1
|
Rufo J, Qiu C, Han D, Baxter N, Daley G, Wilson MZ. An explainable map of human gastruloid morphospace reveals gastrulation failure modes and predicts teratogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614192. [PMID: 39386623 PMCID: PMC11463602 DOI: 10.1101/2024.09.20.614192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Human gastrulation is a critical stage of development where many pregnancies fail due to poorly understood mechanisms. Using the 2D gastruloid, a stem cell model of human gastrulation, we combined high-throughput drug perturbations and mathematical modelling to create an explainable map of gastruloid morphospace. This map outlines patterning outcomes in response to diverse perturbations and identifies variations in canonical patterning and failure modes. We modeled morphogen dynamics to embed simulated gastruloids into experimentally-determined morphospace to explain how developmental parameters drive patterning. Our model predicted and validated the two greatest sources of patterning variance: cell density-based modulations in Wnt signaling and SOX2 stability. Assigning these parameters as axes of morphospace imparted interpretability. To demonstrate its utility, we predicted novel teratogens that we validated in zebrafish. Overall, we show how stem cell models of development can be used to build a comprehensive and interpretable understanding of the set of developmental outcomes.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chongxu Qiu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Dasol Han
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Naomi Baxter
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gabrielle Daley
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z. Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Center for BioEngineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
2
|
Vo QD, Saito Y, Ida T, Nakamura K, Yuasa S. The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year period: A systematic scoping review. PLoS One 2024; 19:e0302537. [PMID: 38771829 PMCID: PMC11108174 DOI: 10.1371/journal.pone.0302537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Stem cell research, particularly in the domain of induced pluripotent stem cell (iPSC) technology, has shown significant progress. The integration of artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), has played a pivotal role in refining iPSC classification, monitoring cell functionality, and conducting genetic analysis. These enhancements are broadening the applications of iPSC technology in disease modelling, drug screening, and regenerative medicine. This review aims to explore the role of AI in the advancement of iPSC research. METHODS In December 2023, data were collected from three electronic databases (PubMed, Web of Science, and Science Direct) to investigate the application of AI technology in iPSC processing. RESULTS This systematic scoping review encompassed 79 studies that met the inclusion criteria. The number of research studies in this area has increased over time, with the United States emerging as a leading contributor in this field. AI technologies have been diversely applied in iPSC technology, encompassing the classification of cell types, assessment of disease-specific phenotypes in iPSC-derived cells, and the facilitation of drug screening using iPSC. The precision of AI methodologies has improved significantly in recent years, creating a foundation for future advancements in iPSC-based technologies. CONCLUSIONS Our review offers insights into the role of AI in regenerative and personalized medicine, highlighting both challenges and opportunities. Although still in its early stages, AI technologies show significant promise in advancing our understanding of disease progression and development, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Quan Duy Vo
- Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshihiro Ida
- Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazufumi Nakamura
- Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinsuke Yuasa
- Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Wang Z, Numada A, Wagai F, Oda Y, Ohgushi M, Maki K, Adachi T, Eiraku M. Spatial cell fate manipulation of human pluripotent stem cells by controlling the microenvironment using photocurable hydrogel. Development 2024; 151:dev201621. [PMID: 38512805 PMCID: PMC11006369 DOI: 10.1242/dev.201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Human pluripotent stem cells (hPSCs) dynamically respond to their chemical and physical microenvironment, dictating their behavior. However, conventional in vitro studies predominantly employ plastic culture wares, which offer a simplified representation of the in vivo microenvironment. Emerging evidence underscores the pivotal role of mechanical and topological cues in hPSC differentiation and maintenance. In this study, we cultured hPSCs on hydrogel substrates with spatially controlled stiffness. The use of culture substrates that enable precise manipulation of spatial mechanical properties holds promise for better mimicking in vivo conditions and advancing tissue engineering techniques. We designed a photocurable polyethylene glycol-polyvinyl alcohol (PVA-PEG) hydrogel, allowing the spatial control of surface stiffness and geometry at a micrometer scale. This versatile hydrogel can be functionalized with various extracellular matrix proteins. Laminin 511-functionalized PVA-PEG gel effectively supports the growth and differentiation of hPSCs. Moreover, by spatially modulating the stiffness of the patterned gel, we achieved spatially selective cell differentiation, resulting in the generation of intricate patterned structures.
