1
|
Perrin AJ, Dorrell RG. Protists and protistology in the Anthropocene: challenges for a climate and ecological crisis. BMC Biol 2024; 22:279. [PMID: 39617895 PMCID: PMC11610311 DOI: 10.1186/s12915-024-02077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Eukaryotic microorganisms, or "protists," while often inconspicuous, play fundamental roles in the Earth ecosystem, ranging from primary production and nutrient cycling to interactions with human health and society. In the backdrop of accelerating climate dysregulation, alongside anthropogenic disruption of natural ecosystems, understanding changes to protist functional and ecological diversity is of critical importance. In this review, we outline why protists matter to our understanding of the global ecosystem and challenges of predicting protist species resilience and fragility to climate change. Finally, we reflect on how protistology may adapt and evolve in a present and future characterized by rapid ecological change.
Collapse
Affiliation(s)
| | - Richard G Dorrell
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Université, Paris, Sorbonne, 75005, France.
| |
Collapse
|
2
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James CC, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Fussy Z, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular forecasting of domoic acid during a pervasive toxic diatom bloom. Proc Natl Acad Sci U S A 2024; 121:e2319177121. [PMID: 39298472 PMCID: PMC11459128 DOI: 10.1073/pnas.2319177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/05/2024] [Indexed: 09/21/2024] Open
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis, this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis (dab) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters (sit1) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that coexpression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have colimited the diatom population along with low Si. Iron limitation represents an overlooked driver of both toxin production and ecological success of the low-iron-adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms.
Collapse
Affiliation(s)
- John K. Brunson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Monica Thukral
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - John P. Ryan
- Research Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA95093
| | - Clarissa R. Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Bethany C. Kolody
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Chase C. James
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Francisco P. Chavez
- Research Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA95093
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan16310, Malaysia
| | - Ariel J. Rabines
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Pratap Venepally
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Zoltan Fussy
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Raphael M. Kudela
- Ocean Sciences Department, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA95064
| | - G. Jason Smith
- Environmental Biotechnology Department, Moss Landing Marine Laboratories, Moss Landing, CA95039
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Andrew E. Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
3
|
Lampe RH, Coale TH, Forsch KO, Jabre LJ, Kekuewa S, Bertrand EM, Horák A, Oborník M, Rabines AJ, Rowland E, Zheng H, Andersson AJ, Barbeau KA, Allen AE. Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton. Nat Commun 2023; 14:7215. [PMID: 37940668 PMCID: PMC10632500 DOI: 10.1038/s41467-023-42949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2 for up to four days. Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.
Collapse
Affiliation(s)
- Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Tyler H Coale
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Kiefer O Forsch
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Loay J Jabre
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Samuel Kekuewa
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Erin M Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, CZ, Czechia
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, CZ, Czechia
| | - Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, CZ, Czechia
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, CZ, Czechia
| | - Ariel J Rabines
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Elden Rowland
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Hong Zheng
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Andreas J Andersson
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James C, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular Forecasting of Domoic Acid during a Pervasive Toxic Diatom Bloom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565333. [PMID: 37961417 PMCID: PMC10635071 DOI: 10.1101/2023.11.02.565333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis , this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis ( dab ) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters ( sit1 ) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that co-expression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have co-limited the diatom population along with low Si. Iron limitation represents a previously unrecognized driver of both toxin production and ecological success of the low iron adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms. Significance Pseudo-nitzschia diatoms form oceanic harmful algal blooms that threaten human health through production of the neurotoxin domoic acid (DA). DA biosynthetic gene expression is hypothesized to control DA production in the environment, yet what regulates expression of these genes is yet to be discovered. In this study, we uncovered expression of DA biosynthesis genes by multiple toxigenic Pseudo-nitzschia species during an economically impactful bloom along the North American West Coast, and identified genes that predict DA in advance of its production. We discovered that iron and silica co-limitation restrained the bloom and likely promoted toxin production. This work suggests that increasing iron limitation due to global change may play a previously unrecognized role in driving bloom frequency and toxicity.
Collapse
|
5
|
Huapaya K, Echeveste P. Physiological responses of Humboldt current system diatoms to Fe and Cu co-limitation. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105937. [PMID: 36958199 DOI: 10.1016/j.marenvres.2023.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Diatoms account for ∼20% of global primary production, often limited by the availability of Fe and other trace nutrients such as Cu. The present study examined the role of both metals in the physiology of two diatoms isolated from the Humboldt Currents System, the centric Chaetoceros c.f. dicipiens and the pennate Nitzschia c.f. draveillensis. Under Fe limitation, a decrease in specific growth rates and sizes of both species was observed, especially in Chaetoceros. However, regarding different photosynthetic parameters, Nitzschia was more impacted. The increase in Cu concentrations improved the physiology of both diatoms, mostly of Chaetoceros. When grown in mixed cultures and under co-limiting conditions, both species remained competive due to morphological advantages (i.e., lower cell size). These results may suggest that the increase of Cu under Fe limitation benefited C. c.f. dicipiens over N. c.f. draveillensis.
