1
|
Nishiyama K, Aihara Y, Suzuki T, Takahashi K, Kinoshita T, Dohmae N, Sato A, Hagihara S. Discovery of a Plant 14-3-3 Inhibitor Possessing Isoform Selectivity and In Planta Activity. Angew Chem Int Ed Engl 2024; 63:e202400218. [PMID: 38658314 DOI: 10.1002/anie.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Synthetic modulators of plant 14-3-3s are promising chemical tools both for understanding the 14-3-3-related signaling pathways and controlling plant physiology. Herein, we describe a novel small-molecule inhibitor for 14-3-3 proteins of Arabidopsis thaliana. The inhibitor was identified from unexpected products in a stock solution in dimethyl sulfoxide (DMSO) of an in-house chemical library. Mass spectroscopy, mutant-based analyses, fluorescence polarization assays, and thermal shift assays revealed that the inhibitor covalently binds to an allosteric site of 14-3-3 with isoform selectivity. Moreover, infiltration of the inhibitor to Arabidopsis leaves suppressed the stomatal aperture. The inhibitor should provide new insight into the design of potent and isoform-selective 14-3-3 modulators.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Takehiro Suzuki
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Naoshi Dohmae
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
2
|
He M, Li Y, Li Y, Dong B, Yu H. Dynamics of Chromatin Opening across Larval Development in the Urochordate Ascidian Ciona savignyi. Int J Mol Sci 2024; 25:2793. [PMID: 38474039 DOI: 10.3390/ijms25052793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Ascidian larvae undergo tail elongation and notochord lumenogenesis, making them an ideal model for investigating tissue morphogenesis in embryogenesis. The cellular and mechanical mechanisms of these processes have been studied; however, the underlying molecular regulatory mechanism remains to be elucidated. In this study, assays for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were applied to investigate potential regulators of the development of ascidian Ciona savignyi larvae. Our results revealed 351 and 138 differentially accessible region genes through comparisons of ATAC-seq data between stages 21 and 24 and between stages 24 and 25, respectively. A joint analysis of RNA-seq and ATAC-seq data revealed a correlation between chromatin accessibility and gene transcription. We further verified the tissue expression patterns of 12 different genes. Among them, Cs-matrix metalloproteinase 24 (MMP24) and Cs-krüppel-like factor 5 (KLF5) were highly expressed in notochord cells. Functional assay results demonstrated that both genes are necessary for notochord lumen formation and expansion. Finally, we performed motif enrichment analysis of the differentially accessible regions in different tailbud stages and summarized the potential roles of these motif-bearing transcription factors in larval development. Overall, our study found a correlation between gene expression and chromatin accessibility and provided a vital resource for understanding the mechanisms of the development of ascidian embryos.
Collapse
Affiliation(s)
- Muchun He
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Yuting Li
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajuan Li
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haiyan Yu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Peng H, Qiao J, Wang G, Shi W, Xia F, Qiao R, Dong B. A collagen-rich arch in the urochordate notochord coordinates cell shaping and multi-tissue elongation. Curr Biol 2023; 33:5390-5403.e3. [PMID: 37995694 DOI: 10.1016/j.cub.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Cell and tissue reshaping is crucial for coordinating three-dimensional pattern formation, in which the size and shape of the cells must be accurately regulated via signal transport and communication among tissues. However, the identity of signaling and transportation mechanisms in this process remains elusive. In our study, we identified an extracellular matrix (ECM) structure with a vertebra-like shape surrounding the central notochord tissue in the larval tail of the urochordate Ciona. Additionally, we verified that the ECM structure was formed de novo, mainly from collagens secreted by notochord cells. Fluorescence recovery after photobleaching and simulation results revealed that this structure was formed via diffusional collagen flow from a notochord that was restricted and molded in the spaces among tail tissues. We revealed that the collagen structure was essential for notochord cell arrangement and elongation. Furthermore, we observed that the central notochord connects with the epidermis through this ECM structure. The disruption of this structure by collagen knockdown and loss-of-collagen function caused the failure of notochord elongation. More importantly, the epidermis could not elongate proportionally with notochord, indicating that the collagen-rich structure serves as a scaffold to coordinate the concurrent elongation of the tail tissues. These findings provide insights into how the central tissue forms and molds its surrounding ECM structure, by not only regulating its own morphogenesis but also functioning as a scaffold for signal transmission to orchestrate the coordinated morphologic reshaping of the surrounding tissues.