Collapse
Affiliation(s)
- Zhe Wang
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Numada
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
| | - Fumi Wagai
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Oda
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Ohgushi
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8507, Japan
- Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Kumar R, Rottner K, Rao GN. Requirement of Site-Specific Tyrosine Phosphorylation of Cortactin in Retinal Neovascularization and Vascular Leakage. Arterioscler Thromb Vasc Biol 2024; 44:366-390. [PMID: 38126170 PMCID: PMC10872470 DOI: 10.1161/atvbaha.123.320279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Retinal neovascularization is a major cause of vision impairment. Therefore, the purpose of this study is to investigate the mechanisms by which hypoxia triggers the development of abnormal and leaky blood vessels. METHODS A variety of cellular and molecular approaches as well as tissue-specific knockout mice were used to investigate the role of Cttn (cortactin) in retinal neovascularization and vascular leakage. RESULTS We found that VEGFA (vascular endothelial growth factor A) stimulates Cttn phosphorylation at Y421, Y453, and Y470 residues in human retinal microvascular endothelial cells. In addition, we observed that while blockade of Cttn phosphorylation at Y470 inhibited VEGFA-induced human retinal microvascular endothelial cell angiogenic events, suppression of Y421 phosphorylation protected endothelial barrier integrity from disruption by VEGFA. In line with these observations, while blockade of Cttn phosphorylation at Y470 negated oxygen-induced retinopathy-induced retinal neovascularization, interference with Y421 phosphorylation prevented VEGFA/oxygen-induced retinopathy-induced vascular leakage. Mechanistically, while phosphorylation at Y470 was required for its interaction with Arp2/3 and CDC6 facilitating actin polymerization and DNA synthesis, respectively, Cttn phosphorylation at Y421 leads to its dissociation from VE-cadherin, resulting in adherens junction disruption. Furthermore, whereas Cttn phosphorylation at Y470 residue was dependent on Lyn, its phosphorylation at Y421 residue required Syk activation. Accordingly, lentivirus-mediated expression of shRNA targeting Lyn or Syk levels inhibited oxygen-induced retinopathy-induced retinal neovascularization and vascular leakage, respectively. CONCLUSIONS The above observations show for the first time that phosphorylation of Cttn is involved in a site-specific manner in the regulation of retinal neovascularization and vascular leakage. In view of these findings, Cttn could be a novel target for the development of therapeutics against vascular diseases such as retinal neovascularization and vascular leakage.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Gadiparthi N. Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Sun F, Fang C, Shao X, Gao H, Lin Y. A mechanism-based theory of cellular and tissue plasticity. Proc Natl Acad Sci U S A 2023; 120:e2305375120. [PMID: 37871208 PMCID: PMC10622945 DOI: 10.1073/pnas.2305375120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Plastic deformation in cells and tissues has been found to play crucial roles in collective cell migration, cancer metastasis, and morphogenesis. However, the fundamental question of how plasticity is initiated in individual cells and then propagates within the tissue remains elusive. Here, we develop a mechanism-based theory of cellular and tissue plasticity that accounts for all key processes involved, including the activation and development of active contraction at different scales as well as the formation of endocytic vesicles on cell junctions and show that this theory achieves quantitative agreement with all existing experiments. Specifically, it reveals that, in response to optical or mechanical stimuli, the myosin contraction and thermal fluctuation-assisted formation and pinching of endocytic vesicles could lead to permanent shortening of cell junctions and that such plastic constriction can stretch neighboring cells and trigger their active contraction through mechanochemical feedbacks and eventually their plastic deformations as well. Our theory predicts that endocytic vesicles with a size around 1 to 2 µm will most likely be formed and a higher irreversible shortening of cell junctions could be achieved if a long stimulation is split into multiple short ones, all in quantitative agreement with experiments. Our analysis also shows that constriction of cells in tissue can undergo elastic/unratcheted to plastic/ratcheted transition as the magnitude and duration of active contraction increases, ultimately resulting in the propagation of plastic deformation waves within the monolayer with a constant speed which again is consistent with experimental observations.
Collapse
Affiliation(s)
- Fuqiang Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Shenzhen518057, China
| | - Chao Fang
- School of Science, Harbin Institute of Technology, Shenzhen518055, China
| | - Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, China
| | - Huajian Gao
- College of Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Shenzhen518057, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
6
|
White MJ, Singh T, Wang E, Smith Q, Kutys ML. 'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis. J Cell Sci 2023; 136:jcs261130. [PMID: 37795818 PMCID: PMC10565497 DOI: 10.1242/jcs.261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.
