMB-IRS) signature, which can effectively predict the prognosis of OC patients (HR = 2.32, 95% CI = 1.68–3.32; AUC = 0.754). Interestingly, TMB-IRS is also closely related to the level of immune cell infiltration and immune checkpoint molecules (PD1, PD-L1, CTLA4, PD-L2) in OC. Furthermore, the nomogram combined with TMB-IRS and a variety of clinicopathological features can more comprehensively evaluate the prognosis of patients. In conclusion, we explored the relationship between TMB and prognosis and validated the TMB-IRS signature based on TMB score in an independent database (HR = 1.60, 95% CI = 1.13–2.27; AUC = 0.639), which may serve as a novel biomarker for predicting OC prognosis as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Mengjing Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hua Jin
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Kim MS, Park D, Lee S, Park S, Kim KE, Kim TS, Park HJ, Cho D. Erythroid Differentiation Regulator 1 Strengthens TCR Signaling by Enhancing PLCγ1 Signal Transduction Pathway. Int J Mol Sci 2022; 23:ijms23020844. [PMID: 35055028 PMCID: PMC8776247 DOI: 10.3390/ijms23020844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) has previously been reported to control thymocyte selection via TCR signal regulation, but the effect of Erdr1 as a TCR signaling modulator was not studied in peripheral T cells. In this report, it was determined whether Erdr1 affected TCR signaling strength in CD4 T cells. Results revealed that Erdr1 significantly enhanced the anti-TCR antibody-mediated activation and proliferation of T cells while failing to activate T cells in the absence of TCR stimulation. In addition, Erdr1 amplified Ca2+ influx and the phosphorylation of PLCγ1 in CD4 T cells with the TCR stimuli. Furthermore, NFAT1 translocation into nuclei in CD4 T cells was also significantly promoted by Erdr1 in the presence of TCR stimulation. Taken together, our results indicate that Erdr1 positively modulates TCR signaling strength via enhancing the PLCγ1/Ca2+/NFAT1 signal transduction pathway.
Collapse
Affiliation(s)
- Myun Soo Kim
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Dongmin Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Sora Lee
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Sunyoung Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women’s University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul 04310, Korea;
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul 02841, Korea;
| | - Hyun Jeong Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
| | - Daeho Cho
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (D.P.); (S.L.); (S.P.); (H.J.P.)
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-3290-3739; Fax: +82-2-928-8273
| |
Collapse
|
17
|
Chevreau R, Ghazale H, Ripoll C, Chalfouh C, Delarue Q, Hemonnot-Girard AL, Mamaeva D, Hirbec H, Rothhut B, Wahane S, Perrin FE, Noristani HN, Guerout N, Hugnot JP. RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate. Cells 2021; 10:cells10123332. [PMID: 34943841 PMCID: PMC8699053 DOI: 10.3390/cells10123332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr—the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.
Collapse
Affiliation(s)
- Robert Chevreau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Hussein Ghazale
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chaima Chalfouh
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Quentin Delarue
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Anne Laure Hemonnot-Girard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Daria Mamaeva
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, 34295 Montpellier, France;
| | - Helene Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Bernard Rothhut
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Shalaka Wahane
- Departments of Neurobiology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Florence Evelyne Perrin
- Department of Biology, University of Montpellier, INSERM MMDN, EPHE, 34295 Montpellier, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Nicolas Guerout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Jean Philippe Hugnot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
- Correspondence:
| |
Collapse
|
18
|
Oliveira YLDC, Oliveira LM, Cirilo TM, Fujiwara RT, Bueno LL, Dolabella SS. T follicular helper cells: Their development and importance in the context of helminthiasis. Clin Immunol 2021; 231:108844. [PMID: 34478881 DOI: 10.1016/j.clim.2021.108844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
The development of T follicular helper cells (Tfh) is a multifactorial process that occurs in multiple stages. After their activation the Tfh cells interact with the B cells to complete their differentiation. During this process, the Tfh cells begin to express canonical molecules such as the transcription factor B-cell lymphoma 6 protein, the CXC chemokine receptors type 5, and the inducible T-cell costimulator, as well as secreting other molecules such as IL-21. This whole process is regulated positively and negatively by several factors so that the best response is offered in the face of diseases of various origins, among them helminthiasis. In this context, the role of circulating Tfh, IL-4 and IgG subtypes is essential for an effective response against these pathogens. In this review, the migration process and the differentiation of Tfh, the regulation, their cell subtypes and the role of Tfh in the context of helminth infections will be addressed.
