1
|
Zhang S, Anang S, Zhang Z, Nguyen HT, Ding H, Kappes JC, Sodroski J. Conformations of membrane human immunodeficiency virus (HIV-1) envelope glycoproteins solubilized in Amphipol A18 lipid-nanodiscs. J Virol 2024; 98:e0063124. [PMID: 39248459 PMCID: PMC11495050 DOI: 10.1128/jvi.00631-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Upon binding to the host cell receptor, CD4, the pretriggered (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer undergoes transitions to downstream conformations important for virus entry. State 1 is targeted by most broadly neutralizing antibodies (bNAbs), whereas downstream conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. Extraction of Env from the membranes of viruses or Env-expressing cells disrupts the metastable State-1 Env conformation, even when detergent-free approaches like styrene-maleic acid lipid nanoparticles (SMALPs) are used. Here, we combine three strategies to solubilize and purify mature membrane Envs that are antigenically native (i.e., recognized by bNAbs and not pNAbs): (1) solubilization of Env with a novel amphipathic copolymer, Amphipol A18; (2) use of stabilized pretriggered Env mutants; and (3) addition of the State-1-stabilizing entry inhibitor, BMS-806. Amphipol A18 was superior to the other amphipathic copolymers tested (SMA and AASTY 11-50) for preserving a native Env conformation. A native antigenic profile of A18 Env-lipid-nanodiscs was maintained for at least 7 days at 4°C and 2 days at 37°C in the presence of BMS-806 and was also maintained for at least 1 h at 37°C in a variety of adjuvants. The damaging effects of a single cycle of freeze-thawing on the antigenic profile of the A18 Env-lipid-nanodiscs could be prevented by the addition of 10% sucrose or 10% glycerol. These results underscore the importance of the membrane environment to the maintenance of a pretriggered (State-1) Env conformation and provide strategies for the preparation of lipid-nanodiscs containing native membrane Envs.IMPORTANCEThe human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins like Env rely on purification procedures that maintain their natural conformation. In this study, we show that an amphipathic copolymer A18 can directly extract HIV-1 Env from a membrane without the use of detergents. A18 promotes the formation of nanodiscs that contain Env and membrane lipids. Env in A18-lipid nanodiscs largely preserves features recognized by broadly neutralizing antibodies (bNAbs) and conceals features potentially recognized by poorly neutralizing antibodies (pNAbs). Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful for future studies of HIV-1 Env structure, interaction with receptors and antibodies, and immunogenicity.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Otsuka Y, Zhang L, Mou H, Shumate J, Kitzmiller CE, Scampavia L, Bannister TD, Farzan M, Choe H, Spicer TP. Simultaneous screening for selective SARS-CoV-2, Lassa, and Machupo virus entry inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100178. [PMID: 39159824 DOI: 10.1016/j.slasd.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Emerging highly pathogenic viruses can pose profound impacts on global health, the economy, and society. To meet that challenge, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) centers for early-stage identification and validation of novel antiviral drug candidates against viruses with pandemic potential. As part of this initiative, we established paired entry assays that simultaneously screen for inhibitors specifically targeting SARS-CoV-2 (SARS2), Lassa virus (LASV) and Machupo virus (MACV) entry. To do so we employed a dual pseudotyped virus (PV) infection system allowing us to screen ∼650,000 compounds efficiently and cost-effectively. Adaptation of these paired assays into 1536 well-plate format for ultra-high throughput screening (uHTS) resulted in the largest screening ever conducted in our facility, with over 2.4 million wells completed. The paired infection system allowed us to detect two PV infections simultaneously: LASV + MACV, MACV + SARS2, and SARS2 + LASV. Each PV contains a different luciferase reporter gene which enabled us to measure the infection of each PV exclusively, albeit in the same well. Each PV was screened at least twice utilizing different reporters, which allowed us to select the inhibitors specific to a particular PV and to exclude those that hit off targets, including cellular components or the reporter proteins. All assays were robust with an average Z' value ranging from 0.5 to 0.8. The primary screening of ∼650,000 compounds resulted in 1812, 1506, and 2586 unique hits for LASV, MACV, and SARS2, respectively. The confirmation screening narrowed this list further to 60, 40, and 90 compounds that are unique to LASV, MACV, and SARS2, respectively. Of these compounds, 8, 35, and 50 compounds showed IC50 value < 10 μM, some of which have much greater potency and excellent antiviral activity profiles specific to LASV, MACV, and SARS2, and none are cytotoxic. These selected compounds are currently being studied for their mechanism of action and to improve their specificity and potency through chemical modification.
Collapse
Affiliation(s)
- Yuka Otsuka
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Lizhou Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Huihui Mou
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Justin Shumate
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Claire E Kitzmiller
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States
| | - Louis Scampavia
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Thomas D Bannister
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Michael Farzan
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Hyeryun Choe
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, United States; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Timothy P Spicer
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
3
|
Prévost J, Chen Y, Zhou F, Tolbert WD, Gasser R, Medjahed H, Nayrac M, Nguyen DN, Gottumukkala S, Hessell AJ, Rao VB, Pozharski E, Huang RK, Matthies D, Finzi A, Pazgier M. Structure-function analyses reveal key molecular determinants of HIV-1 CRF01_AE resistance to the entry inhibitor temsavir. Nat Commun 2023; 14:6710. [PMID: 37872202 PMCID: PMC10593844 DOI: 10.1038/s41467-023-42500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The HIV-1 entry inhibitor temsavir prevents the viral receptor CD4 (cluster of differentiation 4) from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this, temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveals that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad antiviral activity.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Manon Nayrac
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Dung N Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Venigalla B Rao
- Department of Biology, the Catholic University of America, Washington, DC, USA
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rick K Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
4
|
Barresi E, Robello M, Baglini E, Poggetti V, Viviano M, Salerno S, Da Settimo F, Taliani S. Indol-3-ylglyoxylamide as Privileged Scaffold in Medicinal Chemistry. Pharmaceuticals (Basel) 2023; 16:997. [PMID: 37513909 PMCID: PMC10386336 DOI: 10.3390/ph16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, indolylglyoxylamide-based derivatives have received much attention due to their application in drug design and discovery, leading to the development of a wide array of compounds that have shown a variety of pharmacological activities. Combining the indole nucleus, already validated as a "privileged structure," with the glyoxylamide function allowed for an excellent template to be obtained that is suitable to a great number of structural modifications aimed at permitting interaction with specific molecular targets and producing desirable therapeutic effects. The present review provides insight into how medicinal chemists have elegantly exploited the indolylglyoxylamide moiety to obtain potentially useful drugs, with a particular focus on compounds exhibiting activity in in vivo models or reaching clinical trials. All in all, this information provides exciting new perspectives on existing data that can be useful in further design of indolylglyoxylamide-based molecules with interesting pharmacological profiles. The aim of this report is to present an update of collection data dealing with the employment of this moiety in the rational design of compounds that are able to interact with a specific target, referring to the last 20 years.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco Robello
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
5
|
Zhou R, Zhang S, Nguyen HT, Ding H, Gaffney A, Kappes JC, Smith AB, Sodroski JG. Conformations of Human Immunodeficiency Virus Envelope Glycoproteins in Detergents and Styrene-Maleic Acid Lipid Particles. J Virol 2023; 97:e0032723. [PMID: 37255444 PMCID: PMC10308955 DOI: 10.1128/jvi.00327-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. IMPORTANCE The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Althea Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Taveira N. Antivirals and Vaccines. Int J Mol Sci 2023; 24:10315. [PMID: 37373462 DOI: 10.3390/ijms241210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
New antivirals are urgently needed to treat respiratory diseases caused by RNA viruses [...].