Collapse
Affiliation(s)
- Matthew J. White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tania Singh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Lin F, Li X, Sun S, Li Z, Lv C, Bai J, Song L, Han Y, Li B, Fu J, Shao Y. Mechanically enhanced biogenesis of gut spheroids with instability-driven morphomechanics. Nat Commun 2023; 14:6016. [PMID: 37758697 PMCID: PMC10533890 DOI: 10.1038/s41467-023-41760-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Region-specific gut spheroids are precursors for gastrointestinal and pulmonary organoids that hold great promise for fundamental studies and translations. However, efficient production of gut spheroids remains challenging due to a lack of control and mechanistic understanding of gut spheroid morphogenesis. Here, we report an efficient biomaterial system, termed micropatterned gut spheroid generator (μGSG), to generate gut spheroids from human pluripotent stem cells through mechanically enhanced tissue morphogenesis. We show that μGSG enhances the biogenesis of gut spheroids independent of micropattern shape and size; instead, mechanically enforced cell multilayering and crowding is demonstrated as a general, geometry-insensitive mechanism that is necessary and sufficient for promoting spheroid formation. Combining experimental findings and an active-phase-field morphomechanics theory, our study further reveals an instability-driven mechanism and a mechanosensitive phase diagram governing spheroid pearling and fission in μGSG. This work unveils mechanobiological paradigms based on tissue architecture and surface tension for controlling tissue morphogenesis and advancing organoid technology.
Collapse
Affiliation(s)
- Feng Lin
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Xia Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Shiyu Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhongyi Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenglin Lv
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianbo Bai
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Lin Song
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yizhao Han
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
8
|
Vasic I, Libby ARG, Maslan A, Bulger EA, Zalazar D, Krakora Compagno MZ, Streets A, Tomoda K, Yamanaka S, McDevitt TC. Loss of TJP1 disrupts gastrulation patterning and increases differentiation toward the germ cell lineage in human pluripotent stem cells. Dev Cell 2023; 58:1477-1488.e5. [PMID: 37354899 PMCID: PMC10529434 DOI: 10.1016/j.devcel.2023.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Biological patterning events that occur early in development establish proper tissue morphogenesis. Identifying the mechanisms that guide these patterning events is necessary in order to understand the molecular drivers of development and disease and to build tissues in vitro. In this study, we use an in vitro model of gastrulation to study the role of tight junctions and apical/basolateral polarity in modulating bone morphogenic protein-4 (BMP4) signaling and gastrulation-associated patterning in colonies of human pluripotent stem cells (hPSCs). Disrupting tight junctions via knockdown (KD) of the scaffolding tight junction protein-1 (TJP1, also known as ZO1) allows BMP4 to robustly and ubiquitously activate pSMAD1/5 signaling over time, resulting in loss of the patterning phenotype and marked differentiation bias of pluripotent stem cells to primordial germ cell-like cells (PGCLCs). These findings give important insights into how signaling events are regulated and lead to spatial emergence of diverse cell types in vitro.
Collapse
Affiliation(s)
- Ivana Vasic
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
| | - Ashley RG Libby
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Developmental and Stem Cell Biology Ph.D. Program, University of California, San Francisco, San Francisco, CA, USA 94158
| | - Annie Maslan
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
- Department of Bioengineering, University of California, Berkeley, CA, USA 94720
- Center for Computational Biology, University of California, Berkeley, CA, USA 94720
| | - Emily A Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Developmental and Stem Cell Biology Ph.D. Program, University of California, San Francisco, San Francisco, CA, USA 94158
| | - David Zalazar
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
| | | | - Aaron Streets
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
- Department of Bioengineering, University of California, Berkeley, CA, USA 94720
- Center for Computational Biology, University of California, Berkeley, CA, USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Kiichiro Tomoda
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Center for iPS Cell Research and Application, Kyoto, Japan 606-8397
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Center for iPS Cell Research and Application, Kyoto, Japan 606-8397
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA 94158
| |
Collapse
|
9
|
Jeong DP, Montes D, Chang HC, Hanjaya-Putra D. Fractal dimension to characterize interactions between blood and lymphatic endothelial cells. Phys Biol 2023; 20:045004. [PMID: 37224822 PMCID: PMC10258918 DOI: 10.1088/1478-3975/acd898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Spatial patterning of different cell types is crucial for tissue engineering and is characterized by the formation of sharp boundary between segregated groups of cells of different lineages. The cell-cell boundary layers, depending on the relative adhesion forces, can result in kinks in the border, similar to fingering patterns between two viscous partially miscible fluids which can be characterized by its fractal dimension. This suggests that mathematical models used to analyze the fingering patterns can be applied to cell migration data as a metric for intercellular adhesion forces. In this study, we develop a novel computational analysis method to characterize the interactions between blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which form segregated vasculature by recognizing each other through podoplanin. We observed indiscriminate mixing with LEC-LEC and BEC-BEC pairs and a sharp boundary between LEC-BEC pair, and fingering-like patterns with pseudo-LEC-BEC pairs. We found that the box counting method yields fractal dimension between 1 for sharp boundaries and 1.3 for indiscriminate mixing, and intermediate values for fingering-like boundaries. We further verify that these results are due to differential affinity by performing random walk simulations with differential attraction to nearby cells and generate similar migration pattern, confirming that higher differential attraction between different cell types result in lower fractal dimensions. We estimate the characteristic velocity and interfacial tension for our simulated and experimental data to show that the fractal dimension negatively correlates with capillary number (Ca), further indicating that the mathematical models used to study viscous fingering pattern can be used to characterize cell-cell mixing. Taken together, these results indicate that the fractal analysis of segregation boundaries can be used as a simple metric to estimate relative cell-cell adhesion forces between different cell types.
