1
|
Cerqua M, Foiani M, Boccaccio C, Comoglio PM, Altintas DM. The integrated stress response drives MET oncogene overexpression in cancers. EMBO J 2025:10.1038/s44318-024-00338-4. [PMID: 39774381 DOI: 10.1038/s44318-024-00338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/09/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52. ISR activation by serum starvation, leucine deprivation, hypoxia, irradiation, thapsigargin or gemcitabine is followed by MET protein overexpression. We mechanistically link MET translation to the ISR by (i) mutation of the two uORFs within the MET 5'UTR, (ii) CRISPR/Cas9-mediated mutation of eIF2α (S52A), or (iii) the application of ISR pathway inhibitors. All of these interventions reduce stress-induced MET overexpression. Finally, we show that blocking stress-induced MET translation blunts MET-dependent invasive growth. These findings indicate that upregulation of the MET oncogene is a functional requirement linking integrated stress response to cancer progression.
Collapse
Affiliation(s)
- Marina Cerqua
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy
| | - Marco Foiani
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy
| | - Carla Boccaccio
- Candiolo Cancer Institute, 10060 Candiolo, Torino, Italy
- Department of Oncology, University of Torino, 10100, Torino, Italy
| | - Paolo M Comoglio
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy.
| | - Dogus M Altintas
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy.
| |
Collapse
|
2
|
Hanada K, Kawada K, Obama K. Targeting Asparagine Metabolism in Solid Tumors. Nutrients 2025; 17:179. [PMID: 39796613 PMCID: PMC11722615 DOI: 10.3390/nu17010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Reprogramming of energy metabolism to support cellular growth is a "hallmark" of cancer, allowing cancer cells to balance the catabolic demands with the anabolic needs of producing the nucleotides, amino acids, and lipids necessary for tumor growth. Metabolic alterations, or "addiction", are promising therapeutic targets and the focus of many drug discovery programs. Asparagine metabolism has gained much attention in recent years as a novel target for cancer therapy. Asparagine is widely used in the production of other nutrients and plays an important role in cancer development. Nutritional inhibition therapy targeting asparagine has been used as an anticancer strategy and has shown success in the treatment of leukemia. However, in solid tumors, asparagine restriction alone does not provide ideal therapeutic efficacy. Tumor cells initiate reprogramming processes in response to asparagine deprivation. This review provides a comprehensive overview of asparagine metabolism in cancers. We highlight the physiological role of asparagine and current advances in improving survival and overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Keita Hanada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
- Department of Surgery, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan
| | - Kenji Kawada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
- Department of General Surgery, Kurashiki Central Hospital, Kurashiki 710-8602, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
| |
Collapse
|
3
|
Ryland C, Marikar NC, Nguyen V, Nangia V, Darnell AM, Vander Heiden MG, Reigan P, Spencer SL. BRAF V600 and ErbB inhibitors directly activate GCN2 in an off-target manner to limit cancer cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629301. [PMID: 39763857 PMCID: PMC11702603 DOI: 10.1101/2024.12.19.629301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Targeted kinase inhibitors are well known for their promiscuity and off-target effects. Herein, we define an off-target effect in which several clinical BRAFV600 inhibitors, including the widely used dabrafenib and encorafenib, interact directly with GCN2 to activate the Integrated Stress Response and ATF4. Blocking this off-target effect by co-drugging with a GCN2 inhibitor in A375 melanoma cells causes enhancement rather than suppression of cancer cell outgrowth, suggesting that the off-target activation of GCN2 is detrimental to these cells. This result is mirrored in PC9 lung cancer cells treated with erlotinib, an EGFR inhibitor, that shares the same off-target activation of GCN2. Using an in silico kinase inhibitor screen, we identified dozens of FDA-approved drugs that appear to share this off-target activation of GCN2 and ATF4. Thus, GCN2 activation may modulate the therapeutic efficacy of some kinase inhibitors, depending on the cancer context.
Collapse
Affiliation(s)
- C Ryland
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nasreen C Marikar
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Vu Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Varuna Nangia
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado School of Medicine, University of Colorado Anschutz, Aurora, CO, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, MA, USA
- Current address: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, NC, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, MA, USA
- Dana-Farber Cancer Institute, MA, USA
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Van Trimpont M, Schalk AM, Hofkens K, Peeters E, T'Sas S, Vandemeulebroecke K, Su Y, De Loera A, Garcia A, Chen H, Lammens T, Van Vlierberghe P, Goossens S, Lavie A. A human-like glutaminase-free asparaginase is highly efficacious in ASNS low leukemia and solid cancer mouse xenograft models. Cancer Lett 2024; 611:217404. [PMID: 39709177 DOI: 10.1016/j.canlet.2024.217404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
L-asparaginase (L-ASNase) is crucial in treating pediatric acute lymphoblastic leukemia (ALL), but its use is hampered by side effects from the immunogenicity and L-glutaminase (L-GLNase) co-activity of FDA-approved bacterial L-ASNases, often leading to treatment discontinuation and poor outcomes. The toxicity of these L-ASNases makes them especially challenging to use in adult cancer patients. To overcome these issues, we developed EBD-200, a humanized guinea pig L-ASNase with low Km and no L-GLNase activity, eliminating glutamine-related toxicity. EBD-200 showed comparable anti-cancer effects to PEGylated L-ASNase in ASNSlow ALL, melanoma and liver cancer models, with improved tolerability. Its potent anti-cancer efficacy and enhanced safety profile suggest that EBD-200 could benefit ALL patients and broaden treatment options for ASNSlow solid cancers.
Collapse
Affiliation(s)
- Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Amanda M Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA; Enzyme By Design Inc., Chicago, USA
| | - Kenneth Hofkens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Evelien Peeters
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sara T'Sas
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Katrien Vandemeulebroecke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ying Su
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA
| | - Ashley De Loera
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA
| | - Alyssa Garcia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA
| | - Hui Chen
- Director, Mass Spectrometry Core, Research Resources Center, University of Illinois at Chicago, Chicago, USA
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA; Enzyme By Design Inc., Chicago, USA; Research Biologist, Biological Science Research and Development, Department of Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
5
|
Malnassy G, Ziolkowski L, Macleod KF, Oakes SA. The Integrated Stress Response in Pancreatic Development, Tissue Homeostasis, and Cancer. Gastroenterology 2024; 167:1292-1306. [PMID: 38768690 PMCID: PMC11570703 DOI: 10.1053/j.gastro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas. Among the most synthetically dynamic tissues in the body, the exocrine and endocrine pancreas relies heavily on the ISR to rapidly adjust cell function to meet the metabolic demands of the organism. The hardwiring of the ISR into normal pancreatic functions and adaptation to stress may explain why it is a commonly used pro-oncogenic and therapy-resistance mechanism in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors. Here, we review what is known about the key roles that the ISR plays in the development, homeostasis, and neoplasia of the pancreas.
Collapse
Affiliation(s)
- Greg Malnassy
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Leah Ziolkowski
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinoi; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| | - Scott A Oakes
- Department of Pathology, University of Chicago, Chicago, Illinois; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois; Committee on Cancer Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
6
|
Cordova RA, Sommers NR, Law AS, Klunk AJ, Brady KE, Goodrich DW, Anthony TG, Brault JJ, Pili R, Wek RC, Staschke KA. Coordination between the eIF2 kinase GCN2 and p53 signaling supports purine metabolism and the progression of prostate cancer. Sci Signal 2024; 17:eadp1375. [PMID: 39591412 DOI: 10.1126/scisignal.adp1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Cancers invoke various pathways to mitigate external and internal stresses to continue their growth and progression. We previously reported that the eIF2 kinase GCN2 and the integrated stress response are constitutively active in prostate cancer (PCa) and are required to maintain amino acid homeostasis needed to fuel tumor growth. However, although loss of GCN2 function reduces intracellular amino acid availability and PCa growth, there is no appreciable cell death. Here, we discovered that the loss of GCN2 in PCa induces prosenescent p53 signaling. This p53 activation occurred through GCN2 inhibition-dependent reductions in purine nucleotides that impaired ribosome biogenesis and, consequently, induced the impaired ribosome biogenesis checkpoint. p53 signaling induced cell cycle arrest and senescence that promoted the survival of GCN2-deficient PCa cells. Depletion of GCN2 combined with loss of p53 or pharmacological inhibition of de novo purine biosynthesis reduced proliferation and enhanced cell death in PCa cell lines, organoids, and xenograft models. Our findings highlight the coordinated interplay between GCN2 and p53 regulation during nutrient stress and provide insight into how they could be targeted in developing new therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Ricardo A Cordova
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Noah R Sommers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Andrew S Law
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - Angela J Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katherine E Brady
- Department of Biology, Indiana University School of Science, Indianapolis, IN 46202, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - Roberto Pili
- Jacobs School of Medicine and Biomedical Sciences, Division of Hematology and Oncology, University at Buffalo, Buffalo, NY 14203, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Piecyk M, Ferraro-Peyret C, Laville D, Perros F, Chaveroux C. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J 2024; 291:4867-4889. [PMID: 38879870 DOI: 10.1111/febs.17203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 11/14/2024]
Abstract
Defining the mechanisms that allow cells to adapt to environmental stress is critical for understanding the progression of chronic diseases and identifying relevant drug targets. Among these, activation of the pathway controlled by the eIF2-alpha kinase GCN2 is critical for translational and metabolic reprogramming of the cell in response to various metabolic, proteotoxic, and ribosomal stressors. However, its role has frequently been investigated through the lens of a stress pathway signaling via the eIF2α-activating transcription factor 4 (ATF4) downstream axis, while recent advances in the field have revealed that the GCN2 pathway is more complex than previously thought. Indeed, this kinase can be activated through a variety of mechanisms, phosphorylate substrates other than eIF2α, and regulate cell proliferation in a steady state. This review presents recent findings regarding the fundamental mechanisms underlying GCN2 signaling and function, as well as the development of drugs that modulate its activity. Furthermore, by comparing the literature on GCN2's antagonistic roles in two challenging pathologies, cancer and pulmonary diseases, the benefits, and drawbacks of GCN2 targeting, particularly inhibition, are discussed.