Collapse
Affiliation(s)
- Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
7
|
Nzimande B, Makhwitine JP, Mkhwanazi NP, Ndlovu SI. Developments in Exploring Fungal Secondary Metabolites as Antiviral Compounds and Advances in HIV-1 Inhibitor Screening Assays. Viruses 2023; 15:v15051039. [PMID: 37243125 DOI: 10.3390/v15051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of drug-resistant Human Immunodeficiency Virus-1 strains against anti-HIV therapies in the clinical pipeline, and the persistence of HIV in cellular reservoirs remains a significant concern. Therefore, there is a continuous need to discover and develop new, safer, and effective drugs targeting novel sites to combat HIV-1. The fungal species are gaining increasing attention as alternative sources of anti-HIV compounds or immunomodulators that can escape the current barriers to cure. Despite the potential of the fungal kingdom as a source for diverse chemistries that can yield novel HIV therapies, there are few comprehensive reports on the progress made thus far in the search for fungal species with the capacity to produce anti-HIV compounds. This review provides insights into the recent research developments on natural products produced by fungal species, particularly fungal endophytes exhibiting immunomodulatory or anti-HIV activities. In this study, we first explore currently existing therapies for various HIV-1 target sites. Then we assess the various activity assays developed for gauging antiviral activity production from microbial sources since they are crucial in the early screening phases for discovering novel anti-HIV compounds. Finally, we explore fungal secondary metabolites compounds that have been characterized at the structural level and demonstrate their potential as inhibitors of various HIV-1 target sites.
Collapse
Affiliation(s)
- Bruce Nzimande
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - John P Makhwitine
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nompumelelo P Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sizwe I Ndlovu
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
8
|
Prévost J, Chen Y, Zhou F, Tolbert WD, Gasser R, Medjahed H, Gottumukkala S, Hessell AJ, Rao VB, Pozharski E, Huang RK, Matthies D, Finzi A, Pazgier M. Structure-function Analyses Reveal Key Molecular Determinants of HIV-1 CRF01_AE Resistance to the Entry Inhibitor Temsavir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537181. [PMID: 37131729 PMCID: PMC10153197 DOI: 10.1101/2023.04.17.537181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The HIV-1 entry inhibitor temsavir prevents CD4 from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir-resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveal that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad-antiviral activity.
Collapse
|
9
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Moranguinho I, Taveira N, Bártolo I. Antiretroviral Treatment of HIV-2 Infection: Available Drugs, Resistance Pathways, and Promising New Compounds. Int J Mol Sci 2023; 24:ijms24065905. [PMID: 36982978 PMCID: PMC10053740 DOI: 10.3390/ijms24065905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Currently, it is estimated that 1-2 million people worldwide are infected with HIV-2, accounting for 3-5% of the global burden of HIV. The course of HIV-2 infection is longer compared to HIV-1 infection, but without effective antiretroviral therapy (ART), a substantial proportion of infected patients will progress to AIDS and die. Antiretroviral drugs in clinical use were designed for HIV-1 and, unfortunately, some do not work as well, or do not work at all, for HIV-2. This is the case for non-nucleoside reverse transcriptase inhibitors (NNRTIs), the fusion inhibitor enfuvirtide (T-20), most protease inhibitors (PIs), the attachment inhibitor fostemsavir and most broadly neutralizing antibodies. Integrase inhibitors work well against HIV-2 and are included in first-line therapeutic regimens for HIV-2-infected patients. However, rapid emergence of drug resistance and cross-resistance within each drug class dramatically reduces second-line treatment options. New drugs are needed to treat infection with drug-resistant isolates. Here, we review the therapeutic armamentarium available to treat HIV-2-infected patients, as well as promising drugs in development. We also review HIV-2 drug resistance mutations and resistance pathways that develop in HIV-2-infected patients under treatment.
Collapse
Affiliation(s)
- Inês Moranguinho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| |
Collapse
|
11
|
Wang R, Tsuji K, Kobayakawa T, Liu Y, Yoshimura K, Matsushita S, Harada S, Tamamura H. Hybrids of small CD4 mimics and gp41-related peptides as dual-target HIV entry inhibitors. Bioorg Med Chem 2022; 76:117083. [PMID: 36403413 DOI: 10.1016/j.bmc.2022.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Hybrid molecules containing small CD4 mimics and gp41-C-terminal heptad repeat (CHR)-related peptides have been developed. A YIR-821 derivative was adopted as a CD4 mimic, which inhibits the interaction of gp120 with CD4. SC-peptides, SC34 and SC22EK, were also used as CHR-related peptides, which inhibit the interaction between the N-terminal heptad repeat (NHR) and CHR and thereby membrane fusion. Therefore, these hybrid molecules have dual-targets of gp120 and gp41. In the synthesis of the hybrid molecules of CD4 mimic-SC-peptides with different lengths of linkers, two conjugating methods, Cu-catalyzed azide-alkyne cycloaddition and direct cysteine alkylation, were performed. The latter reaction caused simpler operation procedures and higher synthetic yields than the former. The synthesized hybrid molecules of CD4 mimic-SC22EK have significantly higher anti-HIV activity than each sole agent. The present data should be useful in the future design of anti-HIV agents as dual-target entry inhibitors.
Collapse
Affiliation(s)
- Rongyi Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yishan Liu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Shuzo Matsushita
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
12
|
Hasan KF, Xiaoyi L, Shaoqin Z, Horváth PG, Bak M, Bejó L, Sipos G, Alpár T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon 2022; 8:e12322. [PMID: 36590481 PMCID: PMC9800342 DOI: 10.1016/j.heliyon.2022.e12322] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The green and facile synthesis of metallic silver nanoparticles (AgNPs) is getting tremendous attention for exploring superior applications because of their small dimensions and shape. AgNPs are already proven materials for superior coloration, biocidal, thermal, UV-protection, and mechanical performance. Originally, some conventional chemical-based reducing agents were used to synthesize AgNPs, but these posed potential risks, especially for enhanced toxicity. This became a driving force to innovate plant-based sustainable and green metallic nanoparticles (NPs). Moreover, the synthesized NPs using plant-based derivatives could be tuned and regulated to achieve the required shape and size of the AgNPs. AgNPs synthesized from naturally derived materials are safe, economical, eco-friendly, facile, and convenient, which is also motivating researchers to find greener routes and viable options, utilizing various parts of plants like flowers, stems, heartwood, leaves and carbohydrates like chitosan to meet the demands. This article intends to provide a comprehensive review of all aspects of AgNP materials, including green synthesis methodology and mechanism, incorporation of advanced technologies, morphological and elemental study, functional properties (coloration, UV-protection, biocidal, thermal, and mechanical properties), marketing value, future prospects and application, especially for the last 20 years or more. The article also includes a SWOT (Strengths, weaknesses, opportunities, and threats) analysis regarding the use of AgNPs. This report would facilitate the industries and consumers associated with AgNP synthesis and application through fulfilling the demand for sustainable, feasible, and low-cost product manufacturing protocols and their future prospects.