Collapse
Affiliation(s)
- Donghyun Paul Jeong
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Daniel Montes
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Hsueh-Chia Chang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Center for Stem Cell and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Center for Stem Cell and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, United States of America
| |
Collapse
|
10
|
Prahl LS, Porter CM, Liu J, Viola JM, Hughes AJ. Independent control over cell patterning and adhesion on hydrogel substrates for tissue interface mechanobiology. iScience 2023; 26:106657. [PMID: 37168559 PMCID: PMC10164898 DOI: 10.1016/j.isci.2023.106657] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Tissue boundaries and interfaces are engines of morphogenesis in vivo. However, despite a wealth of micropatterning approaches available to control tissue size, shape, and mechanical environment in vitro, fine-scale spatial control of cell positioning within tissue constructs remains an engineering challenge. To address this, we augment DNA "velcro" technology for selective patterning of ssDNA-labeled cells on mechanically defined photoactive polyacrylamide hydrogels. Hydrogels bearing photopatterned single-stranded DNA (ssDNA) features for cell capture are then co-functionalized with extracellular matrix (ECM) proteins to support subsequent adhesion of patterned tissues. ECM protein co-functionalization does not alter ssDNA pattern fidelity, cell capture, or hydrogel elastic stiffness. This approach enables mechanobiology studies and measurements of signaling activity at dynamic cell interfaces with precise initial patterning. Combining DNA velcro patterning and ECM functionalization provides independent control of initial cell placement, adhesion, and mechanics, constituting a new tool for studying biological interfaces and for programming multicellular interactions in engineered tissues.
Collapse
Affiliation(s)
- Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Catherine M. Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
11
|
Kim MH, Kuroda M, Ke D, Thanuthanakhun N, Kino-Oka M. An in vitro culture platform for studying the effect of collective cell migration on spatial self-organization within induced pluripotent stem cell colonies. J Biol Eng 2023; 17:25. [PMID: 36998087 PMCID: PMC10064534 DOI: 10.1186/s13036-023-00341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cells (hiPSCs) provide an in vitro system to identify the impact of cell behavior on the earliest stages of cell fate specification during human development. Here, we developed an hiPSC-based model to study the effect of collective cell migration in meso-endodermal lineage segregation and cell fate decisions through the control of space confinement using a detachable ring culture system. RESULTS The actomyosin organization of cells at the edge of undifferentiated colonies formed in a ring barrier differed from that of the cells in the center of the colony. In addition, even in the absence of exogenous supplements, ectoderm, mesoderm, endoderm, and extraembryonic cells differentiated following the induction of collective cell migration at the colony edge by removing the ring-barrier. However, when collective cell migration was inhibited by blocking E-cadherin function, this fate decision within an hiPSC colony was altered to an ectodermal fate. Furthermore, the induction of collective cell migration at the colony edge using an endodermal induction media enhanced endodermal differentiation efficiency in association with cadherin switching, which is involved in the epithelial-mesenchymal transition. CONCLUSIONS Our findings suggest that collective cell migration can be an effective way to drive the segregation of mesoderm and endoderm lineages, and cell fate decisions of hiPSCs.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaki Kuroda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ding Ke
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Research Base for Cell Manufacturability, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Kim MH, Thanuthanakhun N, Kino-Oka M. Novel strategy to improve hepatocyte differentiation stability through synchronized behavior-driven mechanical memory of iPSCs. Biotechnol Bioeng 2023; 120:593-607. [PMID: 36369977 DOI: 10.1002/bit.28285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Cellular homeostasis is assumed to be regulated by the coordination of dynamic behaviors. Lack of efficient methods for synchronizing large quantities of cells makes studying cell culture strategies for bioprocess development challenging. Here, we demonstrate a novel application of botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, to synchronize behavior-driven mechanical memory in human induced pluripotent stem cell (hiPSC) cultures. Application of HA to hiPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration-and time-dependent manner. Interestingly, cytoskeleton rearrangement in cells with prolonged exposure to HA resulted in mechanical memory synchronization with Yes-associated protein, which increased pluripotent cell homogeneity. Synchronized hiPSCs have higher capability to differentiate into functional hepatocytes than unsynchronized hiPSCs, resulting in improved efficiency and robustness of hepatocyte differentiation. Thus, our strategy for cell behavior synchronization before differentiation induction provides an approach against the instability of differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.,Research Base for Cell Manufacturability, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Srivastava P, Romanazzo S, Kopecky