Collapse
Affiliation(s)
- Hongzhe Peng
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jinghan Qiao
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guilin Wang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenjie Shi
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fan Xia
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Runyu Qiao
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao 266237, China; MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Lin B, Shi W, Lu Q, Shito TT, Yu H, Dong B. Establishment of a developmental atlas and transgenetic tools in the ascidian Styela clava. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:435-454. [PMID: 38045543 PMCID: PMC10689645 DOI: 10.1007/s42995-023-00200-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/28/2023] [Indexed: 12/05/2023]
Abstract
The ascidian Styela clava is an ecologically important species that is distributed along coastal regions worldwide. It has a long history as a model animal for evolutionary and developmental biology research owing to its phylogenetic position between vertebrates and invertebrates, and its classical mosaic expression patterns. However, the standard developmental atlas and protocols and tools for molecular manipulation of this organism are inadequate. In this study, we established a standard developmental table and provided a web-based digital image resource for S. clava embryogenesis at each developmental stage from fertilized eggs to hatching larvae by utilizing confocal laser microscopy and 3D reconstruction images. It takes around 10 h for fertilized eggs to develop into swimming larvae and 20-30 min to complete the tail regression processes at the metamorphic stage. We observed that the notochord cells in S. clava embryos did not produce an extracellular lumen like Ciona robusta, but showed polarized elongation behaviors, providing us an ideal comparative model to study tissue morphogenesis. In addition, we established a chemical-washing procedure to remove the chorion easily from the fertilized eggs. Based on the dechorionation technique, we further realized transgenic manipulation by electroporation and successfully applied tissue-specific fluorescent labeling in S. clava embryos. Our work provides a standard imaging atlas and powerful genetic tools for investigating embryogenesis and evolution using S. clava as a model organism. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00200-2.
Collapse
Affiliation(s)
- Boyan Lin
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Wenjie Shi
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Qiongxuan Lu
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Takumi T. Shito
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522 Japan
| | - Haiyan Yu
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Bo Dong
- Fang Zongxi Center, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
5
|
Naturale VF, Pickett MA, Feldman JL. Persistent cell contacts enable E-cadherin/HMR-1- and PAR-3-based symmetry breaking within a developing C. elegans epithelium. Dev Cell 2023; 58:1830-1846.e12. [PMID: 37552986 PMCID: PMC10592304 DOI: 10.1016/j.devcel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/10/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Tissue-wide patterning is essential to multicellular development, requiring cells to individually generate polarity axes and coordinate them in space and time with neighbors. Using the C. elegans intestinal epithelium, we identified a patterning mechanism that is informed by cell contact lifetime asymmetry and executed via the scaffolding protein PAR-3 and the transmembrane protein E-cadherin/HMR-1. Intestinal cells break symmetry as PAR-3 and HMR-1 recruit apical determinants into punctate "local polarity complexes" (LPCs) at homotypic contacts. LPCs undergo an HMR-1-based migration to a common midline, thereby establishing tissue-wide polarity. Thus, symmetry breaking results from PAR-3-dependent intracellular polarization coupled to HMR-1-based tissue-level communication, which occurs through a non-adhesive signaling role for HMR-1. Differential lifetimes between homotypic and heterotypic cell contacts are created by neighbor exchanges and oriented divisions, patterning where LPCs perdure and thereby breaking symmetry. These cues offer a logical and likely conserved framework for how epithelia without obvious molecular asymmetries can polarize.