Collapse
Affiliation(s)
| | - Luciana Maria Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Tatyane Martins Cirilo
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Ricardo Toshio Fujiwara
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil; Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Lilian Lacerda Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Silvio Santana Dolabella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brazil.
| |
Collapse
|
19
|
Li J, Li L, Sun X, Deng T, Huang G, Li X, Xie Z, Zhou Z. Role of Tet2 in Regulating Adaptive and Innate Immunity. Front Cell Dev Biol 2021; 9:665897. [PMID: 34222235 PMCID: PMC8247589 DOI: 10.3389/fcell.2021.665897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulated evidence indicates that epigenetic modifications play central roles in gene expression regulation and participate in developing many autoimmune and autoinflammatory diseases. Mechanistically, epigenetic modifications act as a bridge between environmental and cellular factors and susceptibility genes. DNA methylation is a critical epigenetic modification that is regulated by ten-eleven translocation (TET) enzymes. Accumulating evidence has revealed that TET family proteins function as gene regulators and antitumor drug targets mainly because of their ability to oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Recently, the effect of Tet2, an essential TET protein, on the development of autoimmune diseases has been explored. In this review, we summarize the current understanding of Tet2 in immune response regulation, clarify the mechanisms of Tet2 in B and T cell differentiation and function, and discuss the opposing effects of Tet2 on inflammatory gene expression in the immune system to provide new potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lifang Li
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
20
|
Schroeder AR, Zhu F, Hu H. Stepwise Tfh cell differentiation revisited: new advances and long-standing questions. Fac Rev 2021; 10. [PMID: 33644779 PMCID: PMC7894273 DOI: 10.12703/r/10-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells play an essential role in germinal center formation and the generation of high-affinity antibodies. Studies have proposed that Tfh cell differentiation is a multi-step process. However, it is still not fully understood how a subset of activated CD4+ T cells begin to express CXCR5 during the early stage of the response and, shortly after, how some CXCR5+ precursor Tfh (pre-Tfh) cells enter B cell follicles and differentiate further into germinal center Tfh (GC-Tfh) cells while others have a different fate. In this mini-review, we summarize the recent advances surrounding these two aspects of Tfh cell differentiation and discuss related long-standing questions, including Tfh memory.
Collapse
Affiliation(s)
- Andrew R Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fangming Zhu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Niclosamide suppresses the expansion of follicular helper T cells and alleviates disease severity in two murine models of lupus via STAT3. J Transl Med 2021; 19:86. [PMID: 33632240 PMCID: PMC7908700 DOI: 10.1186/s12967-021-02760-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Autoantibody production against endogenous cellular components is pathogenic feature of systemic lupus erythematosus (SLE). Follicular helper T (TFH) cells aid in B cell differentiation into autoantibody-producing plasma cells (PCs). The IL-6 and IL-21 cytokine-mediated STAT3 signaling are crucial for the differentiation to TFH cells. Niclosamide is an anti-helminthic drug used to treat parasitic infections but also exhibits a therapeutic effect on autoimmune diseases due to its potential immune regulatory effects. In this study, we examined whether niclosamide treatment could relieve lupus-like autoimmunity by modulating the differentiation of TFH cells in two murine models of lupus. Methods 10-week-old MRL/lpr mice were orally administered with 100 mg/kg of niclosamide or with 0.5% methylcellulose (MC, vehicle) daily for 7 weeks. TLR7 agonist, resiquimod was topically applied to an ear of 8-week-old C57BL/6 mice 3 times a week for 5 weeks. And they were orally administered with 100 mg/kg of niclosamide or with 0.5% MC daily for 5 weeks. Every mouse was analyzed for lupus nephritis, proteinuria, autoantibodies, immune complex, immune cell subsets at the time of the euthanization. Results Niclosamide treatment greatly improved proteinuria, anti-dsDNA antibody levels, immunoglobulin subclass titers, histology of lupus nephritis, and C3 deposition in MRL/lpr and R848-induced mice. In addition, niclosamide inhibited the proportion of TFH cells and PCs in the spleens of these animals, and effectively suppressed differentiation of TFH-like cells and expression of associated genes in vitro. Conclusions Niclosamide exerted therapeutic effects on murine lupus models by suppressing TFH cells and plasma cells through STAT3 inhibition. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02760-2.
