1
|
Pradhan K, Reuber EE, Sletten ET, Tomaso H, Seeberger PH. A Synthetic Oligosaccharide Resembling Francisella tularensis Strain 15 O-Antigen Capsular Polysaccharide as a Lead for Tularemia Diagnostics and Therapeutics. Angew Chem Int Ed Engl 2024:e202416432. [PMID: 39417793 DOI: 10.1002/anie.202416432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Francisella tularensis, a category A bioterrorism agent, causes tularemia in many animal species. F. tularensis subspecies tularensis (type A) and holarctica (type B) are mainly responsible for human tularemia. The high mortality rate of 30-60 % caused by F. tularensis subspecies tularensis if left untreated and the aerosol dispersal renders this pathogen a dangerous bioagent. While a live attenuated vaccine strain (LVS) of F. tularensis type B does not provide sufficient protection against all forms of tularemia infections, a significant level of protection against F. tularensis has been observed for both passive and active immunization of mice with isolated O-antigen capsular polysaccharide. Well-defined, synthetic oligosaccharides offer an alternative approach towards the development of glycoconjugate vaccines. To identify diagnostics and therapeutics leads against tularemia, a collection of F. tularensis strain 15 O-antigen capsular polysaccharide epitopes were chemically synthesized. Glycan microarrays containing synthetic glycans were used to analyze the sera of tularemia-infected and non-infected animals and revealed the presence of IgG antibodies against the glycans. Two disaccharide (13 and 18), both bearing a unique formamido moiety, were identified as minimal glycan epitopes for antibody binding. These epitopes are the starting point for the development of diagnostics and therapeutics against tularemia.
Collapse
Affiliation(s)
- Kabita Pradhan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Emelie E Reuber
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
2
|
Di Marco F, Hipgrave Ederveen AL, van Schaick G, Moran AB, Domínguez-Vega E, Nicolardi S, Blöchl C, Koeleman CA, Danuser R, Al Kaabi A, Dotz V, Grijpstra J, Beurret M, Anish C, Wuhrer M. Comprehensive characterization of bacterial glycoconjugate vaccines by liquid chromatography - mass spectrometry. Carbohydr Polym 2024; 341:122327. [PMID: 38876725 DOI: 10.1016/j.carbpol.2024.122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Bacterial pathogens can cause a broad range of infections with detrimental effects on health. Vaccine development is essential as multi-drug resistance in bacterial infections is a rising concern. Recombinantly produced proteins carrying O-antigen glycosylation are promising glycoconjugate vaccine candidates to prevent bacterial infections. However, methods for their comprehensive structural characterization are lacking. Here, we present a bottom-up approach for their site-specific characterization, detecting N-glycopeptides by nano reversed-phase liquid chromatography-mass spectrometry (RP-LC-MS). Glycopeptide analyses revealed information on partial site-occupancy and site-specific glycosylation heterogeneity and helped corroborate the polysaccharide structures and their modifications. Bottom-up analysis was complemented by intact glycoprotein analysis using nano RP-LC-MS allowing the fast visualization of the polysaccharide distribution in the intact glycoconjugate. At the glycopeptide level, the model glycoconjugates analyzed showed different repeat unit (RU) distributions that spanned from 1 to 21 RUs attached to each of the different glycosylation sites. Interestingly, the intact glycoprotein analysis displayed a RU distribution ranging from 1 to 28 RUs, showing the predominant species when the different glycopeptide distributions are combined in the intact glycoconjugate. The complete workflow based on LC-MS measurements allows detailed and comprehensive analysis of the glycosylation state of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Agnes L Hipgrave Ederveen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Guusje van Schaick
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alan B Moran
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Carolien A Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Renzo Danuser
- Janssen Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Ali Al Kaabi
- Janssen Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Viktoria Dotz
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands; BioTherapeutics Analytical Development, Janssen Biologics B.V., Einsteinweg 101, 2333 CB Leiden, the Netherlands
| | - Jan Grijpstra
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Michel Beurret
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Chakkumkal Anish
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
3
|
Whelan AO, Flick-Smith HC, Walker NJ, Abraham A, Levitz SM, Ostroff GR, Oyston PCF. A glucan-particle based tularemia subunit vaccine induces T-cell immunity and affords partial protection in an inhalation rat infection model. PLoS One 2024; 19:e0294998. [PMID: 38713688 PMCID: PMC11075878 DOI: 10.1371/journal.pone.0294998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 05/09/2024] Open
Abstract
Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising β-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.