Collapse
Affiliation(s)
- K.M. Faridul Hasan
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Liu Xiaoyi
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
| | - Zhou Shaoqin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6525 GA Nijmegen, The Netherlands
| | - Péter György Horváth
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Miklós Bak
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - László Bejó
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, University of Sopron, 9400, Sopron, Hungary
| | - Tibor Alpár
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| |
Collapse
|
13
|
Anang S, Richard J, Bourassa C, Goyette G, Chiu TJ, Chen HC, Smith AB, Madani N, Finzi A, Sodroski J. Characterization of Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Variants Selected for Resistance to a CD4-Mimetic Compound. J Virol 2022; 96:e0063622. [PMID: 35980207 PMCID: PMC9472635 DOI: 10.1128/jvi.00636-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
Abstract
Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Catherine Bourassa
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Goyette
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
15
|
Tsuji K, Kobayakawa T, Konno K, Masuda A, Takahashi K, Ohashi N, Yoshimura K, Kuwata T, Matsushita S, Harada S, Tamamura H. Exploratory studies on soluble small molecule CD4 mimics as HIV entry inhibitors. Bioorg Med Chem 2022; 56:116616. [DOI: 10.1016/j.bmc.2022.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
|
16
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
17
|
Muccini C, Canetti D, Castagna A, Spagnuolo V. Efficacy and Safety Profile of Fostemsavir for the Treatment of People with Human Immunodeficiency Virus-1 (HIV-1): Current Evidence and Place in Therapy. Drug Des Devel Ther 2022; 16:297-304. [PMID: 35115764 PMCID: PMC8800563 DOI: 10.2147/dddt.s273660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Camilla Muccini
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Unit of Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Diana Canetti
- Unit of Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Antonella Castagna
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Unit of Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
| | - Vincenzo Spagnuolo
- Unit of Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milan, Italy
- Correspondence: Vincenzo Spagnuolo, Unit of Infectious Diseases, IRCCS Ospedale San Raffaele, Via Stamira d’Ancona 20, Milan, Italy, Tel +390226437907, Fax +390226437903, Email
| |
Collapse
|
18
|
The Genesis and Future Prospects of Small Molecule HIV-1 Attachment Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:45-64. [DOI: 10.1007/978-981-16-8702-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Wang T, Kadow JF, Meanwell NA. Innovation in the discovery of the HIV-1 attachment inhibitor temsavir and its phosphonooxymethyl prodrug fostemsavir. Med Chem Res 2021; 30:1955-1980. [PMID: 34602806 PMCID: PMC8476988 DOI: 10.1007/s00044-021-02787-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
The discovery and development of fostemsavir (2), the tromethamine salt of the phosphonooxymethyl prodrug of temsavir (1), encountered significant challenges at many points in the preclinical and clinical development program that, in many cases, stimulated the implementation of innovative solutions in order to enable further progression. In the preclinical program, a range of novel chemistry methodologies were developed during the course of the discovery effort that enabled a thorough examination and definition of the HIV-1 attachment inhibitor (AI) pharmacophore. These discoveries helped to address the challenges associated with realizing a molecule with all of the properties necessary to successfully advance through development and this aspect of the program is the major focus of this retrospective. Although challenges and innovation are not unusual in drug discovery and development programs, the HIV-1 AI program is noteworthy not only because of the serial nature of the challenges encountered along the development path, but also because it resulted in a compound that remains the first and only example of a mechanistically novel class of HIV-1 inhibitor that is proving to be very beneficial for controlling virus levels in highly treatment-experienced HIV-1 infected patients. ![]()
Collapse
Affiliation(s)
- Tao Wang
- Beijing Kawin Technology Share-Holdiing Co., 6 Rongjing East Street, BDA, Beijing, PR China
| | - John F Kadow
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405 USA
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, NJ 08543-4000 USA
| |
Collapse
|
20
|
Kumar D, Sharma P, Shabu, Kaur R, Lobe MMM, Gupta GK, Ntie-Kang F. In search of therapeutic candidates for HIV/AIDS: rational approaches, design strategies, structure-activity relationship and mechanistic insights. RSC Adv 2021; 11:17936-17964. [PMID: 35480193 PMCID: PMC9033207 DOI: 10.1039/d0ra10655k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
The HIV/AIDS pandemic is a serious threat to the health and development of mankind, which has affected about 37.9 million people worldwide. The increasing negative health, economic and social impacts of this disease have led to the search for new therapeutic candidates for the mitigation of AIDS/HIV. However, to date, there is still no treatment that can cure this disease. Furthermore, the clinically available drugs have numerous severe side effects. Hence, the synthesis of novel agents from natural leads is one of the rational approaches to obtain new drugs in modern medicinal chemistry. This review article is an effort to summarize recent developments with regards to the discovery of novel analogs with promising biological potential against HIV/AIDS. Herein, we also aim to discuss prospective directions on the progress of more credible and specific analogues. Besides presenting design strategies, the present communication also highlights the structure-activity relationship together with the structural features of the most promising molecules, their IC50 values, mechanistic insights and some interesting key findings revealed during their biological evaluation. The interactions with the amino acid residues of the enzymes responsible for HIV-1 inhibition are also discussed. This collection will be of great interest for researchers working in this area.
Collapse
Affiliation(s)
- Dinesh Kumar
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
| | - Pooja Sharma
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala India
| | - Shabu
- Indian Institute of Integrative Medicine (CSIR-IIIM) Canal Road Jammu 180001 India
| | - Ramandeep Kaur
- Sri Sai College of Pharmacy Manawala Amritsar-143001 Punjab India +91-9988902489
| | - Maloba M M Lobe
- Department of Chemistry, Faculty of Science, University of Buea P. O. Box 63 Buea Cameroon +237 685625811
| | - Girish K Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy Badhani Pathankot-145001 Punjab India
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea P. O. Box 63 Buea Cameroon +237 685625811
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Str. 3 06120 Halle (Saale) Germany +49 3455525043
- Institute of Botany, Technical University of Dresden Zellescher Weg 20b 01062 Dresden Germany
| |
Collapse
|
21
|
Lai YT. Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses 2021; 13:v13050843. [PMID: 34066522 PMCID: PMC8148533 DOI: 10.3390/v13050843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Viral entry into host cells is a critical step in the viral life cycle. HIV-1 entry is mediated by the sole surface envelope glycoprotein Env and is initiated by the interaction between Env and the host receptor CD4. This interaction, referred to as the attachment step, has long been considered an attractive target for inhibitor discovery and development. Fostemsavir, recently approved by the FDA, represents the first-in-class drug in the attachment inhibitor class. This review focuses on the discovery of temsavir (the active compound of fostemsavir) and analogs, mechanistic studies that elucidated the mode of action, and structural studies that revealed atomic details of the interaction between HIV-1 Env and attachment inhibitors. Challenges associated with emerging resistance mutations to the attachment inhibitors and the development of next-generation attachment inhibitors are also highlighted.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Korie NPU, Tandoh KZ, Kwofie SK, Quaye O. Therapeutic potential of HIV-1 entry inhibitor peptidomimetics. Exp Biol Med (Maywood) 2021; 246:1060-1068. [PMID: 33596698 PMCID: PMC8113741 DOI: 10.1177/1535370221990870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) infection remains a public health concern globally. Although great strides in the management of HIV-1 have been achieved, current highly active antiretroviral therapy is limited by multidrug resistance, prolonged use-related effects, and inability to purge the HIV-1 latent pool. Even though novel therapeutic options with HIV-1 broadly neutralizing antibodies (bNAbs) are being explored, the scalability of bNAbs is limited by economic cost of production and obligatory requirement for parenteral administration. However, these limitations can be addressed by antibody mimetics/peptidomimetics of HIV-1 bNAbs. In this review we discuss the limitations of HIV-1 bNAbs as HIV-1 entry inhibitors and explore the potential therapeutic use of antibody mimetics/peptidomimetics of HIV-1 entry inhibitors as an alternative for HIV-1 bNAbs. We highlight the reduced cost of production, high specificity, and oral bioavailability of peptidomimetics compared to bNAbs to demonstrate their suitability as candidates for novel HIV-1 therapy and conclude with some perspectives on future research toward HIV-1 novel drug discovery.