C, Nemec S, Ireland J, Molley TG, Lin K, Jayathilaka PB, Pandzic E, Yeola A, Chandrakanthan V, Pimanda J, Kilian K. Defined Microenvironments Trigger In Vitro Gastrulation in Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203614. [PMID: 36519269 PMCID: PMC9929265 DOI: 10.1002/advs.202203614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Gastrulation is a stage in embryo development where three germ layers arise to dictate the human body plan. In vitro models of gastrulation have been demonstrated by treating pluripotent stem cells with soluble morphogens to trigger differentiation. However, in vivo gastrulation is a multistage process coordinated through feedback between soluble gradients and biophysical forces, with the multipotent epiblast transforming to the primitive streak followed by germ layer segregation. Here, the authors show how constraining pluripotent stem cells to hydrogel islands triggers morphogenesis that mirrors the stages preceding in vivo gastrulation, without the need for exogenous supplements. Within hours of initial seeding, cells display a contractile phenotype at the boundary, which leads to enhanced proliferation, yes-associated protein (YAP) translocation, epithelial to mesenchymal transition, and emergence of SRY-box transcription factor 17 (SOX17)+ T/BRACHYURY+ cells. Molecular profiling and pathway analysis reveals a role for mechanotransduction-coupled wingless-type (WNT) signaling in orchestrating differentiation, which bears similarities to processes observed in whole organism models of development. After two days, the colonies form multilayered aggregates, which can be removed for further growth and differentiation. This approach demonstrates how materials alone can initiate gastrulation, thereby providing in vitro models of development and a tool to support organoid bioengineering efforts.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Stephanie Nemec
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jake Ireland
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Thomas G. Molley
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kang Lin
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Pavithra B. Jayathilaka
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Avani Yeola
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Vashe Chandrakanthan
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - John Pimanda
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- Department of HaematologyPrince of Wales HospitalRandwickNSW2031Australia
| | - Kristopher Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
14
|
Barhouse PS, Andrade MJ, Smith Q. Home Away From Home: Bioengineering Advancements to Mimic the Developmental and Adult Stem Cell Niche. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.832754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inherent self-organizing capacity of pluripotent and adult stem cell populations has advanced our fundamental understanding of processes that drive human development, homeostasis, regeneration, and disease progression. Translating these principles into in vitro model systems has been achieved with the advent of organoid technology, driving innovation to harness patient-specific, cell-laden regenerative constructs that can be engineered to augment or replace diseased tissue. While developmental organization and regenerative adult stem cell niches are tightly regulated in vivo, in vitro analogs lack defined architecture and presentation of physicochemical cues, leading to the unhindered arrangement of mini-tissues that lack complete physiological mimicry. This review aims to highlight the recent integrative engineering approaches that elicit spatio-temporal control of the extracellular niche to direct the structural and functional maturation of pluripotent and adult stem cell derivatives. While the advances presented here leverage multi-pronged strategies ranging from synthetic biology to microfabrication technologies, the methods converge on recreating the biochemical and biophysical milieu of the native tissue to be modeled or regenerated.
Collapse
|
15
|
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz) 2022; 70:4. [PMID: 35043239 PMCID: PMC8766376 DOI: 10.1007/s00005-022-00642-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
16
|
Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine Learning. Stem Cell Rev Rep 2021; 18:559-569. [PMID: 34843066 PMCID: PMC8930923 DOI: 10.1007/s12015-021-10302-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 10/28/2022]
Abstract
The advent of induced pluripotent stem cell (iPSC) technology, which allows to transform one cell type into another, holds the promise to produce therapeutic cells and organs on demand. Realization of this objective is contingent on the ability to demonstrate quality and safety of the cellular product for its intended use. Bottlenecks and backlogs to the clinical use of iPSCs have been fully outlined and a need has emerged for safer and standardized protocols to trigger cell reprogramming and functional differentiation. Amidst great challenges, in particular associated with lengthy culture time and laborious cell characterization, a demand for faster and more accurate methods for the validation of cell identity and function at different stages of the iPSC manufacturing process has risen. Artificial intelligence-based methods are proving helpful for these complex tasks and might revolutionize the way iPSCs are managed to create surrogate cells and organs. Here, we briefly review recent progress in artificial intelligence approaches for evaluation of iPSCs and their derivatives in experimental studies.