Collapse
Affiliation(s)
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Ouyang X, Wu B, Yu H, Dong B. DYRK1-mediated phosphorylation of endocytic components is required for extracellular lumen expansion in ascidian notochord. Biol Res 2023; 56:10. [PMID: 36899423 PMCID: PMC10007804 DOI: 10.1186/s40659-023-00422-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND The biological tube is a basal biology structure distributed in all multicellular animals, from worms to humans, and has diverse biological functions. Formation of tubular system is crucial for embryogenesis and adult metabolism. Ascidian Ciona notochord lumen is an excellent in vivo model for tubulogenesis. Exocytosis has been known to be essential for tubular lumen formation and expansion. The roles of endocytosis in tubular lumen expansion remain largely unclear. RESULTS In this study, we first identified a dual specificity tyrosine-phosphorylation-regulated kinase 1 (DYRK1), the protein kinase, which was upregulated and required for ascidian notochord extracellular lumen expansion. We demonstrated that DYRK1 interacted with and phosphorylated one of the endocytic components endophilin at Ser263 that was essential for notochord lumen expansion. Moreover, through phosphoproteomic sequencing, we revealed that in addition to endophilin, the phosphorylation of other endocytic components was also regulated by DYRK1. The loss of function of DYRK1 disturbed endocytosis. Then, we demonstrated that clathrin-mediated endocytosis existed and was required for notochord lumen expansion. In the meantime, the results showed that the secretion of notochord cells is vigorous in the apical membrane. CONCLUSIONS We found the co-existence of endocytosis and exocytosis activities in apical membrane during lumen formation and expansion in Ciona notochord. A novel signaling pathway is revealed that DYRK1 regulates the endocytosis by phosphorylation that is required for lumen expansion. Our finding thus indicates a dynamic balance between endocytosis and exocytosis is crucial to maintain apical membrane homeostasis that is essential for lumen growth and expansion in tubular organogenesis.
Collapse
Affiliation(s)
- Xiuke Ouyang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bingtong Wu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Haiyan Yu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laoshan Laboratory, Qingdao, 266237, China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Nuclear Factor of Activated T Cells-5 Regulates Notochord Lumenogenesis in Chordate Larval Development. Int J Mol Sci 2022; 23:ijms232214407. [PMID: 36430885 PMCID: PMC9698811 DOI: 10.3390/ijms232214407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Osmoregulation is essential for organisms to adapt to the exterior environment and plays an important role in embryonic organogenesis. Tubular organ formation usually involves a hyperosmotic lumen environment. The mechanisms of how the cells respond and regulate lumen formation remain largely unknown. Here, we reported that the nuclear factor of activated T cells-5 (NFAT5), the only transcription factor in the NFAT family involved in the cellular responses to hypertonic stress, regulated notochord lumen formation in chordate Ciona. Ciona NFAT5 (Ci-NFAT5) was expressed in notochord, and its expression level increased during notochord lumen formation and expansion. Knockout and expression of the dominant negative of NFAT5 in Ciona embryos resulted in the failure of notochord lumen expansion. We further demonstrated that the Ci-NFAT5 transferred from the cytoplasm into nuclei in HeLa cells under the hyperosmotic medium, indicating Ci-NFAT5 can respond the hypertonicity. To reveal the underly mechanisms, we predicted potential downstream genes of Ci-NFAT5 and further validated Ci-NFAT5-interacted genes by the luciferase assay. The results showed that Ci-NFAT5 promoted SLC26A6 expression. Furthermore, expression of a transport inactivity mutant of SLC26A6 (L421P) in notochord led to the failure of lumen expansion, phenocopying that of Ci-NFAT5 knockout. These results suggest that Ci-NFAT5 regulates notochord lumen expansion via the SLC26A6 axis. Taken together, our results reveal that the chordate NFAT5 responds to hypertonic stress and regulates lumen osmotic pressure via an ion channel pathway on luminal organ formation.
Collapse
|
8
|
Kogure YS, Muraoka H, Koizumi WC, Gelin-alessi R, Godard B, Oka K, Heisenberg CP, Hotta K. Admp regulates tail bending by controlling ventral epidermal cell polarity via phosphorylated myosin localization in Ciona. Development 2022; 149:277282. [DOI: 10.1242/dev.200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
ABSTRACT
Ventral tail bending, which is transient but pronounced, is found in many chordate embryos and constitutes an interesting model of how tissue interactions control embryo shape. Here, we identify one key upstream regulator of ventral tail bending in embryos of the ascidian Ciona. We show that during the early tailbud stages, ventral epidermal cells exhibit a boat-shaped morphology (boat cell) with a narrow apical surface where phosphorylated myosin light chain (pMLC) accumulates. We further show that interfering with the function of the BMP ligand Admp led to pMLC localizing to the basal instead of the apical side of ventral epidermal cells and a reduced number of boat cells. Finally, we show that cutting ventral epidermal midline cells at their apex using an ultraviolet laser relaxed ventral tail bending. Based on these results, we propose a previously unreported function for Admp in localizing pMLC to the apical side of ventral epidermal cells, which causes the tail to bend ventrally by resisting antero-posterior notochord extension at the ventral side of the tail.