Collapse
Affiliation(s)
- Nneka PU Korie
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra 00233, Ghana
| | - Kwesi Z Tandoh
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra 00233, Ghana
| | - Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra 00233, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra 00233, Ghana
| |
Collapse
|
23
|
Robello M, Barresi E, Baglini E, Salerno S, Taliani S, Settimo FD. The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. J Med Chem 2021; 64:3508-3545. [PMID: 33764065 PMCID: PMC8154582 DOI: 10.1021/acs.jmedchem.0c01808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the years, researchers in drug discovery have taken advantage of the use of privileged structures to design innovative hit/lead molecules. The α-ketoamide motif is found in many natural products, and it has been widely exploited by medicinal chemists to develop compounds tailored to a vast range of biological targets, thus presenting clinical potential for a plethora of pathological conditions. The purpose of this perspective is to provide insights into the versatility of this chemical moiety as a privileged structure in drug discovery. After a brief analysis of its physical-chemical features and synthetic procedures to obtain it, α-ketoamide-based classes of compounds are reported according to the application of this motif as either a nonreactive or reactive moiety. The goal is to highlight those aspects that may be useful to understanding the perspectives of employing the α-ketoamide moiety in the rational design of compounds able to interact with a specific target.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
24
|
Kobayakawa T, Tsuji K, Konno K, Himeno A, Masuda A, Yang T, Takahashi K, Ishida Y, Ohashi N, Kuwata T, Matsumoto K, Yoshimura K, Sakawaki H, Miura T, Harada S, Matsushita S, Tamamura H. Hybrids of Small-Molecule CD4 Mimics with Polyethylene Glycol Units as HIV Entry Inhibitors. J Med Chem 2021; 64:1481-1496. [PMID: 33497209 DOI: 10.1021/acs.jmedchem.0c01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD4 mimics are small molecules that inhibit the interaction of gp120 with CD4. We have developed several CD4 mimics. Herein, hybrid molecules consisting of CD4 mimics with a long alkyl chain or a PEG unit attached through a self-cleavable linker were synthesized. In anti-HIV activity, modification with a PEG unit appeared to be more suitable than modification with a long alkyl chain. Thus, hybrid molecules of CD4 mimics, with PEG units attached through an uncleavable linker, were developed and showed high anti-HIV activity and low cytotoxicity. In investigation of pharmacokinetics in a rhesus macaque, a hybrid compound had a more effective PK profile than that of the parent compound, and intramuscular injection was a more useful administration route to maintain the high blood concentration of the CD4 mimic than intravenous injection. The presented hybrid molecules of CD4 mimics with a PEG unit would be practically useful when combined with a neutralizing antibody.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiju Konno
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ai Himeno
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ami Masuda
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tingting Yang
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Takahashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yusuke Ishida
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takeo Kuwata
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kaho Matsumoto
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hiromi Sakawaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuzo Matsushita
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
25
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
26
|
Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor. J Virol 2020; 94:JVI.00958-20. [PMID: 32817216 DOI: 10.1128/jvi.00958-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Small-molecule viral entry inhibitors, such as BMS-626529 (BMS-529), allosterically block CD4 binding to HIV-1 envelope (Env) and inhibit CD4-induced structural changes in Env trimers. Here, we show that the binding of BMS-529 to clade C soluble chimeric gp140 SOSIP (ch.SOSIP) and membrane-bound trimers with intact transmembrane domain (gp150) prevented trimer conformational transitions and enhanced their immunogenicity. When complexed to BMS-529, ch.SOSIP trimers retained their binding to broadly neutralizing antibodies (bNAbs) and to their unmutated common ancestor (UCA) antibodies, while exposure of CD4-induced (CD4i) non-bNAb epitopes was inhibited. BMS-529-complexed gp150 trimers in detergent micelles, which were isolated from CHO cells, bound to bNAbs, including UCA and intermediates of the CD4 binding site (bs) CH103 bNAb lineage, and showed limited exposure of CD4i epitopes and a glycosylation pattern with a preponderance of high-mannose glycans. In rabbits, BMS-529-complexed V3 glycan-targeting ch.SOSIP immunogen induced in the majority of immunized animals higher neutralization titers against both autologous and select high mannose-bearing heterologous tier 2 pseudoviruses than those immunized with the noncomplexed ch.SOSIP. In rhesus macaques, BMS-529 complexed to CD4 bs-targeting ch.SOSIP immunogen induced stronger neutralization against tier 2 pseudoviruses bearing high-mannose glycans than noncomplexed ch.SOSIP trimer immunogen. When immunized with gp150 complexed to BMS-529, rhesus macaques showed neutralization against tier 2 pseudoviruses with targeted glycan deletion and high-mannose glycan enrichment. These results demonstrated that stabilization of Env trimer conformation with BMS-529 improved the immunogenicity of select chimeric SOSIP trimers and elicited tier 2 neutralizing antibodies of higher potency than noncomplexed trimers.IMPORTANCE Soluble forms of HIV-1 envelope trimers exhibit conformational heterogeneity and undergo CD4-induced (CD4i) exposure of epitopes of non-neutralizing antibodies that can potentially hinder induction of broad neutralizing antibody responses. These limitations have been mitigated through recent structure-guided approaches and include trimer-stabilizing mutations that resist trimer conformational transition and exposure of CD4i epitopes. The use of small-molecule viral inhibitors that allosterically block CD4 binding represents an alternative strategy for stabilizing Env trimer in the pre-CD4-triggered state of both soluble and membrane-bound trimers. In this study, we report that the viral entry inhibitor BMS-626529 restricts trimer conformational transition and improves the immunogenicity of select Env trimer immunogens.
Collapse
|
27
|
Molecular Basis of Differential Stability and Temperature Sensitivity of ZIKA versus Dengue Virus Protein Shells. Sci Rep 2020; 10:8411. [PMID: 32439929 PMCID: PMC7242387 DOI: 10.1038/s41598-020-65288-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
Rapid spread of ZIKA virus (ZIKV) and its association with severe birth defects have raised worldwide concern. Recent studies have shown that ZIKV retains its infectivity and remains structurally stable at temperatures up to 40 °C, unlike dengue and other flaviviruses. In spite of recent cryo-EM structures that showed similar architecture of ZIKA and dengue virus (DENV) E protein shells, little is known that makes ZIKV so temperature insensitive. Here, we attempt to unravel the molecular basis of greater thermal stability of ZIKV over DENV2 by executing atomistic molecular dynamics (MD) simulations on the viral E protein shells at 37 °C. Our results suggest that ZIKA E protein shell retains its structural integrity through stronger inter-raft communications facilitated by a series of electrostatic and H-bonding interactions among multiple inter-raft residues. In comparison, the DENV2 E protein shell surface was loosly packed that exhibited holes at all 3-fold vertices, in close agreement with another EM structure solved at 37 °C. The residue-level information obtained from our study could pave way for designing small molecule inhibitors and specific antibodies to inhibit ZIKV E protein assembly and membrane fusion.