Collapse
Affiliation(s)
- Marie Piecyk
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, University Lyon I, Oullins, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, Plateforme AURAGEN, France
| | - David Laville
- Department of Pathology, Hospices Civils de Lyon, East Hospital Group, Bron, France
| | - Frédéric Perros
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, University of Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
| |
Collapse
|
8
|
Chen C, Xie Y, Qian S. Multifaceted role of GCN2 in tumor adaptation and therapeutic targeting. Transl Oncol 2024; 49:102096. [PMID: 39178574 PMCID: PMC11388189 DOI: 10.1016/j.tranon.2024.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
Tumor cells voraciously consume nutrients from their environment to facilitate rapid proliferation, necessitating effective strategies to manage nutrient scarcity during tumor growth and progression. A pivotal regulatory mechanism in this context is the Integrated Stress Response (ISR), which ensures cellular homeostasis under conditions such as endoplasmic reticulum stress, the unfolded protein response, and nutrient deprivation. Within the ISR framework, the kinase GCN2 is critical, orchestrating a myriad of cellular processes including the inhibition of protein synthesis, the enhancement of amino acid transport, autophagy initiation, and angiogenesis. These processes collectively enable tumor survival and adaptation under nutrient-limited conditions. Furthermore, GCN2-mediated pathways may induce apoptosis, a property exploited by specific therapeutic agents. Leveraging extensive datasets from TCGA, GEO, and GTEx projects, we conducted a pan-cancer analysis to investigate the prognostic significance of GCN2 expression across diverse cancer types. Our analysis indicates that GCN2 expression significantly varies and correlates with both adverse and favorable prognoses depending on the type of cancer, illustrating its complex role in tumorigenesis. Importantly, GCN2 also modulates the tumor immune microenvironment, influencing immune checkpoint expression and the functionality of immune cells, thereby affecting immunotherapy outcomes. This study highlights the potential of targeting GCN2 with specific inhibitors, as evidenced by their efficacy in preclinical models to augment treatment responses and combat resistance in oncology. These findings advocate for a deeper exploration of GCN2's multifaceted roles, which could pave the way for novel targeted therapies in cancer treatment, aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China
| | - Yaping Xie
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China.
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Lopez CD, Kardosh A, Chen EY, Pegna G, Guimaraes A, Foster B, Brinkerhoff B, Goodyear SM, Lim JY, Taber E, Rajagopalan B, Edmerson E, Vo J, Nelson K, Jackson A, Gingerich T, Fahlman A, Lessenich C, Fennell F, Ventura D, Roy P, Keith D, Sheppard B, Brody JR, Mills GB, Ronai ZA, Sears RC. CASPER: A Phase I trial combining calaspargase pegol-mnkl and cobimetinib in pancreatic cancer. Future Oncol 2024; 20:2915-2925. [PMID: 39378065 PMCID: PMC11572257 DOI: 10.1080/14796694.2024.2395235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Asparagine synthetase (ASNS) catalyzes the biosynthesis of asparagine from aspartate and glutamine. Cells lacking ASNS, however, are auxotrophic for asparagine. Use of L-asparaginase to promote asparagine starvation in solid tumors with low ASNS levels, such as pancreatic ductal adenocarcinoma (PDAC), is a rationale treatment strategy. However, tumor cell resistance to L-asparaginase has limited its clinical utility. Our preclinical studies show that RAS/MAPK signaling circumvents L-asparaginase-induced tumor killing, but L-asparaginase and MEK inhibition potentiated tumor killing; suggesting that this combination may provide meaningful clinical benefit to patients with PDAC. This Phase I trial (NCT05034627) will evaluate the safety and tolerability of the MEK inhibitor, cobimetinib, in combination with pegylated L-asparaginase, L calaspargase pegol-mknl, in patients with locally-advanced or metastatic PDAC.
Collapse
Affiliation(s)
- Charles D Lopez
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
| | - Adel Kardosh
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
| | - Emerson Y Chen
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Guillaume Pegna
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Alexander Guimaraes
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
- Department of Radiology, OHSU, OR97239, Portland
| | - Bryan Foster
- Department of Pathology, OHSU, OR97239, Portland
| | | | - Shaun M Goodyear
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
| | - Jeong-Youn Lim
- Biostatistics Shared Resource, Knight Cancer Institute (OHSU)
| | - Erin Taber
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Brindha Rajagopalan
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Exodus Edmerson
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Johnson Vo
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Katherine Nelson
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Anna Jackson
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Tasha Gingerich
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Anne Fahlman
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Christopher Lessenich
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Francesca Fennell
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Diane Ventura
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Preeyam Roy
- Department of Medicine, Hematology and Medical Oncology, Oregon Health & Science University (OHSU), OR97239, Portland
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
| | - Brett Sheppard
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
- Department of Surgery, OHSU, OR97239, Portland
| | - Jonathan R Brody
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
- Department of Surgery, OHSU, OR97239, Portland
| | - Gordon B Mills
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
- Precision Oncology, Knight Cancer Institute OHSU, OR97239, Portland
| | - Ze'ev A Ronai
- Sanford Burnham Prebys, La Jolla, CA92037, San Diego
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, Knight Cancer Institute (OHSU), OR, Portland
- Department of Molecular and Medical Genetics, OHSU, OR97239, Portland
| |
Collapse
|
10
|
Altintas O, MacArthur MR. General control nonderepressible 2 (GCN2) as a therapeutic target in age-related diseases. FRONTIERS IN AGING 2024; 5:1447370. [PMID: 39319345 PMCID: PMC11420162 DOI: 10.3389/fragi.2024.1447370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
The function of General Control Nonderepressible 2 (GCN2), an evolutionary-conserved component of the integrated stress response (ISR), has been well-documented across organisms from yeast to mammals. Recently GCN2 has also gained attention for its role in health and disease states. In this review, we provide a brief overview of GCN2, including its structure, activation mechanisms and interacting partners, and explore its potential significance as a therapeutic target in various age-related diseases including neurodegeneration, inflammatory disorders and cancer. Finally, we summarize the barriers to effectively targeting GCN2 for the treatment of disease and to promote a healthier aging process.
Collapse
Affiliation(s)
- Ozlem Altintas
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael R. MacArthur
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| |
Collapse
|
11
|
Piecyk M, Triki M, Laval P, Duret C, Fauvre J, Cussonneau L, Machon C, Guitton J, Rama N, Gibert B, Ichim G, Catez F, Bourdelais F, Durand S, Diaz J, Coste I, Renno T, Manié SN, Aznar N, Ansieau S, Ferraro‐Peyret C, Chaveroux C. The stress sensor GCN2 differentially controls ribosome biogenesis in colon cancer according to the nutritional context. Mol Oncol 2024; 18:2111-2135. [PMID: 37452637 PMCID: PMC11467793 DOI: 10.1002/1878-0261.13491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.
Collapse
Affiliation(s)
- Marie Piecyk
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Mouna Triki
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Pierre‐Alexandre Laval
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Cedric Duret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Joelle Fauvre
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Laura Cussonneau
- INRAE, Unité de Nutrition Humaine, UMR1019Université Clermont AuvergneClermont‐FerrandFrance
| | - Christelle Machon
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Biochemistry and Pharmaco‐Toxicology Laboratory, Lyon Sud HospitalHospices Civils de Lyon Pierre‐Bénite, University Hospital of LyonFrance
| | - Jerôme Guitton
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Biochemistry and Pharmaco‐Toxicology Laboratory, Lyon Sud HospitalHospices Civils de Lyon Pierre‐Bénite, University Hospital of LyonFrance
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Benjamin Gibert
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Gabriel Ichim
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Frederic Catez
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Fleur Bourdelais
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Sebastien Durand
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Jean‐Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Isabelle Coste
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Toufic Renno
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Serge N. Manié
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Stephane Ansieau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Carole Ferraro‐Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Hospices Civils de Lyon, Plateforme AURAGENFrance
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| |
Collapse
|
12
|
Drainas AP, Hsu WH, Dallas AE, Poltorack CD, Kim JW, He A, Coles GL, Baron M, Bassik MC, Sage J. GCN2 is a determinant of the response to WEE1 kinase inhibition in small-cell lung cancer. Cell Rep 2024; 43:114606. [PMID: 39120974 PMCID: PMC11407228 DOI: 10.1016/j.celrep.2024.114606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
Patients with small-cell lung cancer (SCLC) are in dire need of more effective therapeutic options. Frequent disruption of the G1 checkpoint in SCLC cells creates a dependency on the G2/M checkpoint to maintain genomic integrity. Indeed, in pre-clinical models, inhibiting the G2/M checkpoint kinase WEE1 shows promise in inhibiting SCLC growth. However, toxicity and acquired resistance limit the clinical effectiveness of this strategy. Here, using CRISPR-Cas9 knockout screens in vitro and in vivo, we identified multiple factors influencing the response of SCLC cells to the WEE1 kinase inhibitor AZD1775, including the GCN2 kinase and other members of its signaling pathway. Rapid activation of GCN2 upon AZD1775 treatment triggers a stress response in SCLC cells. Pharmacological or genetic activation of the GCN2 pathway enhances cancer cell killing by AZD1775. Thus, activation of the GCN2 pathway represents a promising strategy to increase the efficacy of WEE1 inhibitors in SCLC.