Collapse
|
17
|
Jin G, Floy ME, Simmons AD, Arthur MM, Palecek SP. Spatial Stem Cell Fate Engineering via Facile Morphogen Localization. Adv Healthc Mater 2021; 10:e2100995. [PMID: 34459150 PMCID: PMC8568665 DOI: 10.1002/adhm.202100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Indexed: 12/21/2022]
Abstract
Spatiotemporally controlled presentation of morphogens and elaborate modulation of signaling pathways elicit pattern formation during development. Though this process is critical for proper organogenesis, unraveling the mechanisms of developmental biology have been restricted by challenges associated with studying human embryos. Human pluripotent stem cells (hPSCs) have been used to model development in vitro, however difficulties in precise spatiotemporal control of the cellular microenvironment have limited the utility of this model in exploring mechanisms of pattern formation. Here, a simple and versatile method is presented to spatially pattern hPSC differentiation in 2-dimensional culture via localized morphogen adsorption on substrates. Morphogens including bone morphogenetic protein 4 (BMP4), activin A, and WNT3a are patterned to induce localized mesendoderm, endoderm, cardiomyocyte (CM), and epicardial cell (EpiC) differentiation from hPSCs and hPSC-derived progenitors. Patterned CM and EpiC co-differentiation allows investigation of intercellular interactions in a spatially controlled manner and demonstrate improved alignment of CMs in proximity to EpiCs. This approach provides a platform for the controlled and systematic study of early pattern formation. Moreover, this study provides a facile approach to generate 2D patterned hPSC-derived tissue structures for modeling disease and drug interactions.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Madeline M Arthur
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53705, USA
| |
Collapse
|
18
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
19
|
Pitaktong I, Lui C, Lowenthal J, Mattson G, Jung WH, Bai Y, Yeung E, Ong CS, Chen Y, Gerecht S, Hibino N. Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids. Tissue Eng Part C Methods 2021; 26:80-90. [PMID: 31830863 DOI: 10.1089/ten.tec.2019.0228] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction: A key obstacle in the creation of engineered cardiac tissues of clinically relevant sizes is limited diffusion of oxygen and nutrients. Thus, there is a need for organized vascularization within a three-dimensional (3D) tissue environment. Human induced pluripotent stem cell (hiPSC)-derived early vascular cells (EVCs) have shown to improve organization of vascular networks within hydrogels. We hypothesize that introduction of EVCs into 3D microtissue spheroids will lead to increased microvascular formation and improve spheroid formation. Methods: HiPSC-derived cardiomyocytes (CMs) were cocultured with human adult ventricular cardiac fibroblasts (FB) and either human umbilical vein endothelial cells (HUVECs) or hiPSC-derived EVCs for 72 h to form mixed cell spheroids. Three different groups of cell ratios were tested: Group 1 (control) consisted of CM:FB:HUVEC 70:15:15, Group 2 consisted of CM:FB:EVC 70:15:15, and Group 3 consisted of CM:FB:EVC 40:15:45. Vascularization, cell distribution, and cardiac function were investigated. Results: Improved microvasculature was found in EVC spheroids with new morphologies of endothelial organization not found in Group 1 spheroids. CMs were found in a core-shell type distribution in Group 1 spheroids, but more uniformly distributed in EVC spheroids. Contraction rate increased into Group 2 spheroids compared to Group 1 spheroids. Conclusion: The triculture of CM, FB, and EVC within a multicellular cardiac spheroid promotes microvascular formation and cardiac spheroid contraction.
Collapse
Affiliation(s)
- Isaree Pitaktong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Cecillia Lui
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Justin Lowenthal
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Gunnar Mattson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Yang Bai
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Enoch Yeung
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Chin Siang Ong
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Narutoshi Hibino
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
20
|
Berg IC, Mohagheghian E, Habing K, Wang N, Underhill GH. Microtissue Geometry and Cell-Generated Forces Drive Patterning of Liver Progenitor Cell Differentiation in 3D. Adv Healthc Mater 2021; 10:e2100223. [PMID: 33890430 PMCID: PMC8222189 DOI: 10.1002/adhm.202100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Indexed: 01/13/2023]
Abstract
3D microenvironments provide a unique opportunity to investigate the impact of intrinsic mechanical signaling on progenitor cell differentiation. Using a hydrogel-based microwell platform, arrays of 3D, multicellular microtissues in constrained geometries, including toroids and cylinders are produced. These generated distinct mechanical profiles to investigate the impact of geometry and stress on early liver progenitor cell fate using a model liver development system. Image segmentation allows the tracking of individual cell fate and the characterization of distinct patterning of hepatocytic makers to the outer shell of the microtissues, and the exclusion from the inner diameter surface of the toroids. Biliary markers are distributed throughout the interior regions of micropatterned tissues and are increased in toroidal tissues when compared with those in cylindrical tissues. Finite element models of predicted stress distributions, combined with mechanical measurements, demonstrates that intercellular tension correlates with increased hepatocytic fate, while compression correlates with decreased hepatocytic and increased biliary fate. This system, which integrates microfabrication, imaging, mechanical modeling, and quantitative analysis, demonstrates how microtissue geometry can drive patterning of mechanical stresses that regulate cell differentiation trajectories. This approach may serve as a platform for further investigation of signaling mechanisms in the liver and other developmental systems.