Collapse
|
28
|
The Conformational States of the HIV-1 Envelope Glycoproteins. Trends Microbiol 2020; 28:655-667. [PMID: 32418859 DOI: 10.1016/j.tim.2020.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
During HIV-1 entry into target cells, binding of the virus to host receptors, CD4 and CCR5/CXCR4, triggers serial conformational changes in the envelope glycoprotein (Env) trimer that result in the fusion of the viral and cell membranes. Recent discoveries have refined our knowledge of Env conformational states, allowing characterization of the targets of small-molecule HIV-1 entry inhibitors and neutralizing antibodies, and identifying a novel off-pathway conformation (State 2A). Here, we provide an overview of the current understanding of these conformational states, focusing on (i) the events during HIV-1 entry; (ii) conformational preferences of HIV-1 Env ligands; (iii) evasion of the host antibody response; and (iv) potential implications for therapy and prevention of HIV-1 infection.
Collapse
|
29
|
Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. J Virol 2020; 94:JVI.00148-20. [PMID: 32161177 DOI: 10.1128/jvi.00148-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 01/14/2023] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system.IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine.
Collapse
|
30
|
Dick A, Cocklin S. Bioisosteric Replacement as a Tool in Anti-HIV Drug Design. Pharmaceuticals (Basel) 2020; 13:ph13030036. [PMID: 32121077 PMCID: PMC7151723 DOI: 10.3390/ph13030036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Bioisosteric replacement is a powerful tool for modulating the drug-like properties, toxicity, and chemical space of experimental therapeutics. In this review, we focus on selected cases where bioisosteric replacement and scaffold hopping have been used in the development of new anti-HIV-1 therapeutics. Moreover, we cover field-based, computational methodologies for bioisosteric replacement, using studies from our group as an example. It is our hope that this review will serve to highlight the utility and potential of bioisosteric replacement in the continuing search for new and improved anti-HIV drugs.
Collapse
Affiliation(s)
| | - Simon Cocklin
- Correspondence: ; Tel.: +215-762-7234 or +215-762-4979
| |
Collapse
|
31
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Belov DS, Markov PO, Kurkin AV, Altieri A, Debnath AK. Preclinical Optimization of gp120 Entry Antagonists as anti-HIV-1 Agents with Improved Cytotoxicity and ADME Properties through Rational Design, Synthesis, and Antiviral Evaluation. J Med Chem 2020; 63:1724-1749. [PMID: 32031803 DOI: 10.1021/acs.jmedchem.9b02149] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported a milestone in the optimization of NBD-11021, an HIV-1 gp120 antagonist, by developing a new and novel analogue, NBD-14189 (Ref1), which showed antiviral activity against HIV-1HXB2, with a half maximal inhibitory concentration of 89 nM. However, cytotoxicity remained high, and the absorption, distribution, metabolism, and excretion (ADME) data showed relatively poor aqueous solubility. To optimize these properties, we replaced the phenyl ring in the compound with a pyridine ring and synthesized a set of 48 novel compounds. One of the new analogues, NBD-14270 (8), showed a marked improvement in cytotoxicity, with 3-fold and 58-fold improvements in selectivity index value compared with that of Ref1 and NBD-11021, respectively. Furthermore, the in vitro ADME data clearly showed improvements in aqueous solubility and other properties compared with those for Ref1. The data for 8 indicated that the pyridine scaffold is a good bioisostere for phenyl, allowing the further optimization of this molecule.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Pavel O Markov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| |
Collapse
|
32
|
Vangala R, Sivan SK, Peddi SR, Manga V. Computational design, synthesis and evaluation of new sulphonamide derivatives targeting HIV-1 gp120. J Comput Aided Mol Des 2019; 34:39-54. [PMID: 31792886 DOI: 10.1007/s10822-019-00258-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
Abstract
Attachment of envelope glycoprotein gp120 to the host cell receptor CD4 is the first step during the human immunodeficiency virus-1 (HIV-1) entry into the host cells that makes it a promising target for drug design. To elucidate the crucial three dimensional (3D) structural features of reported HIV-1 gp120 CD4 binding inhibitors, 3D pharmacophores were generated and receptor based approach was employed to quantify these structural features. A four-partial least square factor model with good statistics and predictive ability was generated for the dataset of 100 molecules. To further ascertain the structural requirement for gp120-CD4 binding inhibition, molecular interaction studies of inhibitors with gp120 was carried out by performing molecular docking using Glide 5.6. Based on these studies, structural requirements were drawn and new molecules were designed accordingly to yield new sulphonamides derivatives. A water based green synthetic approach was adopted to obtain these compounds which were evaluated for their HIV-1 gp120 CD4 binding inhibition. The newly synthesized compounds exhibited remarkable activity (10-fold increase) when compared with the standard BMS 806. Further the stability of newly synthesized derivatives with HIV-1 gp120 was also investigated through molecular dynamics simulation studies. This provides a proof of concept for molecular modeling based design of new inhibitors for inhibition of HIV-1 gp120 CD4 interaction.
Collapse
Affiliation(s)
- Radhika Vangala
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Sree Kanth Sivan
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, 500 001, India
| | - Saikiran Reddy Peddi
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500 007, India.
| |
Collapse
|
33
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
34
|
Zuru DU. Theoretical model for the design and preparation of a CNT–ursonic acid drug matrix as HIV-gp120 entry inhibitor. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
35
|
Mirani A, Kundaikar H, Velhal S, Patel V, Bandivdekar A, Degani M, Patravale V. Evaluation of Phytopolyphenols for their gp120-CD4 Binding Inhibitory Properties by In Silico Molecular Modelling & In Vitro Cell Line Studies. Curr HIV Res 2019; 17:102-113. [DOI: 10.2174/1570162x17666190611121627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Background:Lack of effective early-stage HIV-1 inhibitor instigated the need for screening of novel gp120-CD4 binding inhibitor. Polyphenols, a secondary metabolite derived from natural sources are reported to have broad spectrum HIV-1 inhibitory activity. However, the gp120-CD4 binding inhibitory activity of polyphenols has not been analysed in silico yet.Objectives:To establish the usage of phytopolyphenols (Theaflavin, Epigallocatechin (EGCG), Ellagic acid and Gallic acid) as early stage HIV-1 inhibitor by investigating their binding mode in reported homology of gp120-CD4 receptor complex using in silico screening studies and in vitro cell line studies.Methods:The in silico molecular docking and molecular simulation studies were performed using Schrödinger 2013-2 suite installed on Fujitsu Celsius Workstation. The in vitro cell line studies were performed in the TZM-bl cell line using MTT assay and β-galactosidase assay.Results:The results of molecular docking indicated that Theaflavin and EGCG exhibited high XP dock score with binding pose exhibiting Van der Waals interaction and hydrophobic interaction at the deeper site in the Phe43 cavity with Asp368 and Trp427. Both Theaflavin and EGCG form a stable complex with the prepared HIV-1 receptor and their binding mode interaction is within the vicinity 4 Å. Further, in vitro cell line studies also confirmed that Theaflavin (SI = 252) and EGCG (SI = 138) exert better HIV-1 inhibitory activity as compared to Ellagic acid (SI = 30) and Gallic acid (SI = 34).Conclusions:The results elucidate a possible binding mode of phytopolyphenols, which pinpoints their plausible mechanism and directs their usage as early stage HIV-1 inhibitor.