Collapse
Affiliation(s)
- Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Wen-Hao Hsu
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alec E Dallas
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carson D Poltorack
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jun W Kim
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Andy He
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Garry L Coles
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Maya Baron
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Park J, Desai H, Liboy-Lugo JM, Gu S, Jowhar Z, Xu A, Floor SN. IGHMBP2 deletion suppresses translation and activates the integrated stress response. Life Sci Alliance 2024; 7:e202302554. [PMID: 38803225 PMCID: PMC11109757 DOI: 10.26508/lsa.202302554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
IGHMBP2 is a nonessential, superfamily 1 DNA/RNA helicase that is mutated in patients with rare neuromuscular diseases SMARD1 and CMT2S. IGHMBP2 is implicated in translational and transcriptional regulation via biochemical association with ribosomal proteins, pre-rRNA processing factors, and tRNA-related species. To uncover the cellular consequences of perturbing IGHMBP2, we generated full and partial IGHMBP2 deletion K562 cell lines. Using polysome profiling and a nascent protein synthesis assay, we found that IGHMBP2 deletion modestly reduces global translation. We performed Ribo-seq and RNA-seq and identified diverse gene expression changes due to IGHMBP2 deletion, including ATF4 up-regulation. With recent studies showing the integrated stress response (ISR) can contribute to tRNA metabolism-linked neuropathies, we asked whether perturbing IGHMBP2 promotes ISR activation. We generated ATF4 reporter cell lines and found IGHMBP2 knockout cells demonstrate basal, chronic ISR activation. Our work expands upon the impact of IGHMBP2 in translation and elucidates molecular mechanisms that may link mutant IGHMBP2 to severe clinical phenotypes.
Collapse
Affiliation(s)
- Jesslyn Park
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hetvee Desai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - José M Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ziad Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Dai H, Wu B, Ge Y, Hao Y, Zhou L, Hong R, Zhang J, Jiang W, Zhang Y, Li H, Zhang L. Deubiquitylase OTUD3 regulates integrated stress response to suppress progression and sorafenib resistance of liver cancer. Cell Rep 2024; 43:114487. [PMID: 38996071 DOI: 10.1016/j.celrep.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The integrated stress response (ISR) is activated in response to intrinsic and extrinsic stimuli, playing a role in tumor progression and drug resistance. The regulatory role and mechanism of ISR in liver cancer, however, remain largely unexplored. Here, we demonstrate that OTU domain-containing protein 3 (OTUD3) is a deubiquitylase of eukaryotic initiation factor 2α (eIF2α), antagonizing ISR and suppressing liver cancer. OTUD3 decreases interactions between eIF2α and the kinase EIF2ΑK3 by removing K27-linked polyubiquitylation on eIF2α. OTUD3 deficiency in mice leads to enhanced ISR and accelerated progression of N-nitrosodiethylamine-induced hepatocellular carcinoma. Additionally, decreased OTUD3 expression associated with elevated eIF2α phosphorylation correlates with the progression of human liver cancer. Moreover, ISR activation due to decreased OTUD3 expression renders liver cancer cells resistant to sorafenib, while the combined use of the ISR inhibitor ISRIB significantly improves their sensitivity to sorafenib. Collectively, these findings illuminate the regulatory mechanism of ISR in liver cancer and provide a potential strategy to counteract sorafenib resistance.
Collapse
Affiliation(s)
- Hongmiao Dai
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yingwei Ge
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Yang Hao
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Lijie Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruolin Hong
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinhao Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Department of Cell Biology, School of Basic Medicine, Medical College, Qingdao University, Qingdao 266071, China
| | - Wenli Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yuting Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Hongchang Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China.
| |
Collapse
|
15
|
Fontes MG, Silva C, Roldán WH, Monteiro G. Exploring the potential of asparagine restriction in solid cancer treatment: recent discoveries, therapeutic implications, and challenges. Med Oncol 2024; 41:176. [PMID: 38879707 DOI: 10.1007/s12032-024-02424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Asparagine is a non-essential amino acid crucial for protein biosynthesis and function, and therefore cell maintenance and growth. Furthermore, this amino acid has an important role in regulating several metabolic pathways, such as tricarboxylic acid cycle and the urea cycle. When compared to normal cells, tumor cells typically present a higher demand for asparagine, making it a compelling target for therapy. In this review article, we investigate different facets of asparagine bioavailability intricate role in malignant tumors raised from solid organs. We take a comprehensive look at asparagine synthetase expression and regulation in cancer, including the impact on tumor growth and metastasis. Moreover, we explore asparagine depletion through L-asparaginase as a potential therapeutic method for aggressive solid tumors, approaching different formulations of the enzyme and combinatory therapies. In summary, here we delve into studies about endogenous and exogenous asparagine availability in solid cancers, analyzing therapeutic implications and future challenges.
Collapse
Affiliation(s)
- Marina Gabriel Fontes
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - William Henry Roldán
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Thomson CG, Aicher TD, Cheng W, Du H, Dudgeon C, Li AH, Li B, Lightcap E, Luo D, Mulvihill M, Pan P, Rahemtulla BF, Rigby AC, Sherborne B, Sood S, Surguladze D, Talbot EPA, Tameire F, Taylor S, Wang Y, Wojnarowicz P, Xiao F, Ramurthy S. Discovery of HC-7366: An Orally Bioavailable and Efficacious GCN2 Kinase Activator. J Med Chem 2024; 67:5259-5271. [PMID: 38530741 DOI: 10.1021/acs.jmedchem.3c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A series of activators of GCN2 (general control nonderepressible 2) kinase have been developed, leading to HC-7366, which has entered the clinic as an antitumor therapy. Optimization resulted in improved permeability compared to that of the original indazole hinge binding scaffold, while maintaining potency at GCN2 and selectivity over PERK (protein kinase RNA-like endoplasmic reticulum kinase). The improved ADME properties of this series led to robust in vivo compound exposure in both rats and mice, allowing HC-7366 to be dosed in xenograft models, demonstrating that activation of the GCN2 pathway by this compound leads to tumor growth inhibition.
Collapse
Affiliation(s)
- Christopher G Thomson
- Integrated Drug Discovery Services, Pharmaron UK Ltd., West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, U.K
| | - Thomas D Aicher
- Department of Chemistry, Lycera Corporation, Ann Arbor, Michigan 48103, United States
| | - Weiwei Cheng
- Pharmaron Beijing, Company Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, China
| | - Hongwen Du
- Pharmaron Beijing, Company Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, China
| | - Crissy Dudgeon
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| | - An-Hu Li
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| | - Baozhong Li
- Pharmaron Beijing, Company Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, China
| | - Eric Lightcap
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| | - Diheng Luo
- Pharmaron Xi'an, Company Ltd., No. 1, 12th Fengcheng Road, Xi'an 710018, China
| | - Mark Mulvihill
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| | - Pengwei Pan
- Pharmaron Beijing, Company Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, China
| | - Benjamin F Rahemtulla
- Integrated Drug Discovery Services, Pharmaron UK Ltd., West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, U.K
| | - Alan C Rigby
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| | - Bradley Sherborne
- Integrated Drug Discovery Services, Pharmaron UK Ltd., West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, U.K
| | - Sanjeev Sood
- Preformulation and Preclinical Services, Pharmaron UK Ltd., West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, U.K
| | - David Surguladze
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| | - Eric P A Talbot
- Integrated Drug Discovery Services, Pharmaron UK Ltd., West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, U.K
| | - Feven Tameire
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| | - Simon Taylor
- Integrated Drug Discovery Services, Pharmaron UK Ltd., West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, U.K
| | - Yi Wang
- Pharmaron Beijing, Company Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, China
| | - Paulina Wojnarowicz
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| | - Fenfen Xiao
- Pharmaron Xi'an, Company Ltd., No. 1, 12th Fengcheng Road, Xi'an 710018, China
| | - Savithri Ramurthy
- HiberCell Inc., 619 West 54th Street, New York, New York 10019, United States
| |
Collapse
|
17
|
Huang X, Li Y, Zhang J, Yan L, Zhao H, Ding L, Bhatara S, Yang X, Yoshimura S, Yang W, Karol SE, Inaba H, Mullighan C, Litzow M, Zhu X, Zhang Y, Stock W, Jain N, Jabbour E, Kornblau SM, Konopleva M, Pui CH, Paietta E, Evans W, Yu J, Yang JJ. Single-cell systems pharmacology identifies development-driven drug response and combination therapy in B cell acute lymphoblastic leukemia. Cancer Cell 2024; 42:552-567.e6. [PMID: 38593781 PMCID: PMC11008188 DOI: 10.1016/j.ccell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.