Collapse
Affiliation(s)
- Katiuska Huapaya
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.
| | - Pedro Echeveste
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile; Instituto Milenio de Oceanografía, Chile
| |
Collapse
|
6
|
Nef C, Madoui MA, Pelletier É, Bowler C. Whole-genome scanning reveals environmental selection mechanisms that shape diversity in populations of the epipelagic diatom Chaetoceros. PLoS Biol 2022; 20:e3001893. [PMID: 36441816 PMCID: PMC9731442 DOI: 10.1371/journal.pbio.3001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/08/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Diatoms form a diverse and abundant group of photosynthetic protists that are essential players in marine ecosystems. However, the microevolutionary structure of their populations remains poorly understood, particularly in polar regions. Exploring how closely related diatoms adapt to different environments is essential given their short generation times, which may allow rapid adaptations, and their prevalence in marine regions dramatically impacted by climate change, such as the Arctic and Southern Oceans. Here, we address genetic diversity patterns in Chaetoceros, the most abundant diatom genus and one of the most diverse, using 11 metagenome-assembled genomes (MAGs) reconstructed from Tara Oceans metagenomes. Genome-resolved metagenomics on these MAGs confirmed a prevalent distribution of Chaetoceros in the Arctic Ocean with lower dispersal in the Pacific and Southern Oceans as well as in the Mediterranean Sea. Single-nucleotide variants identified within the different MAG populations allowed us to draw a landscape of Chaetoceros genetic diversity and revealed an elevated genetic structure in some Arctic Ocean populations. Gene flow patterns of closely related Chaetoceros populations seemed to correlate with distinct abiotic factors rather than with geographic distance. We found clear positive selection of genes involved in nutrient availability responses, in particular for iron (e.g., ISIP2a, flavodoxin), silicate, and phosphate (e.g., polyamine synthase), that were further supported by analysis of Chaetoceros transcriptomes. Altogether, these results highlight the importance of environmental selection in shaping diatom diversity patterns and provide new insights into their metapopulation genomics through the integration of metagenomic and environmental data.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Mohammed-Amin Madoui
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
| | - Éric Pelletier
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Metabolic Genomics, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, Université Evry, Université Paris Saclay, Evry, France
| | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
7
|
Nitrogen and Iron Availability Drive Metabolic Remodeling and Natural Selection of Diverse Phytoplankton during Experimental Upwelling. mSystems 2022; 7:e0072922. [PMID: 36036504 PMCID: PMC9599627 DOI: 10.1128/msystems.00729-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nearly half of carbon fixation and primary production originates from marine phytoplankton, and much of it occurs in episodic blooms in upwelling regimes. Here, we simulated blooms limited by nitrogen and iron by incubating Monterey Bay surface waters with subnutricline waters and inorganic nutrients and measured the whole-community transcriptomic response during mid- and late-bloom conditions. Cell counts revealed that centric and pennate diatoms (largely Pseudo-nitzschia and Chaetoceros spp.) were the major blooming taxa, but dinoflagellates, prasinophytes, and prymnesiophytes also increased. Viral mRNA significantly increased in late bloom and likely played a role in the bloom's demise. We observed conserved shifts in the genetic similarity of phytoplankton populations to cultivated strains, indicating adaptive population-level changes in community composition. Additionally, the density of single nucleotide variants (SNVs) declined in late-bloom samples for most taxa, indicating a loss of intraspecific diversity as a result of competition and a selective sweep of adaptive alleles. We noted differences between mid- and late-bloom metabolism and differential regulation of light-harvesting complexes (LHCs) under nutrient stress. While most LHCs are diminished under nutrient stress, we showed that diverse taxa upregulated specialized, energy-dissipating LHCs in low iron. We also suggest the relative expression of NRT2 compared to the expression of GSII as a marker of cellular nitrogen status and the relative expression of iron starvation-induced protein genes (ISIP1, ISIP2, and ISIP3) compared to the expression of the thiamine biosynthesis gene (thiC) as a marker of iron status in natural diatom communities. IMPORTANCE Iron and nitrogen are the nutrients that most commonly limit phytoplankton growth in the world's oceans. The utilization of these resources by phytoplankton sets the biomass available to marine systems and is of particular interest in high-nutrient, low-chlorophyll (HNLC) coastal fisheries. Previous research has described the biogeography of phytoplankton in HNLC regions and the transcriptional responses of representative taxa to nutrient limitation. However, the differential transcriptional responses of whole phytoplankton communities to iron and nitrogen limitation has not been previously described, nor has the selective pressure that these competitive bloom environments exert on major players. In addition to describing changes in the physiology of diverse phytoplankton, we suggest practical indicators of cellular nitrogen and iron status for future monitoring.
Collapse
|
8
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
9
|
Maniscalco MA, Brzezinski MA, Lampe RH, Cohen NR, McNair HM, Ellis KA, Brown M, Till CP, Twining BS, Bruland KW, Marchetti A, Thamatrakoln K. Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage. ISME COMMUNICATIONS 2022; 2:57. [PMID: 37938259 PMCID: PMC9723790 DOI: 10.1038/s43705-022-00136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 06/17/2023]
Abstract
In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.
Collapse
Affiliation(s)
- Michael A Maniscalco
- Marine Science Institute and The Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
| | - Mark A Brzezinski
- Marine Science Institute and The Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Robert H Lampe
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Heather M McNair
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA
| | - Kelsey A Ellis
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | - Claire P Till
- Chemistry Department, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | | | - Kenneth W Bruland
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Adrian Marchetti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | |
Collapse
|
10
|
Twining BS, Baines SB. Luxury iron uptake and storage in pennate diatoms from the equatorial Pacific Ocean. Metallomics 2022; 14:6596291. [PMID: 35641175 DOI: 10.1093/mtomcs/mfac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/08/2022] [Indexed: 11/13/2022]
Abstract
Iron is a key micronutrient for ocean phytoplankton, and the availability of iron controls primary production and community composition in large regions of the ocean. Pennate diatoms, a phytoplankton group that responds to iron additions in low-iron areas, can have highly variable iron contents, and some groups such as Pseudo-nitzschia are known to use ferritin to store iron for later use. We quantified and mapped the intracellular accumulation of iron by a natural population of Pseudo-nitzschia from the Fe-limited equatorial Pacific Ocean. Forty-eight hours after iron addition, nearly half of accumulated iron was localized in storage bodies adjacent to chloroplasts believed to represent ferritin. Over the subsequent 48 h, stored iron was distributed to the rest of the cell through subsequent growth and division, partially supporting the iron contents of the daughter cells. This study provides a first quantitative view into the cellular trafficking of iron in a globally relevant phytoplankton group and demonstrates the unique capabilities of synchrotron-based element imaging approaches.