Collapse
|
22
|
Zhou H, Wang L, Liu F. Immunological Impact of Intestinal T Cells on Metabolic Diseases. Front Immunol 2021; 12:639902. [PMID: 33679800 PMCID: PMC7930072 DOI: 10.3389/fimmu.2021.639902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence accumulated over the past several years has uncovered intestinal CD4+ T cells as an essential mediator in modulating intestinal immunity in health and diseases. It has also been increasingly recognized that dietary and microbiota-derived factors play key roles in shaping the intestinal CD4+ T-cell compartment. This review aims to discuss the current understanding on how the intestinal T cell immune responses are disturbed by obesity and metabolic stress. In addition, we review how these changes influence systemic metabolic homeostasis and the T-cell-mediated crosstalk between gut and liver or brain in the progression of obesity and its related diseases. Lastly, we highlight the potential roles of some drugs that target intestinal T cells as a therapeutic treatment for metabolic diseases. A better understanding of the interaction among metabolites, bacterial signals, and T cell immune responses in the gut and their roles in systemic inflammation in metabolic tissues should shed new light on the development of effective treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Haiyan Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liwen Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Cao Y, Dong L, He Y, Hu X, Hou Y, Dong Y, Yang Q, Bi Y, Liu G. The direct and indirect regulation of follicular T helper cell differentiation in inflammation and cancer. J Cell Physiol 2021; 236:5466-5480. [PMID: 33421124 DOI: 10.1002/jcp.30263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Follicular T helper (Tfh) cells play important roles in facilitating B-cell differentiation and inducing the antibody response in humoral immunity and immune-associated inflammatory diseases, including infections, autoimmune diseases, and cancers. However, Tfh cell differentiation is mainly achieved through self-directed differentiation regulation and the indirect regulation mechanism of antigen-presenting cells (APCs). During the direct intrinsic differentiation of naïve CD4+ T cells into Tfh cells, Bcl-6, as the characteristic transcription factor, plays the core role of transcriptional regulation. APCs indirectly drive Tfh cell differentiation mainly by changing cytokine secretion mechanisms. Altered metabolic signaling is also critically involved in Tfh cell differentiation. This review summarizes the recent progress in understanding the direct and indirect regulatory signals and metabolic mechanisms of Tfh cell differentiation and function in immune-associated diseases.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Xuelian Hu
- Immunochina Pharmaceuticals Co., Ltd., No. 80, Xingshikou Road, Haidian District, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, East Street, Fengtai District, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| |
Collapse
|
24
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
25
|
Zhang XY, Jia YP, Zhao Q, Wang WY, Zhang Z, Li W, Sun LC. Ameliorative effect of acetylshikonin on cigarette smoke-induced lung inflammation in mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1078-1094. [PMID: 31805776 DOI: 10.1080/10286020.2019.1694512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Cigarette smoke exposure is the major cause of chronic obstructive pulmonary disease (COPD). Acetylshikonin was the active principle component of Purple Gromwell that show anti-oxidative and anti-inflammatory effect. However, no data are available to elucidate the protective effect of acetylshikonin on COPD. Acetylshikonin could attenuate smoke-induced lung pathological changes, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein 1 (MCP-1) productions, and tissue damages caused by oxidative stress. Furthermore, acetylshikonin was found to enhance the expression of Nrf2 and Nur77-mediated COX-2 in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Yu-Ping Jia
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Qing Zhao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Wen-Ya Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Zhi Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wen Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Chao Sun
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
26
|
Shen W, Ye H, Zhang X, Huo L, Shen J, Zhu L, Wang X, Cui D. Elevated expansion of follicular helper T cells in peripheral blood from children with acute measles infection. BMC Immunol 2020; 21:49. [PMID: 32873255 PMCID: PMC7466526 DOI: 10.1186/s12865-020-00379-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Measles outbreaks have threatened the global elimination and eradication of measles in recent years. Measles virus (MeV)-specific antibodies are successful in clearing MeV infection. Follicular helper T (Tfh) cells play a crucial role in promoting antibody production. This study investigated the potential role of Tfh cells in peripheral blood mononuclear cells (PBMCs) from children with acute MeV infection. RESULTS The frequencies of CXCR5+CD4+ Tfh, ICOShigh Tfh, and PD-1high Tfh cells in PBMCs and levels of IL-6 and IL-21 in plasma were significantly elevated in patients with acute MeV infection. Moreover, a positive correlation was discovered among the frequency of ICOShigh Tfh cells, plasma levels of IL-21 and optical density (OD) values of MeV-specific IgM antibodies in the patients with acute MeV infection. However, elevated plasma MeV-specific NAb titres were not associated with the frequency of Tfh, ICOShigh Tfh, or PD-1high Tfh cells in the patients with acute MeV infection. CONCLUSION These results suggest that an elevated Tfh cell frequency and associated molecules possibly play a key role in children with acute MeV infection, which contributes to the prevention and treatment of MeV infection in children.