Collapse
Affiliation(s)
- Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230601, China
| | - Yizhen Li
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, China
| | - Jingliao Zhang
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lei Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huanbin Zhao
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Satoshi Yoshimura
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenjian Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaofan Zhu
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingchi Zhang
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wendy Stock
- Department of Medicine Section of Hematology-Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Nitin Jain
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elias Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elisabeth Paietta
- Cancer Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William Evans
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Jun J Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
18
|
Chen Y, Chen J, Zou Z, Xu L, Li J. Crosstalk between autophagy and metabolism: implications for cell survival in acute myeloid leukemia. Cell Death Discov 2024; 10:46. [PMID: 38267416 PMCID: PMC10808206 DOI: 10.1038/s41420-024-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Acute myeloid leukemia (AML), a prevalent form of leukemia in adults, is often characterized by low response rates to chemotherapy, high recurrence rates, and unfavorable prognosis. A critical barrier in managing refractory or recurrent AML is the resistance to chemotherapy. Increasing evidence indicates that tumor cell metabolism plays a crucial role in AML progression, survival, metastasis, and treatment resistance. Autophagy, an essential regulator of cellular energy metabolism, is increasingly recognized for its role in the metabolic reprogramming of AML. Autophagy sustains leukemia cells during chemotherapy by not only providing energy but also facilitating rapid proliferation through the supply of essential components such as amino acids and nucleotides. Conversely, the metabolic state of AML cells can influence the activity of autophagy. Their mutual coordination helps maintain intrinsic cellular homeostasis, which is a significant contributor to chemotherapy resistance in leukemia cells. This review explores the recent advancements in understanding the interaction between autophagy and metabolism in AML cells, emphasizing their roles in cell survival and drug resistance. A comprehensive understanding of the interplay between autophagy and leukemia cell metabolism can shed light on leukemia cell survival strategies, particularly under adverse conditions such as chemotherapy. This insight may also pave the way for innovative targeted treatment strategies.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, 318000, Taizhou, Zhejiang, China.
| | - Jia Chen
- School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, 542005, Liuzhou, Guangxi, China.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, Zhejiang, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, 637000, Nanchong, Sichuan, China
| |
Collapse
|
19
|
Park JE, Desai H, Liboy-Lugo J, Gu S, Jowhar Z, Xu A, Floor SN. IGHMBP2 deletion suppresses translation and activates the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571166. [PMID: 38168189 PMCID: PMC10760061 DOI: 10.1101/2023.12.11.571166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
IGHMBP2 is a non-essential, superfamily 1 DNA/RNA helicase that is mutated in patients with rare neuromuscular diseases SMARD1 and CMT2S. IGHMBP2 is implicated in translational and transcriptional regulation via biochemical association with ribosomal proteins, pre-rRNA processing factors, and tRNA-related species. To uncover the cellular consequences of perturbing IGHMBP2, we generated full and partial IGHMBP2 deletion K562 cell lines. Using polysome profiling and a nascent protein synthesis assay, we found that IGHMBP2 deletion modestly reduces global translation. We performed Ribo-seq and RNA-seq and identified diverse gene expression changes due to IGHMBP2 deletion, including ATF4 upregulation. With recent studies showing the ISR can contribute to tRNA metabolism-linked neuropathies, we asked whether perturbing IGHMBP2 promotes ISR activation. We generated ATF4 reporter cell lines and found IGHMBP2 knockout cells demonstrate basal, chronic ISR activation. Our work expands upon the impact of IGHMBP2 in translation and elucidates molecular mechanisms that may link mutant IGHMBP2 to severe clinical phenotypes.
Collapse
Affiliation(s)
- Jesslyn E. Park
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Hetvee Desai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
| | - José Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Ziad Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA, 94143
| |
Collapse
|
20
|
Ge MK, Zhang C, Zhang N, He P, Cai HY, Li S, Wu S, Chu XL, Zhang YX, Ma HM, Xia L, Yang S, Yu JX, Yao SY, Zhou XL, Su B, Chen GQ, Shen SM. The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency. Cell Metab 2023; 35:2216-2230.e8. [PMID: 37979583 DOI: 10.1016/j.cmet.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) monitors cellular amino acid changes for function, but the molecular mediators of this process remain to be fully defined. Here, we report that depletion of cellular amino acids, either alone or in combination, leads to the ubiquitination of mTOR, which inhibits mTORC1 kinase activity by preventing substrate recruitment. Mechanistically, amino acid depletion causes accumulation of uncharged tRNAs, thereby stimulating GCN2 to phosphorylate FBXO22, which in turn accrues in the cytoplasm and ubiquitinates mTOR at Lys2066 in a K27-linked manner. Accordingly, mutation of mTOR Lys2066 abolished mTOR ubiquitination in response to amino acid depletion, rendering mTOR insensitive to amino acid starvation both in vitro and in vivo. Collectively, these data reveal a novel mechanism of amino acid sensing by mTORC1 via a previously unknown GCN2-FBXO22-mTOR pathway that is uniquely controlled by uncharged tRNAs.
Collapse
Affiliation(s)
- Meng-Kai Ge
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Ping He
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Hai-Yan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, SJTU-SM, Shanghai 200025, China
| | - Shuai Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Xi-Li Chu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yu-Xue Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Hong-Ming Ma
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jian-Xiu Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, SJTU-SM, Shanghai 200025, China.
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Hainan Academy of Medical Sciences, Hainan Medical University, Hainan 571199, China.
| | - Shao-Ming Shen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China.
| |
Collapse
|
21
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
22
|
Levy JL, Mirek ET, Rodriguez EM, Zalma B, Burns J, Jonsson WO, Sampath H, Staschke KA, Wek RC, Anthony TG. GCN2 is required to maintain core body temperature in mice during acute cold. Am J Physiol Endocrinol Metab 2023; 325:E624-E637. [PMID: 37792040 PMCID: PMC10864021 DOI: 10.1152/ajpendo.00181.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose.NEW & NOTEWORTHY This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.
Collapse
Affiliation(s)
- Jordan L Levy
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Emily T Mirek
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Esther M Rodriguez
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Brian Zalma
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Jeffrey Burns
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - William O Jonsson
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Harini Sampath
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States
| | - Tracy G Anthony
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| |
Collapse
|
23
|
Gauthier-Coles G, Rahimi F, Bröer A, Bröer S. Inhibition of GCN2 Reveals Synergy with Cell-Cycle Regulation and Proteostasis. Metabolites 2023; 13:1064. [PMID: 37887389 PMCID: PMC10609202 DOI: 10.3390/metabo13101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The integrated stress response is a signaling network comprising four branches, each sensing different cellular stressors, converging on the phosphorylation of eIF2α to downregulate global translation and initiate recovery. One of these branches includes GCN2, which senses cellular amino acid insufficiency and participates in maintaining amino acid homeostasis. Previous studies have shown that GCN2 is a viable cancer target when amino acid stress is induced by inhibiting an additional target. In this light, we screened numerous drugs for their potential to synergize with the GCN2 inhibitor TAP20. The drug sensitivity of six cancer cell lines to a panel of 25 compounds was assessed. Each compound was then combined with TAP20 at concentrations below their IC50, and the impact on cell growth was evaluated. The strongly synergistic combinations were further characterized using synergy analyses and matrix-dependent invasion assays. Inhibitors of proteostasis and the MEK-ERK pathway, as well as the pan-CDK inhibitors, flavopiridol, and seliciclib, were potently synergistic with TAP20 in two cell lines. Among their common CDK targets was CDK7, which was more selectively targeted by THZ-1 and synergized with TAP20. Moreover, these combinations were partially synergistic when assessed using matrix-dependent invasion assays. However, TAP20 alone was sufficient to restrict invasion at concentrations well below its growth-inhibitory IC50. We conclude that GCN2 inhibition can be further explored in vivo as a cancer target.
Collapse
Affiliation(s)
- Gregory Gauthier-Coles
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
- School of Medicine, Yale University, New Haven, CT 06504, USA
| | - Farid Rahimi
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (G.G.-C.); (F.R.); (A.B.)
| |
Collapse
|
24
|
Mukhopadhyay S, Amodeo ME, Lee ASY. eIF3d controls the persistent integrated stress response. Mol Cell 2023; 83:3303-3313.e6. [PMID: 37683648 PMCID: PMC10528100 DOI: 10.1016/j.molcel.2023.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Cells respond to intrinsic and extrinsic stresses by reducing global protein synthesis and activating gene programs necessary for survival. Here, we show that the integrated stress response (ISR) is driven by the non-canonical cap-binding protein eIF3d that acts as a critical effector to control core stress response orchestrators, the translation factor eIF2α and the transcription factor ATF4. We find that during persistent stress, eIF3d activates the translation of the kinase GCN2, inducing eIF2α phosphorylation and inhibiting general protein synthesis. In parallel, eIF3d upregulates the m6A demethylase ALKBH5 to drive 5' UTR-specific demethylation of stress response genes, including ATF4. Ultimately, this cascade converges on ATF4 expression by increasing mRNA engagement of translation machinery and enhancing ribosome bypass of upstream open reading frames (uORFs). Our results reveal that eIF3d acts in a life-or-death decision point during chronic stress and uncover a synergistic signaling mechanism in which translational cascades complement transcriptional amplification to control essential cellular processes.
Collapse
Affiliation(s)
- Shaoni Mukhopadhyay
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria E Amodeo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amy S Y Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Lobel GP, Jiang Y, Simon MC. Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chem Biol 2023; 30:1015-1032. [PMID: 37703882 PMCID: PMC10528750 DOI: 10.1016/j.chembiol.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Over the last two decades, the rapidly expanding field of tumor metabolism has enhanced our knowledge of the impact of nutrient availability on metabolic reprogramming in cancer. Apart from established roles in cancer cells themselves, various nutrients, metabolic enzymes, and stress responses are key to the activities of tumor microenvironmental immune, fibroblastic, endothelial, and other cell types that support malignant transformation. In this article, we review our current understanding of how nutrient availability affects metabolic pathways and responses in both cancer and "stromal" cells, by dissecting major examples and their regulation of cellular activity. Understanding the relationship of nutrient availability to cellular behaviors in the tumor ecosystem will broaden the horizon of exploiting novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Graham P Lobel
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
27
|
Loxha L, Ibrahim NK, Stasche AS, Cinar B, Dolgner T, Niessen J, Schreek S, Fehlhaber B, Forster M, Stanulla M, Hinze L. GSK3α Regulates Temporally Dynamic Changes in Ribosomal Proteins upon Amino Acid Starvation in Cancer Cells. Int J Mol Sci 2023; 24:13260. [PMID: 37686063 PMCID: PMC10488213 DOI: 10.3390/ijms241713260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.