Collapse
Affiliation(s)
- Ian C. Berg
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Erfan Mohagheghian
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Krista Habing
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Ning Wang
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Gregory H. Underhill
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Reassembling gastrulation. Dev Biol 2021; 474:71-81. [DOI: 10.1016/j.ydbio.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
|
22
|
Muncie JM, Ayad NME, Lakins JN, Xue X, Fu J, Weaver VM. Mechanical Tension Promotes Formation of Gastrulation-like Nodes and Patterns Mesoderm Specification in Human Embryonic Stem Cells. Dev Cell 2020; 55:679-694.e11. [PMID: 33207224 PMCID: PMC7755684 DOI: 10.1016/j.devcel.2020.10.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/20/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Embryogenesis is directed by morphogens that induce differentiation within a defined tissue geometry. Tissue organization is mediated by cell-cell and cell-extracellular matrix (ECM) adhesions and is modulated by cell tension and tissue-level forces. Whether cell tension regulates development by modifying morphogen signaling is less clear. Human embryonic stem cells (hESCs) exhibit an intrinsic capacity for self-organization, which motivates their use as a tractable model of early human embryogenesis. We engineered patterned substrates that recapitulate the biophysical properties of the early embryo and mediate the self-organization of "gastrulation-like" nodes in cultured hESCs. Tissue geometries that generated local nodes of high cell-adhesion tension directed the spatial patterning of the BMP4-dependent "gastrulation-like" phenotype by enhancing phosphorylation and junctional release of β-catenin to promote Wnt signaling and mesoderm specification. Furthermore, direct force application via mechanical stretching promoted BMP-dependent mesoderm specification, confirming that tissue-level forces can directly regulate cell fate specification in early human development.
Collapse
Affiliation(s)
- Jonathon M Muncie
- Graduate Program in Bioengineering, University of California, San Francisco and University of California Berkeley, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadia M E Ayad
- Graduate Program in Bioengineering, University of California, San Francisco and University of California Berkeley, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Johnathon N Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Liu AQ, Zhang LS, Chen J, Sui BD, Liu J, Zhai QM, Li YJ, Bai M, Chen K, Jin Y, Hu CH, Jin F. Mechanosensing by Gli1 + cells contributes to the orthodontic force-induced bone remodelling. Cell Prolif 2020; 53:e12810. [PMID: 32472648 PMCID: PMC7260067 DOI: 10.1111/cpr.12810] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Gli1+ cells have received extensive attention in tissue homeostasis and injury mobilization. The aim of this study was to investigate whether Gli1+ cells respond to force and contribute to bone remodelling. Materials and methods We established orthodontic tooth movement (OTM) model to assess the bone response for mechanical force. The transgenic mice were utilized to label and inhibit Gli1+ cells, respectively. Additionally, mice that conditional ablate Yes‐associated protein (Yap) in Gli1+ cells were applied in the present study. The tooth movement and bone remodelling were analysed. Results We first found Gli1+ cells expressed in periodontal ligament (PDL). They were proliferated and differentiated into osteoblastic cells under tensile force. Next, both pharmacological and genetic Gli1 inhibition models were utilized to confirm that inhibition of Gli1+ cells led to arrest of bone remodelling. Furthermore, immunofluorescence staining identified classical mechanotransduction factor Yap expressed in Gli1+ cells and decreased after suppression of Gli1+ cells. Additionally, conditional ablation of Yap gene in Gli1+ cells inhibited the bone remodelling as well, suggesting Gli1+ cells are force‐responsive cells. Conclusions Our findings highlighted that Gli1+ cells in PDL directly respond to orthodontic force and further mediate bone remodelling, thus providing novel functional evidence in the mechanism of bone remodelling and first uncovering the mechanical responsive property of Gli1+ cells.