Collapse
Affiliation(s)
- Weiyun Shen
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Hongzhou Ye
- Department of Paediatrics, First Affiliated Hospital, Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xilin Zhang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Lixia Huo
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Jingli Shen
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Li Zhu
- Department of Paediatrics, First Affiliated Hospital, Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xiang Wang
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou Teachers College, the First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Dawei Cui
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
27
|
Moreira DA, Lamarca AP, Soares RF, Coelho AMA, Furtado C, Scherer NM, Moreira MAM, Seuánez HN, Boroni M. Transcriptome of the Southern Muriqui Brachyteles arachnoides (Primates:Platyrrhini), a Critically Endangered New World Monkey: Evidence of Adaptive Evolution. Front Genet 2020; 11:831. [PMID: 32849820 PMCID: PMC7412869 DOI: 10.3389/fgene.2020.00831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/09/2020] [Indexed: 12/03/2022] Open
Abstract
The southern muriqui (Brachyteles arachnoides) is the largest neotropical primate. This species is endemic to Brazil and is currently critically endangered due to its habitat destruction. The genetic basis underlying adaptive traits of New World monkeys has been a subject of interest to several investigators, with significant concern about genes related to the immune system. In the absence of a reference genome, RNA-seq and de novo transcriptome assembly have proved to be valuable genetic procedures for accessing gene sequences and testing evolutionary hypotheses. We present here a first report on the sequencing, assembly, annotation and adaptive selection analysis for thousands of transcripts of B. arachnoides from two different samples, corresponding to 13 different blood cells and fibroblasts. We assembled 284,283 transcripts with N50 of 2,940 bp, with a high rate of complete transcripts, with a median high scoring pair coverage of 88.2%, including low expressed transcripts, accounting for 72.3% of complete BUSCOs. We could predict and extract 81,400 coding sequences with 79.8% of significant BLAST hit against the Euarchontoglires SwissProt dataset. Of these 64,929 sequences, 34,084 were considered homologous to Supraprimate proteins, and of the remaining sequences (30,845), 94% were associated with a protein domain or a KEGG Orthology group, indicating potentially novel or specific protein-coding genes of B. arachnoides. We use the predicted protein sequences to perform a comparative analysis with 10 other primates. This analysis revealed, for the first time in an Atelid species, an expansion of APOBEC3G, extending this knowledge to all NWM families. Using a branch-site model, we searched for evidence of positive selection in 4,533 orthologous sets. This evolutionary analysis revealed 132 amino acid sites in 30 genes potentially evolving under positive selection, shedding light on primate genome evolution. These genes belonged to a wide variety of categories, including those encoding the innate immune system proteins (APOBEC3G, OAS2, and CEACAM1) among others related to the immune response. This work generated a set of thousands of complete sequences that can be used in other studies on molecular evolution and may help to unveil the evolution of primate genes. Still, further functional studies are required to provide an understanding of the underlying evolutionary forces modeling the primate genome.