Collapse
Affiliation(s)
| | - Stephen B Baines
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
| |
Collapse
|
11
|
Optimisation of Biomass Production and Nutritional Value of Two Marine Diatoms (Bacillariophyceae), Skeletonema costatum and Chaetoceros calcitrans. BIOLOGY 2022; 11:biology11040594. [PMID: 35453793 PMCID: PMC9024967 DOI: 10.3390/biology11040594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary One of the key constraints that is associated with the production of microalgae biomass and products, is the low yields that are associated with high production costs in microalgae cultivation units. Therefore, the aim of the present work was to improve the biomass productivity of two high-value diatom species, Skeletonema costatum and Chaetoceros calcitrans. To do so, the culture medium that was supplied to the cultures was optimised in a stepwise process, regarding the nutrient’s silicate, nitrate, phosphorus, iron, and micronutrients. For both diatoms, the results that were obtained revealed a significant increase in biomass productivity as well as an improved biochemical profile regarding increased omega-3 fatty acids contents. With this work, the optimise culture media was established for each diatom, thus providing a strategy for lower production costs that were reflected in higher productivities with higher biomass quality. Ultimately this will help improve the application of S. costatum and C. calcitrans in the aquaculture and nutraceutical industries. Abstract S. costatum and C. calcitrans are two cosmopolitan high-value centric diatoms, with a rich nutritional profile. The following work optimised the culture medium of S. costatum and C. calcitrans cultures, respectively, in a stepwise process as follows: 2.4 mM and 1.2 mM of silicate, 4 mM of nitrate, 100 µM of phosphate, 20 and 80 µM iron, and 0.5 mL L−1 of micronutrients. The results that were obtained revealed an increase in biomass productivity with a 1.8- and 3.2-fold increase in biomass that was produced by S. costatum and C. calcitrans, respectively. The biochemical profile showed an increase in high-value PUFAs such as 2.6-fold and 2.3-fold increase in EPA for S. costatum and C. calcitrans, respectively, whilst a 2.6-fold increase in DHA was detected in S. costatum cultures. The present work provides the basic tools for the industrial cultivation of S. costatum and C. calcitrans with enhanced productivity as well as improved biomass quality, two factors which are highly relevant for a more effective application of these diatoms to aquaculture and nutraceutical production.
Collapse
|
12
|
Camoying MG, Thoms S, Geuer JK, Koch BP, Bischof K, Trimborn S. In contrast to diatoms, cryptophytes are susceptible to iron limitation, but not to ocean acidification. PHYSIOLOGIA PLANTARUM 2022; 174:e13614. [PMID: 35199361 DOI: 10.1111/ppl.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Previous field studies in the Southern Ocean (SO) indicated an increased occurrence and dominance of cryptophytes over diatoms due to climate change. To gain a better mechanistic understanding of how the two ecologically important SO phytoplankton groups cope with ocean acidification (OA) and iron (Fe) availability, we chose two common representatives of Antarctic waters, the cryptophyte Geminigera cryophila and the diatom Pseudo-nitzschia subcurvata. Both species were grown at 2°C under different pCO2 (400 vs. 900 μatm) and Fe (0.6 vs. 1.2 nM) conditions. For P. subcurvata, an additional high pCO2 level was applied (1400 μatm). At ambient pCO2 under low Fe supply, growth of G. cryophila almost stopped while it remained unaffected in P. subcurvata. Under high Fe conditions, OA was not beneficial for P. subcurvata, but stimulated growth and carbon production of G. cryophila. Under low Fe supply, P. subcurvata coped much better with OA than the cryptophyte, but invested more energy into photoacclimation. Our study reveals that Fe limitation was detrimental for the growth of G. cryophila and suppressed the positive OA effect. The diatom was efficient in coping with low Fe, but was stressed by OA while both factors together strongly impacted its growth. The distinct physiological response of both species to OA and Fe limitation explains their occurrence in the field. Based on our results, Fe availability is an important modulator of OA effects on SO phytoplankton, with different implications on the occurrence of cryptophytes and diatoms in the future.
Collapse
Affiliation(s)
- Marianne G Camoying
- Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Silke Thoms
- Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Jana K Geuer
- Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Boris P Koch
- Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Department of Technology, University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Kai Bischof
- Marine Botany & MARUM, University of Bremen, Bremen, Germany
| | - Scarlett Trimborn
- Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Marine Botany & MARUM, University of Bremen, Bremen, Germany
| |
Collapse
|
13
|
Malych R, Stopka P, Mach J, Kotabová E, Prášil O, Sutak R. Flow cytometry-based study of model marine microalgal consortia revealed an ecological advantage of siderophore utilization by the dinoflagellate Amphidinium carterae. Comput Struct Biotechnol J 2021; 20:287-295. [PMID: 35024100 PMCID: PMC8718654 DOI: 10.1016/j.csbj.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Investigations of phytoplankton responses to iron stress in seawater are complicated by the fact that iron concentrations do not necessarily reflect bioavailability. Most studies to date have been based on single species or field samples and are problematic to interpret. Here, we report results from an experimental cocultivation model system that enabled us to evaluate interspecific competition as a function of iron content and form, and to study the effect of nutritional conditions on the proteomic profiles of individual species. Our study revealed that the dinoflagellate Amphidinium carterae was able to utilize iron from a hydroxamate siderophore, a strategy that could provide an ecological advantage in environments where siderophores present an important source of iron. Additionally, proteomic analysis allowed us to identify a potential candidate protein involved in iron acquisition from hydroxamate siderophores, a strategy that is largely unknown in eukaryotic phytoplankton.