Collapse
Affiliation(s)
- An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Li-Shu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Jin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Qi-Ming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan-Jiao Li
- Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meng Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Kai Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Cheng-Hu Hu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Heemskerk I. Full of potential: Pluripotent stem cells for the systems biology of embryonic patterning. Dev Biol 2020; 460:86-98. [DOI: 10.1016/j.ydbio.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
|
25
|
Ruoß M, Vosough M, Königsrainer A, Nadalin S, Wagner S, Sajadian S, Huber D, Heydari Z, Ehnert S, Hengstler JG, Nussler AK. Towards improved hepatocyte cultures: Progress and limitations. Food Chem Toxicol 2020; 138:111188. [PMID: 32045649 DOI: 10.1016/j.fct.2020.111188] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Hepatotoxicity is among the most frequent reasons for drug withdrawal from the market. Therefore, there is an urgent need for reliable predictive in vitro tests, which unfailingly identify hepatotoxic drug candidates, reduce drug development time, expenses and the number of test animals. Currently, human hepatocytes represent the gold standard. However, the use of hepatocytes is challenging since the cells are not constantly available and lose their metabolic activity in culture. To solve these problems many different approaches have been developed in the past decades. The aim of this review is to present these approaches and to discuss the possibilities and limitations as well as future opportunities and directions.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Sahar Sajadian
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Diana Huber
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Zahra Heydari
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Andreas K Nussler
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Blatchley MR, Gerecht S. Reconstructing the Vascular Developmental Milieu In Vitro. Trends Cell Biol 2020; 30:15-31. [DOI: 10.1016/j.tcb.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
27
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
28
|
Lenzini S, Devine D, Shin JW. Leveraging Biomaterial Mechanics to Improve Pluripotent Stem Cell Applications for Tissue Engineering. Front Bioeng Biotechnol 2019; 7:260. [PMID: 31649928 PMCID: PMC6795675 DOI: 10.3389/fbioe.2019.00260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
A primary goal in tissue engineering is to develop functional tissues by recapitulating salient features of complex biological systems that exhibit a diverse range of physical forces. Induced pluripotent stem cells (iPSCs) are promising autologous cell sources to execute these developmental programs and their functions; however, cells require an extracellular environment where they will sense and respond to mechanical forces. Thus, understanding the biophysical relationships between stem cells and their extracellular environments will improve the ability to design complex biological systems through tissue engineering. This article first describes how the mechanical properties of the environment are important determinants of developmental processes, and then further details how biomaterials can be designed to precisely control the mechanics of cell-matrix interactions in order to study and define their reprogramming, self-renewal, differentiation, and morphogenesis. Finally, a perspective is presented on how insights from the mechanics of cell-matrix interactions can be leveraged to control pluripotent stem cells for tissue engineering applications.
Collapse
Affiliation(s)
- Stephen Lenzini
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel Devine
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Jae-Won Shin
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Vianello S, Lutolf MP. Understanding the Mechanobiology of Early Mammalian Development through Bioengineered Models. Dev Cell 2019; 48:751-763. [PMID: 30913407 DOI: 10.1016/j.devcel.2019.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/13/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Research in developmental biology has been recently enriched by a multitude of in vitro models recapitulating key milestones of mammalian embryogenesis. These models obviate the challenge posed by the inaccessibility of implanted embryos, multiply experimental opportunities, and favor approaches traditionally associated with organoids and tissue engineering. Here, we provide a perspective on how these models can be applied to study the mechano-geometrical contributions to early mammalian development, which still escape direct verification in species that develop in utero. We thus outline new avenues for robust and scalable perturbation of geometry and mechanics in ways traditionally limited to non-implanting developmental models.
Collapse
Affiliation(s)
- Stefano Vianello
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland.
| |
Collapse
|
30
|
Yao K, Rochman ND, Sun SX. Cell Type Classification and Unsupervised Morphological Phenotyping From Low-Resolution Images Using Deep Learning. Sci Rep 2019; 9:13467. [PMID: 31530889 PMCID: PMC6749053 DOI: 10.1038/s41598-019-50010-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Convolutional neural networks (ConvNets) have proven to be successful in both the classification and semantic segmentation of cell images. Here we establish a method for cell type classification utilizing images taken with a benchtop microscope directly from cell culture flasks, eliminating the need for a dedicated imaging platform. Significant flask-to-flask morphological heterogeneity was discovered and overcome to support network generalization to novel data. Cell density was found to be a prominent source of heterogeneity even when cells are not in contact. For the same cell types, expert classification was poor for single-cell images and better for multi-cell images, suggesting experts rely on the identification of characteristic phenotypes within subsets of each population. We also introduce Self-Label Clustering (SLC), an unsupervised clustering method relying on feature extraction from the hidden layers of a ConvNet, capable of cellular morphological phenotyping. This clustering approach is able to identify distinct morphological phenotypes within a cell type, some of which are observed to be cell density dependent. Finally, our cell classification algorithm was able to accurately identify cells in mixed populations, showing that ConvNet cell type classification can be a label-free alternative to traditional cell sorting and identification.
Collapse
Affiliation(s)
- Kai Yao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nash D Rochman
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America. .,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America. .,Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore, Maryland, United States of America.
| |
Collapse
|