Collapse
Affiliation(s)
- Daniel A Moreira
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Alessandra P Lamarca
- Laboratory of Bioinformatics and Molecular Evolution, Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rafael Ferreira Soares
- Laboratory for Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Ana M A Coelho
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina Furtado
- Genetics Program, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Nicole M Scherer
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Miguel A M Moreira
- Genetics Program, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Hector N Seuánez
- Genetics Program, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses. Viruses 2020; 12:v12080862. [PMID: 32784697 PMCID: PMC7472103 DOI: 10.3390/v12080862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Avian influenza A viruses (AIVs), as a zoonotic agent, dramatically impacts public health and the poultry industry. Although low pathogenic avian influenza virus (LPAIV) incidence and mortality are relatively low, the infected hosts can act as a virus carrier and provide a resource pool for reassortant influenza viruses. At present, vaccination is the most effective way to eradicate AIVs from commercial poultry. The inactivated vaccines can only stimulate humoral immunity, rather than cellular and mucosal immune responses, while failing to effectively inhibit the replication and spread of AIVs in the flock. In recent years, significant progresses have been made in the understanding of the mechanisms underlying the vaccine antigen activities at the mucosal surfaces and the development of safe and efficacious mucosal vaccines that mimic the natural infection route and cut off the AIVs infection route. Here, we discussed the current status and advancement on mucosal immunity, the means of establishing mucosal immunity, and finally a perspective for design of AIVs mucosal vaccines. Hopefully, this review will help to not only understand and predict AIVs infection characteristics in birds but also extrapolate them for distinction or applicability in mammals, including humans.
Collapse
|
29
|
Mechanism of Follicular Helper T Cell Differentiation Regulated by Transcription Factors. J Immunol Res 2020; 2020:1826587. [PMID: 32766317 PMCID: PMC7387970 DOI: 10.1155/2020/1826587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Helping B cells and antibody responses is a major function of CD4+T helper cells. Follicular helper T (Tfh) cells are identified as a subset of CD4+T helper cells, which is specialized in helping B cells in the germinal center reaction. Tfh cells express high levels of CXCR5, PD-1, IL-21, and other characteristic markers. Accumulating evidence has demonstrated that the dysregulation of Tfh cells is involved in infectious, inflammatory, and autoimmune diseases, including lymphocytic choriomeningitis virus (LCMV) infection, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), IgG4-related disease (IgG4-RD), Sjögren syndrome (SS), and type 1 diabetes (T1D). Activation of subset-specific transcription factors is the essential step for Tfh cell differentiation. The differentiation of Tfh cells is regulated by a complicated network of transcription factors, including positive factors (Bcl6, ATF-3, Batf, IRF4, c-Maf, and so on) and negative factors (Blimp-1, STAT5, IRF8, Bach2, and so on). The current knowledge underlying the molecular mechanisms of Tfh cell differentiation at the transcriptional level is summarized in this paper, which will provide many perspectives to explore the pathogenesis and treatment of the relevant immune diseases.
Collapse
|
30
|
Germinal centers B-cell reaction and T follicular helper cells in response to HIV-1 infection. Curr Opin HIV AIDS 2020; 14:246-252. [PMID: 30994502 DOI: 10.1097/coh.0000000000000557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the recent findings on germinal center B-cell reaction and Tfh cells in HIV-1 infection, with particular emphasis on the spatial organization of the germinal center, follicular cell regulation, and cellular alterations resulting from HIV infection. RECENT FINDINGS HIV-specific bNAbs are generated by iterative cycles of B-cell maturation supported by GC environment. Recent observations underline that germinal center structural alterations at the earliest stages of HIV infection could impact Tfh cell and germinal center B-cell homeostasis, thus preventing the rise of efficient humoral immunity. Moreover, despite ART treatment, HIV-derived antigens persist, particularly in follicular CD4+ T cells. Antigenic persistence and variability lead to unregulated chronic stimulation. In this context, regulation of the germinal center appears of special interest. In addition to follicular T-regulatory cells (Tfr), new potent regulators of germinal center reaction, such as follicular CD8 T and NK cells have been recently identified. SUMMARY Altogether these new data provide a better understanding on how HIV infection severely impacts germinal center reaction. Here we propose several therapeutic approaches to promote the bNAb development in HIV-infected patients by improving the preservation of germinal center architecture and its regulation.