Collapse
Key Words
- (s)PLS-DA, (sparse) partial least squares discriminant analysis
- AUC, area under curve
- Amphidinium carterae
- AtpE, ATP synthase
- BCS, bathocuproinedisulfonic acid disodium salt
- CREG1, cellular repressor of E1A stimulated genes 1
- DFOB, desferrioxamine B
- EDTA, ethylenediaminetetraacetic acid
- ENT, enterobactin
- FACS, fluorescence-activated cell sorting
- FBAI, fructose-bisphosphate aldolase I
- FBAII, fructose-bisphosphate aldolase II
- FBP1, putative ferrichrome-binding protein
- FOB, ferrioxamine B
- Flow cytometry
- ISIP, iron starvation induced protein
- Iron
- LHCX, light-harvesting complex subunits
- LL, long-term iron limitation
- LR, iron enrichment
- Marine microalgae
- NBD, nitrobenz-2-oxa-1,3-diazole
- NPQ, nonphotochemical quenching
- PAGE, polyacrylamide gel electrophoresis
- PSI, photosystem I
- PSII, photosystem II
- PetA, cytochrome b6/f
- Proteomics
- PsaC, photosystem I iron-sulfur center
- PsaD, photosystem I reaction center subunit II
- PsaE, photosystem I reaction center subunit IV
- PsaL, photosystem I reaction center subunit XI
- PsbC, photosystem II CP43 reaction center protein
- PsbV, cytochrome c-550
- RR, long-term iron sufficiency
- SOD1, superoxide dismutase [Cu-Zn]
- Siderophores
Collapse
Affiliation(s)
- Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Eva Kotabová
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| |
Collapse
|
14
|
Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc Natl Acad Sci U S A 2021; 118:2107238118. [PMID: 34301906 PMCID: PMC8325266 DOI: 10.1073/pnas.2107238118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phytoplankton contribute to the Southern Ocean’s (SO) ability to absorb atmospheric CO2 and shape the stoichiometry of northward macronutrient delivery. Climate change is altering the SO environment, yet we know little about how resident phytoplankton will react to these changes. Here, we studied a natural SO community and compared responses of two prevalent, bloom-forming diatom groups to changes in temperature and iron that are projected to occur by 2100 to 2300. We found that one group, Pseudo-nitzschia, grows better under warmer low-iron conditions by managing cellular iron demand and efficiently increasing photosynthetic capacity. This ability to grow and draw down nutrients in the face of warming, regardless of iron availability, has major implications for ocean ecosystems and global nutrient cycles. The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia. We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling.
Collapse
|
15
|
Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci U S A 2021; 118:2009974118. [PMID: 33419955 DOI: 10.1073/pnas.2009974118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) is an important source of novelty in eukaryotic genomes. This is particularly true for the ochrophytes, a diverse and important group of algae. Previous studies have shown that ochrophytes possess a mosaic of genes derived from bacteria and eukaryotic algae, acquired through chloroplast endosymbiosis and from HGTs, although understanding of the time points and mechanisms underpinning these transfers has been restricted by the depth of taxonomic sampling possible. We harness an expanded set of ochrophyte sequence libraries, alongside automated and manual phylogenetic annotation, in silico modeling, and experimental techniques, to assess the frequency and functions of HGT across this lineage. Through manual annotation of thousands of single-gene trees, we identify continuous bacterial HGT as the predominant source of recently arrived genes in the model diatom Phaeodactylum tricornutum Using a large-scale automated dataset, a multigene ochrophyte reference tree, and mathematical reconciliation of gene trees, we note a probable elevation of bacterial HGTs at foundational points in diatom evolution, following their divergence from other ochrophytes. Finally, we demonstrate that throughout ochrophyte evolutionary history, bacterial HGTs have been enriched in genes encoding secreted proteins. Our study provides insights into the sources and frequency of HGTs, and functional contributions that HGT has made to algal evolution.
Collapse
|
16
|
Behrenfeld MJ, Halsey KH, Boss E, Karp‐Boss L, Milligan AJ, Peers G. Thoughts on the evolution and ecological niche of diatoms. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1457] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Michael J. Behrenfeld
- Department of Botany and Plant Pathology Oregon State University 4575 SW Research Way Corvallis Oregon 97333 USA
| | - Kimberly H. Halsey
- Department of Microbiology Oregon State University Nash Hall 226 Corvallis Oregon 97331 USA
| | - Emmanuel Boss
- School of Marine Sciences University of Maine 5706 Aubert Hall Orono Maine 04469‐5706 USA
| | - Lee Karp‐Boss
- School of Marine Sciences University of Maine 5706 Aubert Hall Orono Maine 04469‐5706 USA
| | - Allen J. Milligan
- Department of Botany and Plant Pathology Oregon State University 4575 SW Research Way Corvallis Oregon 97333 USA
| | - Graham Peers
- Department of Biology Colorado State University Biology Building, Room 111, 1878 Campus Delivery Fort Collins Colorado 80523‐1878 USA
| |
Collapse
|
17
|
Santin A, Caputi L, Longo A, Chiurazzi M, Ribera d'Alcalà M, Russo MT, Ferrante MI, Rogato A. Integrative omics identification, evolutionary and structural analysis of low affinity nitrate transporters in diatoms, diNPFs. Open Biol 2021; 11:200395. [PMID: 33823659 PMCID: PMC8025304 DOI: 10.1098/rsob.200395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diatoms are one of the major and most diverse groups of phytoplankton, with chimeric genomes harbouring a combination of genes of bacterial, animal and plant origin. They have developed sophisticated mechanisms to face environmental variations. In marine environments, nutrients concentration shows significant temporal and spatial variability, influencing phytoplankton growth. Among nutrients, nitrogen, present at micromolar levels, is often a limiting resource. Here, we report a comprehensive characterization of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in diatoms, diNPFs. NPFs are well characterized in many organisms where they recognize a broad range of substrates, ranging from short-chained di- and tri-peptides in bacteria, fungi and mammals to a wide variety of molecules including nitrate in higher plants. Scarce information is available for diNPFs. We integrated-omics, phylogenetic, structural and expression analyses, to infer information on their role in diatoms. diNPF genes diverged to produce two distinct clades with strong sequence and structural homology with either bacterial or plant NPFs, with different predicted sub-cellular localization, suggesting that the divergence resulted in functional diversification. Moreover, transcription analysis of diNPF genes under different laboratory and environmental growth conditions suggests that diNPF diversification led to genetic adaptations that might contribute to diatoms ability to flourish in diverse environmental conditions.