Collapse
Affiliation(s)
- Yuki S. Kogure
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| | - Hiromochi Muraoka
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| | - Wataru C. Koizumi
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| | - Raphaël Gelin-alessi
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| | - Benoit Godard
- Institute of Science and Technology Austria 2 , Klosterneuburg , 3400, Austria
| | - Kotaro Oka
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
- Waseda Research Institute for Science and Engineering, Waseda University 3 , 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480 , Japan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University 4 , Kaohsiung City 80708 , Taiwan
| | | | - Kohji Hotta
- Keio University 1 Department of Biosciences and Informatics, Faculty of Science and Technology , , Kouhoku-ku, Yokohama 223-8522 , Japan
| |
Collapse
|
9
|
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1236-1280. [PMID: 33893979 DOI: 10.1007/s11427-020-1915-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.
Collapse
|
10
|
Pair FS, Yacoubian TA. 14-3-3 Proteins: Novel Pharmacological Targets in Neurodegenerative Diseases. Trends Pharmacol Sci 2021; 42:226-238. [PMID: 33518287 PMCID: PMC8011313 DOI: 10.1016/j.tips.2021.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
14-3-3 proteins are a family of proteins expressed throughout the body and implicated in many diseases, from cancer to neurodegenerative disorders. While these proteins do not have direct enzymatic activity, they form a hub for many signaling pathways via protein-protein interactions (PPIs). 14-3-3 interactions have proven difficult to target with traditional pharmacological methods due to the unique nature of their binding. However, recent advances in compound development utilizing a range of tools, from thermodynamic binding site analysis to computational molecular modeling techniques, have opened the door to targeting these interactions. Compounds are already being developed targeting 14-3-3 interactions with potential therapeutic implication for neurodegenerative disorders, but challenges still remain in optimizing specificity and target engagement to avoid unintended negative consequences arising from targeting 14-3-3 signaling networks.
Collapse
Affiliation(s)
- F Sanders Pair
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Peng H, Qiao R, Dong B. Polarity Establishment and Maintenance in Ascidian Notochord. Front Cell Dev Biol 2020; 8:597446. [PMID: 33195278 PMCID: PMC7661463 DOI: 10.3389/fcell.2020.597446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Cell and tissue polarity due to the extracellular signaling and intracellular gene cascades, in turn, signals the directed cell behaviors and asymmetric tissue architectures that play a crucial role in organogenesis and embryogenesis. The notochord is a characteristic midline organ in chordate embryos that supports the body structure and produces positioning signaling. This review summarizes cellular and tissue-level polarities during notochord development in ascidians. At the early stage, planar cell polarity (PCP) is initialized, which drives cell convergence extension and migration to form a rod-like structure. Subsequently, the notochord undergoes a mesenchymal-epithelial transition, becoming an unusual epithelium in which cells have two opposing apical domains facing the extracellular lumen deposited between adjacent notochord cells controlled by apical-basal (AB) polarity. Cytoskeleton distribution is one of the main downstream events of cell polarity. Some cytoskeleton polarity patterns are a consequence of PCP: however, an additional polarized cytoskeleton, together with Rho signaling, might serve as a guide for correct AB polarity initiation in the notochord. In addition, the notochord's mechanical properties are associated with polarity establishment and transformation, which bridge signaling regulation and tissue mechanical properties that enable the coordinated organogenesis during embryo development.