Collapse
Affiliation(s)
- Lorent Loxha
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Büsra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany;
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| |
Collapse
|
28
|
Lamichhane PP, Samir P. Cellular Stress: Modulator of Regulated Cell Death. BIOLOGY 2023; 12:1172. [PMID: 37759572 PMCID: PMC10525759 DOI: 10.3390/biology12091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Cellular stress response activates a complex program of an adaptive response called integrated stress response (ISR) that can allow a cell to survive in the presence of stressors. ISR reprograms gene expression to increase the transcription and translation of stress response genes while repressing the translation of most proteins to reduce the metabolic burden. In some cases, ISR activation can lead to the assembly of a cytoplasmic membraneless compartment called stress granules (SGs). ISR and SGs can inhibit apoptosis, pyroptosis, and necroptosis, suggesting that they guard against uncontrolled regulated cell death (RCD) to promote organismal homeostasis. However, ISR and SGs also allow cancer cells to survive in stressful environments, including hypoxia and during chemotherapy. Therefore, there is a great need to understand the molecular mechanism of the crosstalk between ISR and RCD. This is an active area of research and is expected to be relevant to a range of human diseases. In this review, we provided an overview of the interplay between different cellular stress responses and RCD pathways and their modulation in health and disease.
Collapse
Affiliation(s)
| | - Parimal Samir
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
29
|
Lines CL, McGrath MJ, Dorwart T, Conn CS. The integrated stress response in cancer progression: a force for plasticity and resistance. Front Oncol 2023; 13:1206561. [PMID: 37601686 PMCID: PMC10435748 DOI: 10.3389/fonc.2023.1206561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 08/22/2023] Open
Abstract
During their quest for growth, adaptation, and survival, cancer cells create a favorable environment through the manipulation of normal cellular mechanisms. They increase anabolic processes, including protein synthesis, to facilitate uncontrolled proliferation and deplete the tumor microenvironment of resources. As a dynamic adaptation to the self-imposed oncogenic stress, cancer cells promptly hijack translational control to alter gene expression. Rewiring the cellular proteome shifts the phenotypic balance between growth and adaptation to promote therapeutic resistance and cancer cell survival. The integrated stress response (ISR) is a key translational program activated by oncogenic stress that is utilized to fine-tune protein synthesis and adjust to environmental barriers. Here, we focus on the role of ISR signaling for driving cancer progression. We highlight mechanisms of regulation for distinct mRNA translation downstream of the ISR, expand on oncogenic signaling utilizing the ISR in response to environmental stresses, and pinpoint the impact this has for cancer cell plasticity during resistance to therapy. There is an ongoing need for innovative drug targets in cancer treatment, and modulating ISR activity may provide a unique avenue for clinical benefit.
Collapse
Affiliation(s)
| | | | | | - Crystal S. Conn
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
30
|
Sannino S, Manuel AM, Shang C, Wendell SG, Wipf P, Brodsky JL. Non-Essential Amino Acid Availability Influences Proteostasis and Breast Cancer Cell Survival During Proteotoxic Stress. Mol Cancer Res 2023; 21:675-690. [PMID: 36961392 PMCID: PMC10330057 DOI: 10.1158/1541-7786.mcr-22-0843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/11/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023]
Abstract
Protein homeostasis (proteostasis) regulates tumor growth and proliferation when cells are exposed to proteotoxic stress, such as during treatment with certain chemotherapeutics. Consequently, cancer cells depend to a greater extent on stress signaling, and require the integrated stress response (ISR), amino acid metabolism, and efficient protein folding and degradation pathways to survive. To define how these interconnected pathways are wired when cancer cells are challenged with proteotoxic stress, we investigated how amino acid abundance influences cell survival when Hsp70, a master proteostasis regulator, is inhibited. We previously demonstrated that cancer cells exposed to a specific Hsp70 inhibitor induce the ISR via the action of two sensors, GCN2 and PERK, in stress-resistant and sensitive cells, respectively. In resistant cells, the induction of GCN2 and autophagy supported resistant cell survival, yet the mechanism by which these events were induced remained unclear. We now report that amino acid availability reconfigures the proteostasis network. Amino acid supplementation, and in particular arginine addition, triggered cancer cell death by blocking autophagy. Consistent with the importance of amino acid availability, which when limited activates GCN2, resistant cancer cells succumbed when challenged with a potentiator for another amino acid sensor, mTORC1, in conjunction with Hsp70 inhibition. IMPLICATIONS These data position amino acid abundance, GCN2, mTORC1, and autophagy as integrated therapeutic targets whose coordinated modulation regulates the survival of proteotoxic-resistant breast cancer cells.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison M. Manuel
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
- Mass Spectrometry and Proteomics Core, The University of Utah, Salt Lake City, UT, USA
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G. Wendell
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Xu X, Arunagiri A, Alam M, Haataja L, Evans CR, Zhao I, Castro-Gutierrez R, Russ HA, Demangel C, Qi L, Tsai B, Liu M, Arvan P. Nutrient-dependent regulation of β-cell proinsulin content. J Biol Chem 2023; 299:104836. [PMID: 37209827 PMCID: PMC10302188 DOI: 10.1016/j.jbc.2023.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023] Open
Abstract
Insulin is made from proinsulin, but the extent to which fasting/feeding controls the homeostatically regulated proinsulin pool in pancreatic β-cells remains largely unknown. Here, we first examined β-cell lines (INS1E and Min6, which proliferate slowly and are routinely fed fresh medium every 2-3 days) and found that the proinsulin pool size responds to each feeding within 1 to 2 h, affected both by the quantity of fresh nutrients and the frequency with which they are provided. We observed no effect of nutrient feeding on the overall rate of proinsulin turnover as quantified from cycloheximide-chase experiments. We show that nutrient feeding is primarily linked to rapid dephosphorylation of translation initiation factor eIF2α, presaging increased proinsulin levels (and thereafter, insulin levels), followed by its rephosphorylation during the ensuing hours that correspond to a fall in proinsulin levels. The decline of proinsulin levels is blunted by the integrated stress response inhibitor, ISRIB, or by inhibition of eIF2α rephosphorylation with a general control nonderepressible 2 (not PERK) kinase inhibitor. In addition, we demonstrate that amino acids contribute importantly to the proinsulin pool; mass spectrometry shows that β-cells avidly consume extracellular glutamine, serine, and cysteine. Finally, we show that in both rodent and human pancreatic islets, fresh nutrient availability dynamically increases preproinsulin, which can be quantified without pulse-labeling. Thus, the proinsulin available for insulin biosynthesis is rhythmically controlled by fasting/feeding cycles.
Collapse
Affiliation(s)
- Xiaoxi Xu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Maroof Alam
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Charles R Evans
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ivy Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Roberto Castro-Gutierrez
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA; Diabetes Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Holger A Russ
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA; Diabetes Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Inserm U1224, Université Paris Cité, Paris, France
| | - Ling Qi
- Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Billy Tsai
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
32
|
Gold LT, Bray SE, Kernohan NM, Henderson N, Nowicki M, Masson GR. The amino-acid stress sensing eIF2α kinase GCN2 is a survival biomarker for malignant mesothelioma. BJC REPORTS 2023; 1:4. [PMID: 39516654 PMCID: PMC11523953 DOI: 10.1038/s44276-023-00004-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 11/16/2024]
Abstract
BACKGROUND Malignant mesothelioma is a tumour that is strongly associated with a history of asbestos exposure, and which derives from mesothelial cells that line the serous cavities of the body. The tumour most commonly arises in the pleural cavity, but can also arise in the pericardium, peritoneum, and tunica vaginalis. At present the lesion has a very poor prognosis and is an incurable form of cancer with median survival times of up to 19 months being quoted for some histological subtypes. A large proportion of mesotheliomas have been shown to be arginine auxotrophic, leading to new research for therapeutics which might exploit this potential vulnerability. METHODS We measured the levels of General Control Non-derepressible 2 (GCN2) protein in malignant mesothelioma tumour samples and determined whether these levels correlate with clinical outcomes. RESULTS We observed that the expression levels of GCN2 correlated with patient survival and was an independent prognostic variable in pairwise comparisons with all available clinical data. CONCLUSION These findings suggest that GCN2 levels provides prognostic information and may allow for stratification of care pathways. It may suggest that targeting GCN2 is a viable strategy for mesothelioma therapy development.