Collapse
Affiliation(s)
- Amit Mirani
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Harish Kundaikar
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Shilpa Velhal
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai- 400012, India
| | - Vainav Patel
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai- 400012, India
| | - Atmaram Bandivdekar
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai- 400012, India
| | - Mariam Degani
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Vandana Patravale
- Department of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai-400019, India
| |
Collapse
|
36
|
A survey of core replacements in indole-based HIV-1 attachment inhibitors. Bioorg Med Chem Lett 2019; 29:1423-1429. [DOI: 10.1016/j.bmcl.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/31/2019] [Accepted: 03/13/2019] [Indexed: 11/18/2022]
|
37
|
Aneja R, Grigoletto A, Nangarlia A, Rashad AA, Wrenn S, Jacobson JM, Pasut G, Chaiken I. Pharmacokinetic stability of macrocyclic peptide triazole HIV-1 inactivators alone and in liposomes. J Pept Sci 2019; 25:e3155. [PMID: 30809901 DOI: 10.1002/psc.3155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
Previously, we reported the discovery of macrocyclic peptide triazoles (cPTs) that bind to HIV-1 Env gp120, inhibit virus cell infection with nanomolar potencies, and cause irreversible virion inactivation. Given the appealing virus-killing activity of cPTs and resistance to protease cleavage observed in vitro, we here investigated in vivo pharmacokinetics of the cPT AAR029b. AAR029b was investigated both alone and encapsulated in a PEGylated liposome formulation that was designed to slowly release inhibitor. Pharmacokinetic analysis in rats showed that the half-life of FITC-AAR029b was substantial both alone and liposome-encapsulated, 2.92 and 8.87 hours, respectively. Importantly, liposome-encapsulated FITC-AAR029b exhibited a 15-fold reduced clearance rate from serum compared with the free FITC-cPT. This work thus demonstrated both the in vivo stability of cPT alone and the extent of pharmacokinetic enhancement via liposome encapsulation. The results obtained open the way to further develop cPTs as long-acting HIV-1 inactivators against HIV-1 infection.
Collapse
Affiliation(s)
- Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Steven Wrenn
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | - Jeffrey M Jacobson
- Departments of Medicine and Neuroscience and Center of Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Viral Drug Resistance Through 48 Weeks, in a Phase 2b, Randomized, Controlled Trial of the HIV-1 Attachment Inhibitor Prodrug, Fostemsavir. J Acquir Immune Defic Syndr 2019; 77:299-307. [PMID: 29206721 PMCID: PMC5815643 DOI: 10.1097/qai.0000000000001602] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Fostemsavir is a prodrug of temsavir, an attachment inhibitor that binds to HIV-1 gp120, blocking viral attachment to host CD4+ T-cells. The phase 2b trial AI438011 investigated the safety, efficacy, and dose–response of fostemsavir vs ritonavir-boosted atazanavir (ATV/r) in treatment-experienced, HIV-1–infected subjects. Methods: Two hundred fifty-one treatment-experienced subjects with baseline (BL) susceptibility to study drugs [temsavir half-maximal inhibitory concentration (IC50) <100 nM, PhenoSense Entry assay] received fostemsavir or ATV/r, each with tenofovir disoproxil fumarate + raltegravir. Subjects meeting resistance-testing criteria were assessed for emergent viral drug resistance. Changes in temsavir IC50 from BL was given a conservative technical cutoff (>3-fold increase). Results: 66/200 fostemsavir and 14/51 ATV/r subjects had resistance testing performed; 44/66 and 9/14 were successfully tested using the PhenoSense GT assay. No subjects had emergent tenofovir disoproxil fumarate or ATV resistance. Six fostemsavir-treated subjects developed emergent raltegravir resistance. 29/66 fostemsavir-treated subjects had an evaluable phenotype using PhenoSense Entry (which tests for viral susceptibility to temsavir) and 13/29 exhibited >3-fold increase in temsavir IC50 from BL. gp120 population sequencing was successful in 11/13 subjects and 7 had emergent substitutions in gp120 associated with reduced temsavir susceptibility (S375, M426, or M434). However, 5/13 fostemsavir-treated subjects achieved subsequent suppression to <50 copies/mL before the week 48 database lock, regardless of key gp120 substitutions. Conclusions: Response rates remained similar across study arms regardless of BL nucleoside reverse transcriptase inhibitor, nonnucleoside reverse transcriptase inhibitor, and protease inhibitor resistance-associated mutations. Emergent changes in viral susceptibility occurred more frequently with fostemsavir compared with ATV/r. However, the full impact of temsavir IC50 changes and emergent HIV-1 gp120 substitutions, and thus appropriate clinical cutoffs, requires further study. Fostemsavir is being evaluated in a phase 3 trial in heavily treatment-experienced subjects.
Collapse
|
39
|
Neutralization Synergy between HIV-1 Attachment Inhibitor Fostemsavir and Anti-CD4 Binding Site Broadly Neutralizing Antibodies against HIV. J Virol 2019; 93:JVI.01446-18. [PMID: 30518644 DOI: 10.1128/jvi.01446-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023] Open
Abstract
Attachment inhibitor (AI) BMS-626529 (fostemsavir) represents a novel class of antiretrovirals which target human immunodeficiency virus type 1 (HIV-1) gp120 and block CD4-induced conformational changes required for viral entry. It is now in phase III clinical trials and is expected to be approved by the U.S. Food and Drug Administration (FDA) in the near future. Although fostemsavir is very potent against HIV in vitro and in vivo, a number of resistant mutants have already been identified. Broadly neutralizing HIV antibodies (bNAbs) can potently inhibit a wide range of HIV-1 strains by binding to viral Env and are very promising candidates for HIV-1 prevention and therapy. Since both target viral Env to block viral entry, we decided to investigate the relationship between these two inhibitors. Our data show that Env mutants resistant to BMS-626529 retained susceptibility to bNAbs. A single treatment of bNAb NIH45-46G54W completely inhibited the replication of these escape mutants. Remarkable synergy was observed between BMS-626529 and CD4 binding site (CD4bs)-targeting bNAbs in neutralizing HIV-1 strains at low concentrations. This synergistic effect was enhanced against virus harboring mutations conferring resistance to BMS-626529. The mechanistic basis of the observed synergy is likely enhanced inhibition of CD4 binding to the HIV-1 Env trimer by the combination of BMS-626529 and CD4bs-targeting bNAbs. This work highlights the potential for positive interplay between small- and large-molecule therapeutics against HIV entry, which may prove useful as these agents enter clinical use.IMPORTANCE As the worldwide HIV pandemic continues, there is a continued need for novel drugs and therapies. A new class of drug, the attachment inhibitors, will soon be approved for the treatment of HIV. Broadly neutralizing antibodies are also promising candidates for HIV prevention and therapy. We investigated how this drug might work with these exciting antibodies that are very potent in blocking HIV infection of cells. These antibodies worked against virus known to be resistant to the new drug. In addition, a specific type of antibody worked really well with the new drug in blocking virus infection of cells. This work has implications for both the new drug and the antibodies that are poised to be used against HIV.