Collapse
|
31
|
Guo SD, Yan ST, Li W, Zhou H, Yang JP, Yao Y, Shen MJ, Zhang LW, Zhang HB, Sun LC. HDAC6 promotes sepsis development by impairing PHB1-mediated mitochondrial respiratory chain function. Aging (Albany NY) 2020; 12:5411-5422. [PMID: 32221047 PMCID: PMC7138540 DOI: 10.18632/aging.102964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/19/2020] [Indexed: 04/09/2023]
Abstract
OBJECTIVE This study was aimed at investigating the regulation of mitochondrial function by histone deacetylase 6 (HDAC6) and the role of HDAC6 in the development and progression of sepsis. RESULTS HDAC6 downregulated PHB1 and subsequently promoted the development of CLP-induced sepsis. Inhibition of HDAC6 significantly attenuated CLP-induced sepsis through inhibition of mitochondrial dysfunction and reduced oxidant production, thus protecting the rats from oxidative injury. CONCLUSIONS In this sepsis model, HDAC6 inhibits the expression and function of PHB1 and alters the function of the mitochondrial respiratory chain mediated by PHB1, thus enhancing the production of oxidants and increasing oxidative stress and thereby leading to severe oxidative injury in multiple organs. METHODS The expression of HDAC6 and prohibitin 1 (PHB1) in humans and in a rat model of sepsis was measured by quantitative reverse-transcription PCR and western blotting. Sepsis induction by cecal ligation and puncture (CLP) was confirmed by histological analysis. Concentrations of different sepsis markers were measured by an enzyme-linked immunosorbent assay, and mitochondrial function was assessed via the mitochondrial respiratory control rate.
Collapse
Affiliation(s)
- Shi-dong Guo
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Sheng-tao Yan
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Wen Li
- Surgical Intensive Care Unit of China-Japan Friendship Hospital, Beijing, China
| | - Hong Zhou
- Department of Emergency, China Emergency General Hospital, Beijing, China
| | - Jian-ping Yang
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Yao Yao
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Mei-jia Shen
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Liu-wei Zhang
- Department of Physical Constitution and Health, Sport Science College, Beijing Sport University, Beijing, China
| | - Hong-Bo Zhang
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| | - Li-Chao Sun
- Emergency Department of China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
32
|
ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation. Proc Natl Acad Sci U S A 2020; 117:3083-3092. [PMID: 31980528 DOI: 10.1073/pnas.1912774117] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) comprises chronic relapsing disorders of the gastrointestinal tract characterized pathologically by intestinal inflammation and epithelial injury. Here, we uncover a function of extracellular matrix protein 1 (ECM1) in promoting the pathogenesis of human and mouse IBD. ECM1 was highly expressed in macrophages, particularly tissue-infiltrated macrophages under inflammatory conditions, and ECM1 expression was significantly induced during IBD progression. The macrophage-specific knockout of ECM1 resulted in increased arginase 1 (ARG1) expression and impaired polarization into the M1 macrophage phenotype after lipopolysaccharide (LPS) treatment. A mechanistic study showed that ECM1 can regulate M1 macrophage polarization through the granulocyte-macrophage colony-stimulating factor/STAT5 signaling pathway. Pathological changes in mice with dextran sodium sulfate-induced IBD were alleviated by the specific knockout of the ECM1 gene in macrophages. Taken together, our findings show that ECM1 has an important function in promoting M1 macrophage polarization, which is critical for controlling inflammation and tissue repair in the intestine.
Collapse
|
33
|
Niu Q, Kraaijeveld R, Li Y, Mendoza Rojas A, Shi Y, Wang L, Van Besouw NM, Baan CC. An overview of T follicular cells in transplantation: spotlight on their clinical significance. Expert Rev Clin Immunol 2019; 15:1249-1262. [PMID: 31721600 DOI: 10.1080/1744666x.2020.1693262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: For late stage organ failure patients, transplantation is the best option to increase life expectancy with a superior quality of life. Unfortunately, after transplantation many patients are at risk of cellular and antibody-mediated rejection (ABMR). The latter is initiated by donor specific antibodies (DSA) which depend on the actions of B cells, T follicular helper (Tfh) cells and T follicular regulatory (Tfr) cells that are present in the germinal center of lymphoid organs.Areas covered: In this overview paper, we discuss the biology and function of Tfh and Tfr cells in lymphoid tissues, transplanted organs and their circulating counterparts. We report on their relevance to alloimmunity and on the effects of immunosuppressive drugs on these immunocompetent cell populations.Expert opinion: Growing knowledge about the actions of Tfh and Tfr allows for a better understanding of the immunological mechanisms of ABMR after organ transplantation. This understanding feeds the hypothesis that immunosuppressive drugs targeting the actions of Tfh cells have huge therapeutic potential. This new concept in the treatment of the humoral rejection response will improve graft and patient survival after organ transplantation.