Collapse
Affiliation(s)
- Lyssa T Gold
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland
| | - Susan E Bray
- Tayside Biorepository, University of Dundee, Dundee, Scotland
| | | | - Nina Henderson
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland
| | - Maisie Nowicki
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland
| | - Glenn R Masson
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland.
| |
Collapse
|
33
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
34
|
Mijit M, Boner M, Cordova RA, Gampala S, Kpenu E, Klunk AJ, Zhang C, Kelley MR, Staschke KA, Fishel ML. Activation of the integrated stress response (ISR) pathways in response to Ref-1 inhibition in human pancreatic cancer and its tumor microenvironment. Front Med (Lausanne) 2023; 10:1146115. [PMID: 37181357 PMCID: PMC10174294 DOI: 10.3389/fmed.2023.1146115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is characterized by a profound inflammatory tumor microenvironment (TME) with high heterogeneity, metastatic propensity, and extreme hypoxia. The integrated stress response (ISR) pathway features a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) and regulate translation in response to diverse stress conditions, including hypoxia. We previously demonstrated that eIF2 signaling pathways were profoundly affected in response to Redox factor-1 (Ref-1) knockdown in human PDAC cells. Ref-1 is a dual function enzyme with activities of DNA repair and redox signaling, responds to cellular stress, and regulates survival pathways. The redox function of Ref-1 directly regulates multiple transcription factors including HIF-1α, STAT3, and NF-κB, which are highly active in the PDAC TME. However, the mechanistic details of the crosstalk between Ref-1 redox signaling and activation of ISR pathways are unclear. Following Ref-1 knockdown, induction of ISR was observed under normoxic conditions, while hypoxic conditions were sufficient to activate ISR irrespective of Ref-1 levels. Inhibition of Ref-1 redox activity increased expression of p-eIF2 and ATF4 transcriptional activity in a concentration-dependent manner in multiple human PDAC cell lines, and the effect on eIF2 phosphorylation was PERK-dependent. Treatment with PERK inhibitor, AMG-44 at high concentrations resulted in activation of the alternative ISR kinase, GCN2 and induced levels of p-eIF2 and ATF4 in both tumor cells and cancer-associated fibroblasts (CAFs). Combination treatment with inhibitors of Ref-1 and PERK enhanced cell killing effects in both human pancreatic cancer lines and CAFs in 3D co-culture, but only at high doses of PERK inhibitors. This effect was completely abrogated when Ref-1 inhibitors were used in combination with GCN2 inhibitor, GCN2iB. We demonstrate that targeting of Ref-1 redox signaling activates the ISR in multiple PDAC lines and that this activation of ISR is critical for inhibition of the growth of co-culture spheroids. Combination effects were only observed in physiologically relevant 3D co-cultures, suggesting that the model system utilized can greatly affect the outcome of these targeted agents. Inhibition of Ref-1 signaling induces cell death through ISR signaling pathways, and combination of Ref-1 redox signaling blockade with ISR activation could be a novel therapeutic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan Boner
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Ricardo A Cordova
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eyram Kpenu
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Angela J Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chi Zhang
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - MarK R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kirk A Staschke
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
35
|
Chang MC, Staklinski SJ, Malut VR, Pierre GL, Kilberg MS, Merritt ME. Metabolomic Profiling of Asparagine Deprivation in Asparagine Synthetase Deficiency Patient-Derived Cells. Nutrients 2023; 15:1938. [PMID: 37111157 PMCID: PMC10145675 DOI: 10.3390/nu15081938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The natural amino acid asparagine (Asn) is required by cells to sustain function and proliferation. Healthy cells can synthesize Asn through asparagine synthetase (ASNS) activity, whereas specific cancer and genetically diseased cells are forced to obtain asparagine from the extracellular environment. ASNS catalyzes the ATP-dependent synthesis of Asn from aspartate by consuming glutamine as a nitrogen source. Asparagine Synthetase Deficiency (ASNSD) is a disease that results from biallelic mutations in the ASNS gene and presents with congenital microcephaly, intractable seizures, and progressive brain atrophy. ASNSD often leads to premature death. Although clinical and cellular studies have reported that Asn deprivation contributes to the disease symptoms, the global metabolic effects of Asn deprivation on ASNSD-derived cells have not been studied. We analyzed two previously characterized cell culture models, lymphoblastoids and fibroblasts, each carrying unique ASNS mutations from families with ASNSD. Metabolomics analysis demonstrated that Asn deprivation in ASNS-deficient cells led to disruptions across a wide range of metabolites. Moreover, we observed significant decrements in TCA cycle intermediates and anaplerotic substrates in ASNS-deficient cells challenged with Asn deprivation. We have identified pantothenate, phenylalanine, and aspartate as possible biomarkers of Asn deprivation in normal and ASNSD-derived cells. This work implies the possibility of a novel ASNSD diagnostic via targeted biomarker analysis of a blood draw.
Collapse
Affiliation(s)
- Mario C. Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stephen J. Staklinski
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Vinay R. Malut
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Geraldine L. Pierre
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
36
|
Carlson KR, Georgiadis MM, Tameire F, Staschke KA, Wek RC. Activation of Gcn2 by small molecules designed to be inhibitors. J Biol Chem 2023; 299:104595. [PMID: 36898579 PMCID: PMC10124904 DOI: 10.1016/j.jbc.2023.104595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
The integrated stress response (ISR) is an important mechanism by which cells confer protection against environmental stresses. Central to the ISR is a collection of related protein kinases that monitor stress conditions, such as Gcn2 (EIF2AK4) that recognizes nutrient limitations, inducing phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Gcn2 phosphorylation of eIF2 lowers bulk protein synthesis, conserving energy and nutrients, coincident with preferential translation of stress-adaptive gene transcripts, such as that encoding the Atf4 transcriptional regulator. While Gcn2 is central for cell protection to nutrient stress and its depletion in humans leads to pulmonary disorders, Gcn2 can also contribute to the progression of cancers and facilitate neurological disorders during chronic stress. Consequently, specific ATP-competitive inhibitors of Gcn2 protein kinase have been developed. In this study, we report that one such Gcn2 inhibitor, Gcn2iB, can activate Gcn2, and we probe the mechanism by which this activation occurs. Low concentrations of Gcn2iB increase Gcn2 phosphorylation of eIF2 and enhance Atf4 expression and activity. Of importance, Gcn2iB can activate Gcn2 mutants devoid of functional regulatory domains or with certain kinase domain substitutions derived from Gcn2-deficient human patients. Other ATP-competitive inhibitors can also activate Gcn2, although there are differences in their mechanisms of activation. These results provide a cautionary note about the pharmacodynamics of eIF2 kinase inhibitors in therapeutic applications. Compounds designed to be kinase inhibitors that instead directly activate Gcn2, even loss of function variants, may provide tools to alleviate deficiencies in Gcn2 and other regulators of the ISR.
Collapse
Affiliation(s)
- Kenneth R Carlson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | | | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA.
| |
Collapse
|
37
|
Takahashi M, Okamoto Y, Kato Y, Shirahama H, Tsukahara S, Sugimoto Y, Tomida A. Activating mutations in EGFR and PI3K promote ATF4 induction for NSCLC cell survival during amino acid deprivation. Heliyon 2023; 9:e14799. [PMID: 37025861 PMCID: PMC10070656 DOI: 10.1016/j.heliyon.2023.e14799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Some oncoproteins along with stress kinase general control non-derepressible 2 (GCN2) can ensure the induction of activating transcription factor 4 (ATF4) to counteract amino acid deprivation; however, little is known regarding the role of the oncogenic EGFR-PI3K pathway. In this study, we demonstrate that both mutated EGFR and PIK3CA contribute to ATF4 induction following GCN2 activation in NSCLC cells. The inhibition of EGFR or PI3K mutant proteins, pharmacologically or through genetic knockdown, inhibited ATF4 induction without affecting GCN2 activation. A downstream analysis revealed that the oncogenic EGFR-PI3K pathway may utilize mTOR-mediated translation control mechanisms for ATF4 induction. Furthermore, in NSCLC cells harboring co-mutations in EGFR and PIK3CA, the combined inhibition of these oncoproteins markedly suppressed ATF4 induction and the subsequent gene expression program as well as cell viability during amino acid deprivation. Our findings establish a role for the oncogenic EGFR-PI3K pathway in the adaptive stress response and provide a strategy to improve EGFR-targeted NSCLC therapy.
Collapse
|
38
|
Dai XJ, Xue LP, Ji SK, Zhou Y, Gao Y, Zheng YC, Liu HM, Liu HM. Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur J Med Chem 2023; 249:115101. [PMID: 36724635 DOI: 10.1016/j.ejmech.2023.115101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, the development of targeted drugs has featured prominently in the treatment of cancer, which is among the major causes of mortality globally. Triazole-fused pyrimidines, a widely-used class of heterocycles in medicinal chemistry, have attracted considerable interest as potential anticancer agents that target various cancer-associated targets in recent years, demonstrating them as valuable templates for discovering novel anticancer candidates. The current review concentrates on the latest advancements of triazole-pyrimidines as target-based anticancer agents, including works published between 2007 and the present (2007-2022). The structure-activity relationships (SARs) and multiple pathways are also reviewed to shed light on the development of more effective and biotargeted anticancer candidates.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Lei-Peng Xue
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Shi-Kun Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ying Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
39
|
Xing F, Qin Y, Xu J, Wang W, Zhang B. Stress granules dynamics and promising functions in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188885. [PMID: 36990249 DOI: 10.1016/j.bbcan.2023.188885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
Stress granules (SGs), non-membrane subcellular organelles made up of non-translational messenger ribonucleoproteins (mRNPs), assemble in response to various environmental stimuli in cancer cells, including pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC) which has a low 5-year survival rate of 10%. The pertinent research on SGs and pancreatic cancer has not, however, been compiled. In this review, we talk about the dynamics of SGs and their positive effects on pancreatic cancer such as SGs promote PDAC viability and repress apoptosis, meanwhile emphasizing the connection between SGs in pancreatic cancer and signature mutations such KRAS, P53, and SMAD4 as well as the functions of SGs in antitumor drug resistance. This novel stress management technique may open the door to better treatment options in the future.