Collapse
Affiliation(s)
- Anna Santin
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Antonella Longo
- BioDiscovery Institute, Denton, TX, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | - Alessandra Rogato
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.,Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
18
|
Marine plankton metabolisms revealed. Nat Microbiol 2021; 6:147-148. [PMID: 33510437 DOI: 10.1038/s41564-020-00856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Gao X, Bowler C, Kazamia E. Iron metabolism strategies in diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2165-2180. [PMID: 33693565 PMCID: PMC7966952 DOI: 10.1093/jxb/eraa575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/03/2021] [Indexed: 05/28/2023]
Abstract
Diatoms are one of the most successful group of photosynthetic eukaryotes in the contemporary ocean. They are ubiquitously distributed and are the most abundant primary producers in polar waters. Equally remarkable is their ability to tolerate iron deprivation and respond to periodic iron fertilization. Despite their relatively large cell sizes, diatoms tolerate iron limitation and frequently dominate iron-stimulated phytoplankton blooms, both natural and artificial. Here, we review the main iron use strategies of diatoms, including their ability to assimilate and store a range of iron sources, and the adaptations of their photosynthetic machinery and architecture to iron deprivation. Our synthesis relies on published literature and is complemented by a search of 82 diatom transcriptomes, including information collected from seven representatives of the most abundant diatom genera in the world's oceans.
Collapse
Affiliation(s)
- Xia Gao
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Chris Bowler
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Elena Kazamia
- Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
20
|
Small phytoplankton contribute greatly to CO 2-fixation after the diatom bloom in the Southern Ocean. ISME JOURNAL 2021; 15:2509-2522. [PMID: 33712701 PMCID: PMC8397732 DOI: 10.1038/s41396-021-00915-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023]
Abstract
Phytoplankton is composed of a broad-sized spectrum of phylogenetically diverse microorganisms. Assessing CO2-fixation intra- and inter-group variability is crucial in understanding how the carbon pump functions, as each group of phytoplankton may be characterized by diverse efficiencies in carbon fixation and export to the deep ocean. We measured the CO2-fixation of different groups of phytoplankton at the single-cell level around the naturally iron-fertilized Kerguelen plateau (Southern Ocean), known for intense diatoms blooms suspected to enhance CO2 sequestration. After the bloom, small cells (<20 µm) composed of phylogenetically distant taxa (prymnesiophytes, prasinophytes, and small diatoms) were growing faster (0.37 ± 0.13 and 0.22 ± 0.09 division d-1 on- and off-plateau, respectively) than larger diatoms (0.11 ± 0.14 and 0.09 ± 0.11 division d-1 on- and off-plateau, respectively), which showed heterogeneous growth and a large proportion of inactive cells (19 ± 13%). As a result, small phytoplankton contributed to a large proportion of the CO2 fixation (41-70%). The analysis of pigment vertical distribution indicated that grazing may be an important pathway of small phytoplankton export. Overall, this study highlights the need to further explore the role of small cells in CO2-fixation and export in the Southern Ocean.
Collapse
|
21
|
Turnšek J, Brunson JK, Viedma MDPM, Deerinck TJ, Horák A, Oborník M, Bielinski VA, Allen AE. Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway. eLife 2021; 10:e52770. [PMID: 33591270 PMCID: PMC7972479 DOI: 10.7554/elife.52770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed; however, proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.