Collapse
Affiliation(s)
- Qian Niu
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Rens Kraaijeveld
- Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Yi Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Aleixandra Mendoza Rojas
- Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Yunying Shi
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lanlan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Nicole M Van Besouw
- Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Carla C Baan
- Department Internal Medicine - Sector Nephrology & Transplantation, The Rotterdam Transplant Group, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Fan W, Liu T, Chen W, Hammad S, Longerich T, Hausser I, Fu Y, Li N, He Y, Liu C, Zhang Y, Lian Q, Zhao X, Yan C, Li L, Yi C, Ling Z, Ma L, Zhao X, Xu H, Wang P, Cong M, You H, Liu Z, Wang Y, Chen J, Li D, Hui L, Dooley S, Hou J, Jia J, Sun B. ECM1 Prevents Activation of Transforming Growth Factor β, Hepatic Stellate Cells, and Fibrogenesis in Mice. Gastroenterology 2019; 157:1352-1367.e13. [PMID: 31362006 DOI: 10.1053/j.gastro.2019.07.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Activation of TGFB (transforming growth factor β) promotes liver fibrosis by activating hepatic stellate cells (HSCs), but the mechanisms of TGFB activation are not clear. We investigated the role of ECM1 (extracellular matrix protein 1), which interacts with extracellular and structural proteins, in TGFB activation in mouse livers. METHODS We performed studies with C57BL/6J mice (controls), ECM1-knockout (ECM1-KO) mice, and mice with hepatocyte-specific knockout of EMC1 (ECM1Δhep). ECM1 or soluble TGFBR2 (TGFB receptor 2) were expressed in livers of mice after injection of an adeno-associated virus vector. Liver fibrosis was induced by carbon tetrachloride (CCl4) administration. Livers were collected from mice and analyzed by histology, immunohistochemistry, in situ hybridization, and immunofluorescence analyses. Hepatocytes and HSCs were isolated from livers of mice and incubated with ECM1; production of cytokines and activation of reporter genes were quantified. Liver tissues from patients with viral or alcohol-induced hepatitis (with different stages of fibrosis) and individuals with healthy livers were analyzed by immunohistochemistry and in situ hybridization. RESULTS ECM1-KO mice spontaneously developed liver fibrosis and died by 2 months of age without significant hepatocyte damage or inflammation. In liver tissues of mice, we found that ECM1 stabilized extracellular matrix-deposited TGFB in its inactive form by interacting with αv integrins to prevent activation of HSCs. In liver tissues from patients and in mice with CCl4-induced liver fibrosis, we found an inverse correlation between level of ECM1 and severity of fibrosis. CCl4-induced liver fibrosis was accelerated in ECM1Δhep mice compared with control mice. Hepatocytes produced the highest levels of ECM1 in livers of mice. Ectopic expression of ECM1 or soluble TGFBR2 in liver prevented fibrogenesis in ECM1-KO mice and prolonged their survival. Ectopic expression of ECM1 in liver also reduced the severity of CCl4-induced fibrosis in mice. CONCLUSIONS ECM1, produced by hepatocytes, inhibits activation of TGFB and its activation of HSCs to prevent fibrogenesis in mouse liver. Strategies to increase levels of ECM1 in liver might be developed for treatment of fibrosis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Carbon Tetrachloride
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Hepatitis, Alcoholic/metabolism
- Hepatitis, Alcoholic/pathology
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Humans
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Alcoholic/metabolism
- Liver Cirrhosis, Alcoholic/pathology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Signal Transduction
- Transforming Growth Factor beta/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Weiguo Fan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Wen Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Seddik Hammad
- Sektion Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Germany; Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Thomas Longerich
- Sektion Translational Gastrointestinal Pathology, Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Ingrid Hausser
- Sektion Translational Gastrointestinal Pathology, Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Yadong Fu
- Institute of Shanghai Municipal Education Commission Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yajing He
- Department of Infectious Diseases, Institute of Hepatology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cui Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoshi Lian