Collapse
|
40
|
Boulton DP, Caino MC. Mitochondria engage the integrated stress response to promote tumor growth. Oncotarget 2023. [DOI: 10.18632/oncotarget.28372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
41
|
The antitumor activity of a novel GCN2 inhibitor in head and neck squamous cell carcinoma cell lines. Transl Oncol 2022; 27:101592. [PMID: 36436443 PMCID: PMC9694079 DOI: 10.1016/j.tranon.2022.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND General control nonderepressible 2 (GCN2) senses amino acid deprivation and activates activating transcription factor 4 (ATF4), which regulates many adaptive genes. We evaluated the impact of AST-0513, a novel GCN2 inhibitor, on the GCN2-ATF4 pathway. Additionally, we evaluated the antitumor effects of AST-0513 in amino acid deprivation in head and neck squamous cell carcinoma (HNSCC) cell lines. METHODS GCN2 expression in HNSCC patient tissues was measured by immunohistochemistry. Five HNSCC cell lines (SNU-1041, SNU-1066, SNU-1076, Detroit-562, FaDu) grown under amino acid deprivation conditions, were treated with AST-0513. After AST-0513 treatment, cell proliferation was measured by CCK-8 assay. Flow cytometry was used to evaluate apoptosis and cell cycle phase. In addition, immunoblotting was performed to evaluate the effect of AST-0513 on the GCN2-ATF4 pathway, cell cycle arrest, and apoptosis. RESULTS We demonstrated that GCN2 was highly expressed in HNSCC patient tissues. AST-0513 inhibited the GCN2-ATF4 pathway in all five HNSCC cell lines. Inhibiting the GCN2-ATF4 pathway during amino acid deprivation reduced HNSCC cell proliferation and prevented adaptation to nutrient stress. Moreover, AST-0513 treatment led to p21 and Cyclin B1 accumulation and G2/M phase cycle arrest. Also, apoptosis was increased, consistent with increased bax expression, increased bcl-xL phosphorylation, and decreased bcl-2 expression. CONCLUSION A novel GCN2 inhibitor, AST-0513, inhibited the GCN2-ATF4 pathway and has antitumor activity that inhibits proliferation and promotes cell cycle arrest and apoptosis. Considering the high expression of GCN2 in HNSCC patients, these results suggest the potential role of GCN2 inhibitor for the treatment of HNSCC.
Collapse
|
42
|
Nwosu GO, Powell JA, Pitson SM. Targeting the integrated stress response in hematologic malignancies. Exp Hematol Oncol 2022; 11:94. [DOI: 10.1186/s40164-022-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWhile numerous targeted therapies have been recently adopted to improve the treatment of hematologic malignancies, acquired or intrinsic resistance poses a significant obstacle to their efficacy. Thus, there is increasing need to identify novel, targetable pathways to further improve therapy for these diseases. The integrated stress response is a signaling pathway activated in cancer cells in response to both dysregulated growth and metabolism, and also following exposure to many therapies that appears one such targetable pathway for improved treatment of these diseases. In this review, we discuss the role of the integrated stress response in the biology of hematologic malignancies, its critical involvement in the mechanism of action of targeted therapies, and as a target for pharmacologic modulation as a novel strategy for the treatment of hematologic malignancies.
Collapse
|
43
|
Shin S, Solorzano J, Liauzun M, Pyronnet S, Bousquet C, Martineau Y. Translational alterations in pancreatic cancer: a central role for the integrated stress response. NAR Cancer 2022; 4:zcac031. [PMID: 36325577 PMCID: PMC9615149 DOI: 10.1093/narcan/zcac031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
mRNA translation is a key mechanism for cancer cell proliferation and stress adaptation. Regulation of this machinery implicates upstream pathways such as PI3K/AKT/mTOR, RAS/MEK/ERK and the integrated stress response (ISR), principally coordinating the translation initiation step. During the last decade, dysregulation of the mRNA translation process in pancreatic cancer has been widely reported, and shown to critically impact on cancer initiation, development and survival. This includes translation dysregulation of mRNAs encoding oncogenes and tumor suppressors. Hence, cancer cells survive a stressful microenvironment through a flexible regulation of translation initiation for rapid adaptation. The ISR pathway has an important role in chemoresistance and shows high potential therapeutic interest. Despite the numerous translational alterations reported in pancreatic cancer, their consequences are greatly underestimated. In this review, we summarize the different translation dysregulations described in pancreatic cancer, which make it invulnerable, as well as the latest drug discoveries bringing a glimmer of hope.
Collapse
Affiliation(s)
- Sauyeun Shin
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Jacobo Solorzano
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Mehdi Liauzun
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Stéphane Pyronnet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Corinne Bousquet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | | |
Collapse
|
44
|
Brüggenthies JB, Fiore A, Russier M, Bitsina C, Brötzmann J, Kordes S, Menninger S, Wolf A, Conti E, Eickhoff JE, Murray PJ. A cell-based chemical-genetic screen for amino acid stress response inhibitors reveals torins reverse stress kinase GCN2 signaling. J Biol Chem 2022; 298:102629. [PMID: 36273589 PMCID: PMC9668732 DOI: 10.1016/j.jbc.2022.102629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
mTORC1 and GCN2 are serine/threonine kinases that control how cells adapt to amino acid availability. mTORC1 responds to amino acids to promote translation and cell growth while GCN2 senses limiting amino acids to hinder translation via eIF2α phosphorylation. GCN2 is an appealing target for cancer therapies because malignant cells can harness the GCN2 pathway to temper the rate of translation during rapid amino acid consumption. To isolate new GCN2 inhibitors, we created cell-based, amino acid limitation reporters via genetic manipulation of Ddit3 (encoding the transcription factor CHOP). CHOP is strongly induced by limiting amino acids and in this context, GCN2-dependent. Using leucine starvation as a model for essential amino acid sensing, we unexpectedly discovered ATP-competitive PI3 kinase-related kinase inhibitors, including ATR and mTOR inhibitors like torins, completely reversed GCN2 activation in a time-dependent way. Mechanistically, via inhibiting mTORC1-dependent translation, torins increased intracellular leucine, which was sufficient to reverse GCN2 activation and the downstream integrated stress response including stress-induced transcriptional factor ATF4 expression. Strikingly, we found that general translation inhibitors mirrored the effects of torins. Therefore, we propose that mTOR kinase inhibitors concurrently inhibit different branches of amino acid sensing by a dual mechanism involving direct inhibition of mTOR and indirect suppression of GCN2 that are connected by effects on the translation machinery. Collectively, our results highlight distinct ways of regulating GCN2 activity.
Collapse
Affiliation(s)
| | | | - Marion Russier
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | | | | - Elena Conti
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | - Peter J. Murray
- Max Planck Institute for Biochemistry, Martinsried, Germany,For correspondence: Peter J. Murray
| |
Collapse
|
45
|
Nishikawa G, Kawada K, Hanada K, Maekawa H, Itatani Y, Miyoshi H, Taketo MM, Obama K. Targeting Asparagine Synthetase in Tumorgenicity Using Patient-Derived Tumor-Initiating Cells. Cells 2022; 11:cells11203273. [PMID: 36291140 PMCID: PMC9600002 DOI: 10.3390/cells11203273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Reprogramming of energy metabolism is regarded as one of the hallmarks of cancer; in particular, oncogenic RAS has been shown to be a critical regulator of cancer metabolism. Recently, asparagine metabolism has been heavily investigated as a novel target for cancer treatment. For example, Knott et al. showed that asparagine bioavailability governs metastasis in a breast cancer model. Gwinn et al. reported the therapeutic vulnerability of asparagine biosynthesis in KRAS-driven non-small cell lung cancer. We previously reported that KRAS-mutated CRC cells can adapt to glutamine depletion through upregulation of asparagine synthetase (ASNS), an enzyme that synthesizes asparagine from aspartate. In our previous study, we assessed the efficacy of asparagine depletion using human cancer cell lines. In the present study, we evaluated the clinical relevance of asparagine depletion using a novel patient-derived spheroid xenograft (PDSX) mouse model. First, we examined ASNS expression in 38 spheroid lines and found that 12 lines (12/37, 32.4%) displayed high ASNS expression, whereas 26 lines (25/37, 67.6%) showed no ASNS expression. Next, to determine the role of asparagine metabolism in tumor growth, we established ASNS-knockdown spheroid lines using lentiviral short hairpin RNA constructs targeting ASNS. An in vitro cell proliferation assay demonstrated a significant decrease in cell proliferation upon asparagine depletion in the ASNS-knockdown spheroid lines, and this was not observed in the control spheroids lines. In addition, we examined asparagine inhibition with the anti-leukemia drug L-asparaginase (L-Asp) and observed a considerable reduction in cell proliferation at a low concentration (0.1 U/mL) in the ASNS-knockdown spheroid lines, whereas it exhibited limited inhibition of control spheroid lines at the same concentration. Finally, we used the PDSX model to assess the effects of asparagine depletion on tumor growth in vivo. The nude mice injected with ASNS-knockdown or control spheroid lines were administered with L-Asp once a day for 28 days. Surprisingly, in mice injected with ASNS-knockdown spheroids, the administration of L-Asp dramatically inhibited tumor engraftment. On the other hands, in mice injected with control spheroids, the administration of L-Asp had no effect on tumor growth inhibition at all. These results suggest that ASNS inhibition could be critical in targeting asparagine metabolism in cancers.