Collapse
|
40
|
Kobayakawa T, Konno K, Ohashi N, Takahashi K, Masuda A, Yoshimura K, Harada S, Tamamura H. Soluble-type small-molecule CD4 mimics as HIV entry inhibitors. Bioorg Med Chem Lett 2019; 29:719-723. [PMID: 30665681 DOI: 10.1016/j.bmcl.2019.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
Several small molecule CD4 mimics have been reported previously as HIV-1 entry inhibitors, which block the interaction between the Phe43 cavity of HIV-1 gp120 and the host CD4. Known CD4 mimics such as NBD-556 possess significant anti-HIV activity but are less soluble in water, perhaps due to their hydrophobic aromatic ring-containing structures. Compounds with a pyridinyl group in place of the phenyl group in these molecules have been designed and synthesized in an attempt to increase the hydrophilicity. Some of these new CD4 mimics, containing a tetramethylpiperidine ring show significantly higher water solubility than NBD-556 and have high anti-HIV activity and synergistic anti-HIV activity with a neutralizing antibody. The CD4 mimic that has a cyclohexylpiperidine ring and a 6-fluoropyridin-3-yl ring has high anti-HIV activity and no significant cytotoxicity. The present results will be useful in the future design and development of novel soluble-type molecule CD4 mimics.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiju Konno
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Takahashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ami Masuda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
41
|
Kobayakawa T, Ohashi N, Hirota Y, Takahashi K, Yamada Y, Narumi T, Yoshimura K, Matsushita S, Harada S, Tamamura H. Flexibility of small molecular CD4 mimics as HIV entry inhibitors. Bioorg Med Chem 2018; 26:5664-5671. [PMID: 30366786 DOI: 10.1016/j.bmc.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022]
Abstract
CD4 mimics such as YIR-821 and its derivatives are small molecules which inhibit the interaction between the Phe43 cavity of HIV-1 gp120 with host CD4, an interaction that is involved in the entry of HIV to cells. Known CD4 mimics generally possess three structural features, an aromatic ring, an oxalamide linker and a piperidine moiety. We have shown previously that introduction of a cyclohexyl group and a guanidine group into the piperidine moiety and a fluorine atom at the meta-position of the aromatic ring leads to a significant increase in the anti-HIV activity. In the current study, the effects of conformational flexibility were investigated by introduction of an indole-type group in the junction between the oxalamide linker and the aromatic moiety or by replacement of the oxalamide linker with a glycine linker. This led to the development of compounds with high anti-HIV activity, showing the importance of the junction region for the expression of high anti-HIV activity. The present data are expected to be useful in the future design of novel CD4 mimic molecules.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Hirota
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Takahashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuko Yamada
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuo Narumi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shuzo Matsushita
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
42
|
Kinetic Characterization of Novel HIV-1 Entry Inhibitors: Discovery of a Relationship between Off-Rate and Potency. Molecules 2018; 23:molecules23081940. [PMID: 30081466 PMCID: PMC6222832 DOI: 10.3390/molecules23081940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
The entry of HIV-1 into permissible cells remains an extremely attractive and underexploited therapeutic intervention point. We have previously demonstrated the ability to extend the chemotypes available for optimization in the entry inhibitor class using computational means. Here, we continue this effort, designing and testing three novel compounds with the ability to inhibit HIV-1 entry. We demonstrate that alteration of the core moiety of these entry inhibitors directly influences the potency of the compounds, despite common proximal and distal groups. Moreover, by establishing for the first time a surface plasmon resonance (SPR)-based interaction assay with soluble recombinant SOSIP Env trimers, we demonstrate that the off-rate (kd) parameter shows the strongest correlation with potency in an antiviral assay. Finally, we establish an underappreciated relationship between the potency of a ligand and its degree of electrostatic complementarity (EC) with its target, the Env complex. These findings not only broaden the chemical space in this inhibitor class, but also establish a rapid and simple assay to evaluate future HIV-1 entry inhibitors.
Collapse
|
43
|
Wang T, Ueda Y, Zhang Z, Yin Z, Matiskella J, Pearce BC, Yang Z, Zheng M, Parker DD, Yamanaka GA, Gong YF, Ho HT, Colonno RJ, Langley DR, Lin PF, Meanwell NA, Kadow JF. Discovery of the Human Immunodeficiency Virus Type 1 (HIV-1) Attachment Inhibitor Temsavir and Its Phosphonooxymethyl Prodrug Fostemsavir. J Med Chem 2018; 61:6308-6327. [PMID: 29920093 DOI: 10.1021/acs.jmedchem.8b00759] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The optimization of the 4-methoxy-6-azaindole series of HIV-1 attachment inhibitors (AIs) that originated with 1 to deliver temsavir (3, BMS-626529) is described. The most beneficial increases in potency and pharmacokinetic (PK) properties were attained by incorporating N-linked, sp2-hybridized heteroaryl rings at the 7-position of the heterocyclic nucleus. Compounds that adhered to a coplanarity model afforded targeted antiviral potency, leading to the identification of 3 with characteristics that provided for targeted exposure and PK properties in three preclinical species. However, the physical properties of 3 limited plasma exposure at higher doses, both in preclinical studies and in clinical trials as the result of dissolution- and/or solubility-limited absorption, a deficiency addressed by the preparation of the phosphonooxymethyl prodrug 4 (BMS-663068, fostemsavir). An extended-release formulation of 4 is currently in phase III clinical trials where it has shown promise as part of a drug combination therapy in highly treatment-experienced HIV-1 infected patients.
Collapse
|
44
|
A Novel gp41-Binding Adnectin with Potent Anti-HIV Activity Is Highly Synergistic when Linked to a CD4-Binding Adnectin. J Virol 2018; 92:JVI.00421-18. [PMID: 29743355 DOI: 10.1128/jvi.00421-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022] Open
Abstract
The N17 region of gp41 in HIV-1 is the most conserved region in gp160. mRNA selection technologies were used to identify an adnectin that binds to this region and inhibits gp41-induced membrane fusion. Additional selection conditions were used to optimize the adnectin to greater potency (5.4 ± 2.6 nM) against HIV-1 and improved binding affinity for an N17-containing helical trimer (0.8 ± 0.4 nM). Resistance to this adnectin mapped to a single Glu-to-Arg change within the N17 coding region. The optimized adnectin (6200_A08) exhibited high potency and broad-spectrum activity against 123 envelope proteins and multiple clinical virus isolates, although certain envelope proteins did exhibit reduced susceptibility to 6200_A08 alone. The reduced potency could not be correlated with sequence changes in the target region and was thought to be the result of faster kinetics of fusion mediated by these envelope proteins. Optimized linkage of 6200_A08 with a previously characterized adnectin targeting CD4 produced a highly synergistic molecule, with the potency of the tandem molecule measured at 37 ± 1 pM. In addition, these tandem molecules now exhibited few potency differences against the same panel of envelope proteins with reduced susceptibility to 6200_A08 alone, providing evidence that they did not have intrinsic resistance to 6200_A08 and that coupling 6200_A08 with the anti-CD4 adnectin may provide a higher effective on rate for gp41 target engagement.IMPORTANCE There continue to be significant unmet medical needs for patients with HIV-1 infection. One way to improve adherence and decrease the likelihood of drug-drug interactions in HIV-1-infected patients is through the development of long-acting biologic inhibitors. This study describes the development and properties of an adnectin molecule that targets the most conserved region of the gp41 protein and inhibits HIV-1 with good potency. Moreover, when fused to a similar adnectin targeted to the human CD4 protein, the receptor for HIV-1, significant synergies in potency and efficacy are observed. These inhibitors are part of an effort to develop a larger biologic molecule that functions as a long-acting self-administered regimen for patients with HIV-1 infection.