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinhao Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenghua Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Li Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Hufeng Xu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Zhihong Liu
- Department of Infectious Diseases, Institute of Hepatology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Wang
- Department of Infectious Diseases, Institute of Hepatology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dangsheng Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Steven Dooley
- Sektion Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Jinlin Hou
- Department of Infectious Diseases, Institute of Hepatology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
35
|
Yu VZ, Ko JMY, Ning L, Dai W, Law S, Lung ML. Endoplasmic reticulum-localized ECM1b suppresses tumor growth and regulates MYC and MTORC1 through modulating MTORC2 activation in esophageal squamous cell carcinoma. Cancer Lett 2019; 461:56-64. [PMID: 31319137 DOI: 10.1016/j.canlet.2019.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease with dismal 5-year survival. Extracellular matrix protein 1 (ECM1) was identified as one of the most downregulated genes by transcriptomic analysis of normal esophageal/ESCC paired tissue samples. ECM1 plays oncogenic roles in cancer development in various cancer types. However, little is known about its role in ESCC. In vivo and in vitro functional assays coupled with analyses on public datasets and detailed molecular and mechanistic analyses were used to study the gene. We demonstrate that as opposed to the previously identified oncogenic role of ECM1a, ECM1b is a novel tumor suppressor in ESCC. ECM1 is significantly downregulated in ESCC and several other squamous cell carcinomas. ECM1b encodes a cellular protein that suppresses MYC protein expression and MTORC1 signaling activity. MTORC2 inactivation leads to suppressed MYC expression and MTORC1 signaling. ECM1b localizes to the endoplasmic reticulum and suppresses MTORC2 activation by inhibiting MTORC2/ribosome association. By regulating MTORC2/MYC/MTORC1 signaling, ECM1b suppresses general protein translation and enhances chemosensitivity. We provide evidence establishing a novel role of ECM1 in cancer that suggests ECM1b as a biomarker for ESCC disease management.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Josephine Mun Yee Ko
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Lvwen Ning
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong.
| |
Collapse
|
36
|
Liu T, Yang Q, Cao YJ, Yuan WM, Lei AH, Zhou P, Zhou W, Liu YD, Shi MH, Yang Q, Tang JY, Wang HK, Zhang H, Yu Y, Zhou J. Cyclooxygenase-1 Regulates the Development of Follicular Th Cells via Prostaglandin E 2. THE JOURNAL OF IMMUNOLOGY 2019; 203:864-872. [PMID: 31243090 DOI: 10.4049/jimmunol.1801674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/07/2019] [Indexed: 11/19/2022]
Abstract
Cyclooxygenase (COX)-1, one of the critical enzymes required for the conversion of arachidonic acid to PGs, has been demonstrated to play an important role not only in the cardiovascular system but also in the immune system. COX-1 has been found to regulate early B cell differentiation, germinal center formation, and Ab production of B cells. However, the underlying mechanisms of COX-1-mediated B cell activation remains not fully understood. In this study, we reported that COX-1 is a potential regulator for the development of follicular Th (TFH) cells. COX-1-deficient (COX-1-/- ) mice displayed a significant reduction of TFH cells upon influenza infection or immunization with keyhole limpet hemocyanin, which led to a severe impairment of germinal center responses. We further demonstrated that COX-1-derived PGE2, via binding with its receptors EP2/EP4, represents the underlying mechanism. The administration of EP2/EP4 agonists or PGE2 almost completely rescued the defective TFH cell generation in COX-1-/- mice. Taken together, our observations indicate that COX-1 plays an important role in the development of TFH cells.
Collapse
Affiliation(s)
- Ting Liu
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Jiao Cao
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China
| | - Wei-Ming Yuan
- Department of Neonatology, Guangzhou Women and Children's Medical Centre, Guangzhou 510623, China
| | - Ai-Hua Lei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Pan Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Centre, Guangzhou 510623, China
| | - Yong-Dong Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mao-Hua Shi
- First People's Hospital of Foshan, Foshan 528000, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jin-Yi Tang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Hai-Kun Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China; .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|