Collapse
Affiliation(s)
- Jernej Turnšek
- Biological and Biomedical Sciences, The Graduate School of Arts and Sciences, Harvard UniversityCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Wyss Institute for Biologically Inspired Engineering, Harvard UniversityBostonUnited States
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
- Center for Research in Biological Systems, University of California San DiegoLa JollaUnited States
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
| | - John K Brunson
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
| | | | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, University of California San DiegoLa JollaUnited States
| | - Aleš Horák
- Biology Centre CAS, Institute of ParasitologyČeské BudějoviceCzech Republic
- University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
| | - Miroslav Oborník
- Biology Centre CAS, Institute of ParasitologyČeské BudějoviceCzech Republic
- University of South Bohemia, Faculty of ScienceČeské BudějoviceCzech Republic
| | - Vincent A Bielinski
- Synthetic Biology and Bioenergy, J. Craig Venter InstituteLa JollaUnited States
| | - Andrew Ellis Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San DiegoLa JollaUnited States
- Microbial and Environmental Genomics, J. Craig Venter InstituteLa JollaUnited States
| |
Collapse
|
22
|
Kotabova E, Malych R, Pierella Karlusich JJ, Kazamia E, Eichner M, Mach J, Lesuisse E, Bowler C, Prášil O, Sutak R. Complex Response of the Chlorarachniophyte Bigelowiella natans to Iron Availability. mSystems 2021; 6:e00738-20. [PMID: 33563784 PMCID: PMC7883536 DOI: 10.1128/msystems.00738-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
The productivity of the ocean is largely dependent on iron availability, and marine phytoplankton have evolved sophisticated mechanisms to cope with chronically low iron levels in vast regions of the open ocean. By analyzing the metabarcoding data generated from the Tara Oceans expedition, we determined how the global distribution of the model marine chlorarachniophyte Bigelowiella natans varies across regions with different iron concentrations. We performed a comprehensive proteomics analysis of the molecular mechanisms underpinning the adaptation of B. natans to iron scarcity and report on the temporal response of cells to iron enrichment. Our results highlight the role of phytotransferrin in iron homeostasis and indicate the involvement of CREG1 protein in the response to iron availability. Analysis of the Tara Oceans metagenomes and metatranscriptomes also points to a similar role for CREG1, which is found to be widely distributed among marine plankton but to show a strong bias in gene and transcript abundance toward iron-deficient regions. Our analyses allowed us to define a new subfamily of the CobW domain-containing COG0523 putative metal chaperones which are involved in iron metabolism and are restricted to only a few phytoplankton lineages in addition to B. natans At the physiological level, we elucidated the mechanisms allowing a fast recovery of PSII photochemistry after resupply of iron. Collectively, our study demonstrates that B. natans is well adapted to dynamically respond to a changing iron environment and suggests that CREG1 and COG0523 are important components of iron homeostasis in B. natans and other phytoplankton.IMPORTANCE Despite low iron availability in the ocean, marine phytoplankton require considerable amounts of iron for their growth and proliferation. While there is a constantly growing knowledge of iron uptake and its role in the cellular processes of the most abundant marine photosynthetic groups, there are still largely overlooked branches of the eukaryotic tree of life, such as the chlorarachniophytes. In the present work, we focused on the model chlorarachniophyte Bigelowiella natans, integrating physiological and proteomic analyses in culture conditions with the mining of omics data generated by the Tara Oceans expedition. We provide unique insight into the complex responses of B. natans to iron availability, including novel links to iron metabolism conserved in other phytoplankton lineages.
Collapse
Affiliation(s)
- Eva Kotabova
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Juan José Pierella Karlusich
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Elena Kazamia
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Meri Eichner
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Emmanuel Lesuisse
- Jacques Monod Institute, UMR7592 CNRS, Paris Diderot University, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
23
|
Hettiarachchi E, Ivanov S, Kieft T, Goldstein HL, Moskowitz BM, Reynolds RL, Rubasinghege G. Atmospheric Processing of Iron-Bearing Mineral Dust Aerosol and Its Effect on Growth of a Marine Diatom, Cyclotella meneghiniana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:871-881. [PMID: 33382945 DOI: 10.1021/acs.est.0c06995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron (Fe) is a growth-limiting micronutrient for phytoplankton in major areas of oceans and deposited wind-blown desert dust is a primary Fe source to these regions. Simulated atmospheric processing of four mineral dust proxies and two natural dust samples followed by subsequent growth studies of the marine planktic diatom Cyclotella meneghiniana in artificial sea-water (ASW) demonstrated higher growth response to ilmenite (FeTiO3) and hematite (α-Fe2O3) mixed with TiO2 than hematite alone. The processed dust treatment enhanced diatom growth owing to dissolved Fe (DFe) content. The fresh dust-treated cultures demonstrated growth enhancements without adding such dissolved Fe. These significant growth enhancements and dissolved Fe measurements indicated that diatoms acquire Fe from solid particles. When diatoms were physically separated from mineral dust particles, the growth responses become smaller. The post-mineralogy analysis of mineral dust proxies added to ASW showed a diatom-induced increased formation of goethite, where the amount of goethite formed correlated with observed enhanced growth. The current work suggests that ocean primary productivity may not only depend on dissolved Fe but also on suspended solid Fe particles and their mineralogy. Further, the diatom C. meneghiniana benefits more from mineral dust particles in direct contact with cells than from physically impeded particles, suggesting the possibility for alternate Fe-acquisition mechanism/s.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Sergei Ivanov
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Harland L Goldstein
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
| | - Bruce M Moskowitz
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Richard L Reynolds
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
24
|
Ratnarajah L, Blain S, Boyd PW, Fourquez M, Obernosterer I, Tagliabue A. Resource Colimitation Drives Competition Between Phytoplankton and Bacteria in the Southern Ocean. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2020GL088369. [PMID: 33518833 PMCID: PMC7816276 DOI: 10.1029/2020gl088369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/12/2020] [Accepted: 11/20/2020] [Indexed: 06/01/2023]
Abstract
Across the Southern Ocean, phytoplankton growth is governed by iron and light, while bacterial growth is regulated by iron and labile dissolved organic carbon (LDOC). We use a mechanistic model to examine how competition for iron between phytoplankton and bacteria responds to changes in iron, light, and LDOC. Consistent with experimental evidence, increasing iron and light encourages phytoplankton dominance, while increasing LDOC and decreasing light favors bacterial dominance. Under elevated LDOC, bacteria can outcompete phytoplankton for iron, most easily under lower iron. Simulations reveal that bacteria are major iron consumers and suggest that luxury storage plays a key role in competitive iron uptake. Under seasonal conditions typical of the Southern Ocean, sources of LDOC besides phytoplankton exudation modulate the strength of competitive interactions. Continued investigations on the competitive fitness of bacteria in driving changes in primary production in iron-limited systems will be invaluable in refining these results.