Collapse
Affiliation(s)
- Gen Nishikawa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Surgery, Kyoto City Hospital, Kyoto 604-8845, Japan
| | - Kenji Kawada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Correspondence: ; Tel.: +81-75-366-7595
| | - Keita Hanada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Surgery, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan
| | - Hisatsugu Maekawa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshiro Itatani
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroyuki Miyoshi
- Institute for Advancement of Clinical and Translational Science (IACT), Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Makoto Mark Taketo
- Institute for Advancement of Clinical and Translational Science (IACT), Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
46
|
Srivastava S, Jiang J, Misra J, Seim G, Staschke KA, Zhong M, Zhou L, Liu Y, Chen C, Davé U, Kapur R, Batra S, Zhang C, Zhou J, Fan J, Wek RC, Zhang J. Asparagine bioavailability regulates the translation of MYC oncogene. Oncogene 2022; 41:4855-4865. [PMID: 36182969 PMCID: PMC9617787 DOI: 10.1038/s41388-022-02474-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
Amino acid restriction has recently emerged as a compelling strategy to inhibit tumor growth. Recent work suggests that amino acids can regulate cellular signaling in addition to their role as biosynthetic substrates. Using lymphoid cancer cells as a model, we found that asparagine depletion acutely reduces the expression of c-MYC protein without changing its mRNA expression. Furthermore, asparagine depletion inhibits the translation of MYC mRNA without altering the rate of MYC protein degradation. Of interest, the inhibitory effect on MYC mRNA translation during asparagine depletion is not due to the activation of the general controlled nonderepressible 2 (GCN2) pathway and is not a consequence of the inhibition of global protein synthesis. In addition, both the 5' and 3' untranslated regions (UTRs) of MYC mRNA are not required for this inhibitory effect. Finally, using a MYC-driven mouse B cell lymphoma model, we found that shRNA inhibition of asparagine synthetase (ASNS) or pharmacological inhibition of asparagine production can significantly reduce the MYC protein expression and tumor growth when environmental asparagine becomes limiting. Since MYC is a critical oncogene, our results uncover a molecular connection between MYC mRNA translation and asparagine bioavailability and shed light on a potential to target MYC oncogene post-transcriptionally through asparagine restriction.
Collapse
Affiliation(s)
- Sankalp Srivastava
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Jiang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gretchen Seim
- Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Minghua Zhong
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Leonardo Zhou
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yu Liu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Chong Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Utpal Davé
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandeep Batra
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiehao Zhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jing Fan
- Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
47
|
Gauthier-Coles G, Bröer A, McLeod MD, George AJ, Hannan RD, Bröer S. Identification and characterization of a novel SNAT2 (SLC38A2) inhibitor reveals synergy with glucose transport inhibition in cancer cells. Front Pharmacol 2022; 13:963066. [PMID: 36210829 PMCID: PMC9532951 DOI: 10.3389/fphar.2022.963066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
SNAT2 (SLC38A2) is a sodium-dependent neutral amino acid transporter, which is important for the accumulation of amino acids as nutrients, the maintenance of cellular osmolarity, and the activation of mTORC1. It also provides net glutamine for glutaminolysis and consequently presents as a potential target to treat cancer. A high-throughput screening assay was developed to identify new inhibitors of SNAT2 making use of the inducible nature of SNAT2 and its electrogenic mechanism. Using an optimized FLIPR membrane potential (FMP) assay, a curated scaffold library of 33934 compounds was screened to identify 3-(N-methyl (4-methylphenyl)sulfonamido)-N-(2-trifluoromethylbenzyl)thiophene-2-carboxamide as a potent inhibitor of SNAT2. In two different assays an IC50 of 0.8–3 µM was determined. The compound discriminated against the close transporter homologue SNAT1. MDA-MB-231 breast cancer and HPAFII pancreatic cancer cell lines tolerated the SNAT2 inhibitor up to a concentration of 100 µM but in combination with tolerable doses of the glucose transport inhibitor Bay-876, proliferative growth of both cell lines was halted. This points to synergy between inhibition of glycolysis and glutaminolysis in cancer cells.
Collapse
Affiliation(s)
- Gregory Gauthier-Coles
- Research School of Biological Sciences, Australian National University, Canberra, ACT, Australia
| | - Angelika Bröer
- Research School of Biological Sciences, Australian National University, Canberra, ACT, Australia
| | - Malcolm Donald McLeod
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Amee J. George
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ross D. Hannan
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biological Sciences, Australian National University, Canberra, ACT, Australia
- *Correspondence: Stefan Bröer,
| |
Collapse
|
48
|
Jackson JJ, Shibuya GM, Ravishankar B, Adusumilli L, Bradford D, Brockstedt DG, Bucher C, Bui M, Cho C, Colas C, Cutler G, Dukes A, Han X, Hu DX, Jacobson S, Kassner PD, Katibah GE, Ko MYM, Kolhatkar U, Leger PR, Ma A, Marshall L, Maung J, Ng AA, Okano A, Pookot D, Poon D, Ramana C, Reilly MK, Robles O, Schwarz JB, Shakhmin AA, Shunatona HP, Sreenivasan R, Tivitmahaisoon P, Xu M, Zaw T, Wustrow DJ, Zibinsky M. Potent GCN2 Inhibitor Capable of Reversing MDSC-Driven T Cell Suppression Demonstrates In Vivo Efficacy as a Single Agent and in Combination with Anti-Angiogenesis Therapy. J Med Chem 2022; 65:12895-12924. [PMID: 36127295 DOI: 10.1021/acs.jmedchem.2c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound 39 engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID. We also demonstrate the ability of compound 39 to alleviate MDSC-related T cell suppression and restore T cell proliferation, similar to the effect seen in MDSCs from GCN2 knockout mice. In the LL2 syngeneic mouse model, compound 39 demonstrates significant tumor growth inhibition (TGI) as a single agent. Furthermore, TGI mediated by anti-VEGFR was enhanced by treatment with compound 39 demonstrating the complementarity of these two mechanisms.
Collapse
Affiliation(s)
- Jeffrey J Jackson
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Grant M Shibuya
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Buvana Ravishankar
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Lavanya Adusumilli
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Delia Bradford
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Dirk G Brockstedt
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Cyril Bucher
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Minna Bui
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Cynthia Cho
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Christoph Colas
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Gene Cutler
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Adrian Dukes
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Xinping Han
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Dennis X Hu
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Scott Jacobson
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Paul D Kassner
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - George E Katibah
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Michelle Yoo Min Ko
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Urvi Kolhatkar
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Paul R Leger
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Anqi Ma
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Lisa Marshall
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Jack Maung
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Andrew A Ng
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Akinori Okano
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Deepa Pookot
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Daniel Poon
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Chandru Ramana
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Maureen K Reilly
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Omar Robles
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Jacob B Schwarz
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Anton A Shakhmin
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Hunter P Shunatona
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Raashi Sreenivasan
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | | | - Mengshu Xu
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Thant Zaw
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - David J Wustrow
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| | - Mikhail Zibinsky
- RAPT Therapeutics, 561 Eccles Avenue, South San Francisco, California94080, United States
| |
Collapse
|
49
|
Cordova RA, Misra J, Amin PH, Klunk AJ, Damayanti NP, Carlson KR, Elmendorf AJ, Kim HG, Mirek ET, Elzey BD, Miller MJ, Dong XC, Cheng L, Anthony TG, Pili R, Wek RC, Staschke KA. GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis. eLife 2022; 11:e81083. [PMID: 36107759 PMCID: PMC9578714 DOI: 10.7554/elife.81083] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.
Collapse
Affiliation(s)
- Ricardo A Cordova
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Parth H Amin
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Anglea J Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Nur P Damayanti
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
- Department of Neurological Surgery, Indiana University School of MedicineIndianapolisUnited States
| | - Kenneth R Carlson
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Andrew J Elmendorf
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers UniversityNew BrunswickUnited States
| | - Bennet D Elzey
- Department of Comparative Pathology, Purdue UniversityWest LafayetteUnited States
- Department of Urology, Indiana University School of MedicineIndianapolisUnited States
| | - Marcus J Miller
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolisUnited States
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Liang Cheng
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
- Department of Urology, Indiana University School of MedicineIndianapolisUnited States
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolisUnited States
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers UniversityNew BrunswickUnited States
| | - Roberto Pili
- Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
| |
Collapse
|
50
|
Missiaen R, Anderson NM, Kim LC, Nance B, Burrows M, Skuli N, Carens M, Riscal R, Steensels A, Li F, Simon MC. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab 2022; 34:1151-1167.e7. [PMID: 35839757 PMCID: PMC9357184 DOI: 10.1016/j.cmet.2022.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a typically fatal malignancy exhibiting genetic heterogeneity and limited therapy responses. We demonstrate here that HCCs consistently repress urea cycle gene expression and thereby become auxotrophic for exogenous arginine. Surprisingly, arginine import is uniquely dependent on the cationic amino acid transporter SLC7A1, whose inhibition slows HCC cell growth in vitro and in vivo. Moreover, arginine deprivation engages an integrated stress response that promotes HCC cell-cycle arrest and quiescence, dependent on the general control nonderepressible 2 (GCN2) kinase. Inhibiting GCN2 in arginine-deprived HCC cells promotes a senescent phenotype instead, rendering these cells vulnerable to senolytic compounds. Preclinical models confirm that combined dietary arginine deprivation, GCN2 inhibition, and senotherapy promote HCC cell apoptosis and tumor regression. These data suggest novel strategies to treat human liver cancers through targeting SLC7A1 and/or a combination of arginine restriction, inhibition of GCN2, and senolytic agents.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole M Anderson
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura C Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bailey Nance
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Burrows
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Madeleine Carens
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Romain Riscal
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - An Steensels
- Department of Medicine, Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Comprehensive Bone Marrow Failure Center, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fuming Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|