Collapse
|
45
|
Curreli F, Belov DS, Kwon YD, Ramesh R, Furimsky AM, O'Loughlin K, Byrge PC, Iyer LV, Mirsalis JC, Kurkin AV, Altieri A, Debnath AK. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur J Med Chem 2018; 154:367-391. [PMID: 29860061 PMCID: PMC5993640 DOI: 10.1016/j.ejmech.2018.04.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
Abstract
We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ranjith Ramesh
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Anna M Furimsky
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Kathleen O'Loughlin
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Patricia C Byrge
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Lalitha V Iyer
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Jon C Mirsalis
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
46
|
Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J Med Chem 2017; 61:62-80. [PMID: 29271653 DOI: 10.1021/acs.jmedchem.7b01337] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues. In this drug annotation, we summarize the structure-activity and structure-liability studies leading to the discovery of 31 and the clinical studies conducted with 35 that entailed the development of an extended release formulation suitable for phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - David A Conlon
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dennis M Grasela
- Innovative Medicines Development, Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peter Timmins
- Drug Product Science and Technology, Bristol-Myers Squibb , Reeds Lane, Moreton, Merseyside CH46 1QW, United Kingdom
| | | | | |
Collapse
|
47
|
Giroud C, Du Y, Marin M, Min Q, Jui NT, Fu H, Melikyan GB. Screening and Functional Profiling of Small-Molecule HIV-1 Entry and Fusion Inhibitors. Assay Drug Dev Technol 2017; 15:53-63. [PMID: 28322598 DOI: 10.1089/adt.2017.777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV-1 entry and fusion with target cells is an important target for antiviral therapy. However, a few currently approved treatments are not effective as monotherapy due to the emergence of drug resistance. This consideration has fueled efforts to develop new bioavailable inhibitors targeting different steps of the HIV-1 entry process. Here, a high-throughput screen was performed of a large library of 100,000 small molecules for HIV-1 entry/fusion inhibitors, using a direct virus-cell fusion assay in a 384 half-well format. Positive hits were validated using a panel of functional assays, including HIV-1 specificity, cytotoxicity, and single-cycle infectivity assays. One compound-4-(2,5-dimethyl-pyrrol-1-yl)-2-hydroxy-benzoic acid (DPHB)-that selectively inhibited HIV-1 fusion was further characterized. Functional experiments revealed that DPHB caused irreversible inactivation of HIV-1 Env on cell-free virions and that this effect was related to binding to the third variable loop (V3) of the gp120 subunit of HIV-1 Env. Moreover, DPHB selectively inhibited HIV-1 strains that use CXCR4 or both CXCR4 and CCR5 co-receptors for entry, but not strains exclusively using CCR5. This selectivity was mapped to the gp120 V3 loop using chimeric Env glycoproteins. However, it was found that pure DPHB was not active against HIV-1 and that its degradation products (most likely polyanions) were responsible for inhibition of viral fusion. These findings highlight the importance of post-screening validation of positive hits and are in line with previous reports of the broad antiviral activity of polyanions.
Collapse
Affiliation(s)
- Charline Giroud
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia
| | - Yuhong Du
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia
| | - Mariana Marin
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia
| | - Qui Min
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia
| | - Nathan T Jui
- 4 Department of Chemistry, Emory University , Atlanta, Georgia
| | - Haian Fu
- 2 Department of Pharmacology, Emory University School of Medicine , Atlanta, Georgia .,3 Emory Chemical Biology Discovery Center, Emory University School of Medicine , Atlanta, Georgia .,5 Department of Hematology and Medical Oncology, Winship Cancer Institute , Atlanta, Georgia
| | - Gregory B Melikyan
- 1 Department of Pediatrics Infectious Diseases, Emory University School of Medicine , Atlanta, Georgia .,6 Children's Healthcare of Atlanta , Atlanta, Georgia
| |
Collapse
|
48
|
Pancera M, Lai YT, Bylund T, Druz A, Narpala S, O’Dell S, Schön A, Bailer RT, Chuang GY, Geng H, Louder MK, Rawi R, Soumana DI, Finzi A, Herschhorn A, Madani N, Sodroski J, Freire E, Langley DR, Mascola JR, McDermott AB, Kwong PD. Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nat Chem Biol 2017; 13:1115-1122. [PMID: 28825711 PMCID: PMC5676566 DOI: 10.1038/nchembio.2460] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/19/2017] [Indexed: 01/27/2023]
Abstract
The HIV-1 envelope (Env) spike is a conformational machine that transitions between prefusion (closed, CD4- and CCR5-bound) and postfusion states to facilitate HIV-1 entry into cells. Although the prefusion closed conformation is a potential target for inhibition, development of small-molecule leads has been stymied by difficulties in obtaining structural information. Here, we report crystal structures at 3.8-Å resolution of an HIV-1-Env trimer with BMS-378806 and a derivative BMS-626529 for which a prodrug version is currently in Phase III clinical trials. Both lead candidates recognized an induced binding pocket that was mostly excluded from solvent and comprised of Env elements from a conserved helix and the β20-21 hairpin. In both structures, the β20-21 region assumed a conformation distinct from prefusion-closed and CD4-bound states. Together with biophysical and antigenicity characterizations, the structures illuminate the allosteric and competitive mechanisms by which these small-molecule leads inhibit CD4-induced structural changes in Env.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mark K. Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Djade I. Soumana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Andrés Finzi
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - David R. Langley
- Computer Assisted Drug Design, Bristol-Myers Squibb, Research and Development, Wallingford, Connecticut
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
49
|
Voter AF, Keck JL. Development of Protein-Protein Interaction Inhibitors for the Treatment of Infectious Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:197-222. [PMID: 29459032 DOI: 10.1016/bs.apcsb.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Protein-protein interaction (PPI) inhibitors are a rapidly expanding class of therapeutics. Recent advances in our understanding of PPIs and success of early examples of PPI inhibitors demonstrate the feasibility of targeting PPIs. This review summarizes the techniques used for the discovery and optimization of a diverse set PPI inhibitors, focusing on the development of PPI inhibitors as new antibacterial and antiviral agents. We close with a summary of the advances responsible for making PPI inhibitors realistic targets for therapeutic intervention and brief outlook of the field.
Collapse
Affiliation(s)
- Andrew F Voter
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - James L Keck
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
50
|
Affiliation(s)
- Ming Yan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|