Collapse
Affiliation(s)
- Lavenia Ratnarajah
- Department of EarthOcean and Ecological SciencesSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Stéphane Blain
- Sorbonne UniversitéCNRSLaboratoire d'Océanographie Microbienne (LOMIC)Observatoire Océanologique de BanyulsBanyuls sur merFrance
| | - Philip W. Boyd
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - Marion Fourquez
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
- Aix Marseille Univ.Universite de ToulonCNRSIRDMIO UM 110MarseilleFrance
| | - Ingrid Obernosterer
- Sorbonne UniversitéCNRSLaboratoire d'Océanographie Microbienne (LOMIC)Observatoire Océanologique de BanyulsBanyuls sur merFrance
| | - Alessandro Tagliabue
- Department of EarthOcean and Ecological SciencesSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
25
|
Tagliabue A, Barrier N, Du Pontavice H, Kwiatkowski L, Aumont O, Bopp L, Cheung WWL, Gascuel D, Maury O. An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change. GLOBAL CHANGE BIOLOGY 2020; 26:6168-6179. [PMID: 32970390 DOI: 10.1111/gcb.15316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 05/24/2023]
Abstract
Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from -12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter-annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%-80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change.
Collapse
Affiliation(s)
| | - Nicolas Barrier
- MARBEC (IRD, Univ. Montpellier, CNRS, Ifremer), Sète, France
| | - Hubert Du Pontavice
- ESE, Ecology and Ecosystem Health, Institut Agro, Rennes, France
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | | | - Olivier Aumont
- LOCEAN, Sorbonne Université-CNRS-IRD-MNHN, Paris, France
| | | | - William W L Cheung
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Didier Gascuel
- ESE, Ecology and Ecosystem Health, Institut Agro, Rennes, France
| | - Olivier Maury
- MARBEC (IRD, Univ. Montpellier, CNRS, Ifremer), Sète, France
| |
Collapse
|
26
|
Louropoulou E, Gledhill M, Achterberg EP, Browning TJ, Honey DJ, Schmitz RA, Tagliabue A. Heme b distributions through the Atlantic Ocean: evidence for "anemic" phytoplankton populations. Sci Rep 2020; 10:4551. [PMID: 32165723 PMCID: PMC7067765 DOI: 10.1038/s41598-020-61425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/24/2020] [Indexed: 11/09/2022] Open
Abstract
Heme b is an iron-containing cofactor in hemoproteins that participates in the fundamental processes of photosynthesis and respiration in phytoplankton. Heme b concentrations typically decline in waters with low iron concentrations but due to lack of field data, the distribution of heme b in particulate material in the ocean is poorly constrained. Here we report particulate heme b distributions across the Atlantic Ocean (59.9°N to 34.6°S). Heme b concentrations in surface waters ranged from 0.10 to 33.7 pmol L-1 (median = 1.47 pmol L-1, n = 974) and were highest in regions with a high biomass. The ratio of heme b to particulate organic carbon (POC) exhibited a mean value of 0.44 μmol heme b mol-1 POC. We identified the ratio of 0.10 µmol heme b mol-1 POC as the cut-off between heme b replete and heme b deficient (anemic) phytoplankton. By this definition, we observed anemic phytoplankton populations in the Subtropical South Atlantic and Irminger Basin. Comparison of observed and modelled heme b suggested that heme b could account for between 0.17-9.1% of biogenic iron. Our large scale observations of heme b relative to organic matter provide further evidence of the impact of changes in iron supply on phytoplankton iron status across the Atlantic Ocean.
Collapse
Affiliation(s)
- Evangelia Louropoulou
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany. .,Institute for General Microbiology, Christian-Albrechts-Universität, Kiel, Germany.
| | - Martha Gledhill
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - David J Honey
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität, Kiel, Germany
| | | |
Collapse
|
27
|
Ait-Mohamed O, Novák Vanclová AMG, Joli N, Liang Y, Zhao X, Genovesio A, Tirichine L, Bowler C, Dorrell RG. PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2020; 11:590949. [PMID: 33178253 PMCID: PMC7596299 DOI: 10.3389/fpls.2020.590949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
Transcriptional coordination is a fundamental component of prokaryotic and eukaryotic cell biology, underpinning the cell cycle, physiological transitions, and facilitating holistic responses to environmental stress, but its overall dynamics in eukaryotic algae remain poorly understood. Better understanding of transcriptional partitioning may provide key insights into the primary metabolism pathways of eukaryotic algae, which frequently depend on intricate metabolic associations between the chloroplasts and mitochondria that are not found in plants. Here, we exploit 187 publically available RNAseq datasets generated under varying nitrogen, iron and phosphate growth conditions to understand the co-regulatory principles underpinning transcription in the model diatom Phaeodactylum tricornutum. Using WGCNA (Weighted Gene Correlation Network Analysis), we identify 28 merged modules of co-expressed genes in the P. tricornutum genome, which show high connectivity and correlate well with previous microarray-based surveys of gene co-regulation in this species. We use combined functional, subcellular localization and evolutionary annotations to reveal the fundamental principles underpinning the transcriptional co-regulation of genes implicated in P. tricornutum chloroplast and mitochondrial metabolism, as well as the functions of diverse transcription factors underpinning this co-regulation. The resource is publically available as PhaeoNet, an advanced tool to understand diatom gene co-regulation.