Collapse
Affiliation(s)
- Hongzhe Peng
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Runyu Qiao
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Kim K, Gibboney S, Razy-Krajka F, Lowe EK, Wang W, Stolfi A. Regulation of Neurogenesis by FGF Signaling and Neurogenin in the Invertebrate Chordate Ciona. Front Cell Dev Biol 2020; 8:477. [PMID: 32656209 PMCID: PMC7324659 DOI: 10.3389/fcell.2020.00477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Neurogenesis is a complex sequence of cellular processes and behaviors driven by the coordinated expression of conserved effectors. The bipolar tail neurons (BTNs) of Ciona develop according to a highly dynamic, yet highly stereotyped developmental program and thus could serve as an accessible model system for neurogenesis, including underlying cell behaviors like neuronal delamination, migration, and polarized axon outgrowth. Here we investigate both the upstream events that shape BTN neurogenesis through spatiotemporal regulation of the conserved proneural factor Neurog, spatiotemporal, and the gene expression profile of differentiating BTNs downstream of Neurog activity. We show that, although early FGF signaling is required for Neurog expression and BTN specification, Fgf8/17/18 is expressed in tail tip cells at later stages and suppresses sustained Neurog expression in the anterior BTN (aBTN) lineage, such that only one cell (the one furthest from the source of Fgf8/17/18) maintains Neurog expression and becomes a neuron. Curiously, Fgf8/17/18 might not affect neurogenesis of the posterior BTNs (pBTNs), which are in direct contact with the Fgf8/17/18-expressing cells. Finally, to profile gene expression associated with BTN neurogenesis we performed RNAseq of isolated BTN lineage cells in which BTN neurogenesis was enhanced or suppressed by perturbing Neurog function. This allowed us to identify several candidate genes that might play conserved roles in neurogenesis and neuronal migration in other animals, including mammals.
Collapse
Affiliation(s)
- Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Susanne Gibboney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Wei Wang
- Department of Biology, New York University, New York, NY, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
13
|
Di Gregorio A. The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates. Curr Top Dev Biol 2020; 139:325-374. [PMID: 32450965 DOI: 10.1016/bs.ctdb.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The notochord is a structure required for support and patterning of all chordate embryos, from sea squirts to humans. An increasing amount of information on notochord development and on the molecular strategies that ensure its proper morphogenesis has been gleaned through studies in the sea squirt Ciona. This invertebrate chordate offers a fortunate combination of experimental advantages, ranging from translucent, fast-developing embryos to a compact genome and impressive biomolecular resources. These assets have enabled the rapid identification of numerous notochord genes and cis-regulatory regions, and provide a rather unique opportunity to reconstruct the gene regulatory network that controls the formation of this developmental and evolutionary chordate landmark. This chapter summarizes the morphogenetic milestones that punctuate notochord formation in Ciona, their molecular effectors, and the current knowledge of the gene regulatory network that ensures the accurate spatial and temporal orchestration of these processes.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
14
|
Bhattachan P, Rae J, Yu H, Jung W, Wei J, Parton RG, Dong B. Ascidian caveolin induces membrane curvature and protects tissue integrity and morphology during embryogenesis. FASEB J 2019; 34:1345-1361. [PMID: 31914618 DOI: 10.1096/fj.201901281r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023]
Abstract
Cell morphology and tissue integrity are essential for embryogenesis. Caveolins are membrane proteins that induce the formation of surface pits called caveolae that serve as membrane reservoirs for cell and tissue protection during development. In vertebrates, caveolin 1 (Cav1) and caveolin 3 (Cav3) are required for caveola formation. However, the formation of caveola and the function of caveolins in invertebrates are largely unknown. In this study, three caveolins, Cav-a, Cav-b, and CavY, are identified in the genome of the invertebrate chordate Ciona spp. Based on phylogenetic analysis, Cav-a is found to be closely related to the vertebrate Cav1 and Cav3. In situ hybridization shows that Cav-a is expressed in Ciona embryonic notochord and muscle. Cell-free experiments, model cell culture systems, and in vivo experiments demonstrate that Ciona Cav-a has the ability to induce membrane curvature at the plasma membrane. Knockdown of Cav-a in Ciona embryos causes loss of invaginations in the plasma membrane and results in the failure of notochord elongation and lumenogenesis. Expression of a dominant-negative Cav-a point mutation causes cells to change shape and become displaced from the muscle and notochord to disrupt tissue integrity. Furthermore, we demonstrate that Cav-a vesicles show polarized trafficking and localize at the luminal membrane during notochord lumenogenesis. Taken together, these results show that the invertebrate chordate caveolin from Ciona plays crucial roles in tissue integrity and morphology by inducing membrane curvature and intracellular vesicle trafficking during embryogenesis.
Collapse
Affiliation(s)
- Punit Bhattachan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Haiyan Yu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - WooRam Jung
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Jiankai Wei
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD, Australia
| | - Bo Dong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|