Collapse
Affiliation(s)
- Ouardia Ait-Mohamed
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anna M. G. Novák Vanclová
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nathalie Joli
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Yue Liang
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Xue Zhao
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
| | - Auguste Genovesio
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Leila Tirichine
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Nantes, CNRS, UFIP, UMR 6286, Nantes, France
- *Correspondence: Leila Tirichine,
| | - Chris Bowler
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Chris Bowler,
| | - Richard G. Dorrell
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
28
|
Goldman JAL, Schatz MJ, Berthiaume CT, Coesel SN, Orellana MV, Armbrust EV. Fe limitation decreases transcriptional regulation over the diel cycle in the model diatom Thalassiosira pseudonana. PLoS One 2019; 14:e0222325. [PMID: 31509589 PMCID: PMC6738920 DOI: 10.1371/journal.pone.0222325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 01/02/2023] Open
Abstract
Iron (Fe) is an important growth factor for diatoms and its availability is further restricted by changes in the carbonate chemistry of seawater. We investigated the physiological attributes and transcriptional profiles of the diatom Thalassiosira pseudonana grown on a day: night cycle under different CO2/pH and iron concentrations, that in combination generated available iron (Fe') concentrations of 1160, 233, 58 and 12 pM. We found the light-dark conditions to be the main driver of transcriptional patterns, followed by Fe' concentration and CO2 availability, respectively. At the highest Fe' (1160 pM), 55% of the transcribed genes were differentially expressed between day and night, whereas at the lowest Fe' (12 pM), only 28% of the transcribed genes displayed comparable patterns. While Fe limitation disrupts the diel expression patterns for genes in most central metabolism pathways, the diel expression of light- signaling molecules and glycolytic genes was relatively robust in response to reduced Fe'. Moreover, we identified a non-canonical splicing of transcripts encoding triose-phosphate isomerase, a key-enzyme of glycolysis, generating transcript isoforms that would encode proteins with and without an active site. Transcripts that encoded an active enzyme maintained a diel expression at low Fe', while transcripts that encoded the non-active enzyme lost the diel expression. This work illustrates the interplay between nutrient limitation and transcriptional regulation over the diel cycle. Considering that future ocean conditions will reduce the availability of Fe in many parts of the oceans, our work identifies some of the regulatory mechanisms that may shape future ecological communities.
Collapse
Affiliation(s)
- Johanna A. L. Goldman
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| | - Megan J. Schatz
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| | - Chris T. Berthiaume
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| | - Sacha N. Coesel
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| | - Mónica V. Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - E. Virginia Armbrust
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
29
|
Metabolic Innovations Underpinning the Origin and Diversification of the Diatom Chloroplast. Biomolecules 2019; 9:biom9080322. [PMID: 31366180 PMCID: PMC6723447 DOI: 10.3390/biom9080322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Of all the eukaryotic algal groups, diatoms make the most substantial contributions to photosynthesis in the contemporary ocean. Understanding the biological innovations that have occurred in the diatom chloroplast may provide us with explanations to the ecological success of this lineage and clues as to how best to exploit the biology of these organisms for biotechnology. In this paper, we use multi-species transcriptome datasets to compare chloroplast metabolism pathways in diatoms to other algal lineages. We identify possible diatom-specific innovations in chloroplast metabolism, including the completion of tocopherol synthesis via a chloroplast-targeted tocopherol cyclase, a complete chloroplast ornithine cycle, and chloroplast-targeted proteins involved in iron acquisition and CO2 concentration not shared between diatoms and their closest relatives in the stramenopiles. We additionally present a detailed investigation of the chloroplast metabolism of the oil-producing diatom Fistulifera solaris, which is of industrial interest for biofuel production. These include modified amino acid and pyruvate hub metabolism that might enhance acetyl-coA production for chloroplast lipid biosynthesis and the presence of a chloroplast-localised squalene synthesis pathway unknown in other diatoms. Our data provides valuable insights into the biological adaptations underpinning an ecologically critical lineage, and how chloroplast metabolism can change even at a species level in extant algae.
Collapse
|
30
|
Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME JOURNAL 2019; 13:2817-2833. [PMID: 31320727 PMCID: PMC6794264 DOI: 10.1038/s41396-019-0472-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 01/06/2023]
Abstract
Phytoplankton and associated microbial communities provide organic carbon to oceanic food webs and drive ecosystem dynamics. However, capturing those dynamics is challenging. Here, an in situ, semi-Lagrangian, robotic sampler profiled pelagic microbes at 4 h intervals over ~2.6 days in North Pacific high-nutrient, low-chlorophyll waters. We report on the community structure and transcriptional dynamics of microbes in an operationally large size class (>5 μm) predominantly populated by dinoflagellates, ciliates, haptophytes, pelagophytes, diatoms, cyanobacteria (chiefly Synechococcus), prasinophytes (chiefly Ostreococcus), fungi, archaea, and proteobacteria. Apart from fungi and archaea, all groups exhibited 24-h periodicity in some transcripts, but larger portions of the transcriptome oscillated in phototrophs. Periodic photosynthesis-related transcripts exhibited a temporal cascade across the morning hours, conserved across diverse phototrophic lineages. Pronounced silica:nitrate drawdown, a high flavodoxin to ferredoxin transcript ratio, and elevated expression of other Fe-stress markers indicated Fe-limitation. Fe-stress markers peaked during a photoperiodically adaptive time window that could modulate phytoplankton response to seasonal Fe-limitation. Remarkably, we observed viruses that infect the majority of abundant taxa, often with total transcriptional activity synchronized with putative hosts. Taken together, these data reveal a microbial plankton community that is shaped by recycled production and tightly controlled by Fe-limitation and viral activity.
Collapse
|