Collapse
Affiliation(s)
- Adam O. Whelan
- CBR Division, Dstl Porton Down, Salisbury, United Kingdom
| | | | | | - Ambily Abraham
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Stuart M. Levitz
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Gary R. Ostroff
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|
4
|
Harrell JE, Roy CJ, Gunn JS, McLachlan JB. Current vaccine strategies and novel approaches to combatting Francisella infection. Vaccine 2024; 42:2171-2180. [PMID: 38461051 DOI: 10.1016/j.vaccine.2024.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Tularemia is caused by subspecies of Francisella tularensis and can manifest in a variety of disease states, with the pneumonic presentation resulting in the greatest mortality. Despite decades of research, there are no approved vaccines against F. tularensis in the United States. Traditional vaccination strategies, such as live-attenuated or subunit vaccines, are not favorable due to inadequate protection or safety concerns. Because of this, novel vaccination strategies are needed to combat tularemia. Here we discuss the current state of and challenges to the tularemia vaccine field and suggest novel vaccine approaches going forward that might be better suited for protecting against F. tularensis infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
5
|
Haldar R, Dhar A, Ganguli D, Chakraborty S, Pal A, Banik G, Miyoshi SI, Das S. A candidate glycoconjugate vaccine induces protective antibodies in the serum and intestinal secretions, antibody recall response and memory T cells and protects against both typhoidal and non-typhoidal Salmonella serovars. Front Immunol 2024; 14:1304170. [PMID: 38264668 PMCID: PMC10804610 DOI: 10.3389/fimmu.2023.1304170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Human Salmonella infections pose significant public health challenges globally, primarily due to low diagnostic yield of systemic infections, emerging and expanding antibiotic resistance of both the typhoidal and non-typhoidal Salmonella strains and the development of asymptomatic carrier state that functions as a reservoir of infection in the community. The limited long-term efficacy of the currently licensed typhoid vaccines, especially in smaller children and non-availability of vaccines against other Salmonella serovars necessitate active research towards developing a multivalent vaccine with wider coverage of protection against pathogenic Salmonella serovars. We had earlier reported immunogenicity and protective efficacy of a subunit vaccine containing a recombinant outer membrane protein (T2544) of Salmonella Typhi in a mouse model. This was achieved through the robust induction of serum IgG, mucosal secretory IgA and Salmonella-specific cytotoxic T cells as well as memory B and T cell response. Here, we report the development of a glycoconjugate vaccine, containing high molecular weight complexes of Salmonella Typhimurium O-specific polysaccharide (OSP) and recombinant T2544 that conferred simultaneous protection against S. Typhi, S. Paratyphi, S. Typhimurium and cross-protection against S. enteritidis in mice. Our findings corroborate with the published studies that suggested the potential of Salmonella OSP as a vaccine antigen. The role of serum antibodies in vaccine-mediated protection is suggested by rapid seroconversion with high titers of serum IgG and IgA, persistently elevated titers after primary immunization along with a strong antibody recall response with higher avidity serum IgG against both OSP and T2544 and significantly raised SBA titers of both primary and secondary antibodies against different Salmonella serovars. Elevated intestinal secretory IgA and bacterial motility inhibition by the secretory antibodies supported their role as well in vaccine-induced protection. Finally, robust induction of T effector memory response indicates long term efficacy of the candidate vaccine. The above findings coupled with protection of vaccinated animals against multiple clinical isolates confirm the suitability of OSP-rT2544 as a broad-spectrum candidate subunit vaccine against human infection due to typhoidal and non-typhoidal Salmonella serovars.
Collapse
Affiliation(s)
- Risha Haldar
- Division of Clinical Medicine, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Amlanjyoti Dhar
- Division of Molecular Biology and Genomics, International Institute of Innovation and Technology (I3T), Kolkata, India
| | - Debayan Ganguli
- Department of Infectious Diseases, Washington University School of Medicine at St. Louis, St. Louis, MO, United States
| | - Suparna Chakraborty
- Division of Clinical Medicine, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ananda Pal
- Division of Clinical Medicine, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Shin-ichi Miyoshi
- Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Santasabuj Das
- Division of Clinical Medicine, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Division of Biological Science, Indian Council of Medical Research (ICMR)-National Institute of Occupational Health, Ahmedabad, India
| |
Collapse
|
6
|
Abouelhadid S, Atkins ER, Kay EJ, Passmore IJ, North SJ, Lehri B, Hitchen P, Bakke E, Rahman M, Bossé JT, Li Y, Terra VS, Langford PR, Dell A, Wren BW, Cuccui J. Development of a novel glycoengineering platform for the rapid production of conjugate vaccines. Microb Cell Fact 2023; 22:159. [PMID: 37596672 PMCID: PMC10436394 DOI: 10.1186/s12934-023-02125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/10/2023] [Indexed: 08/20/2023] Open
Abstract
Conjugate vaccines produced either by chemical or biologically conjugation have been demonstrated to be safe and efficacious in protection against several deadly bacterial diseases. However, conjugate vaccine assembly and production have several shortcomings which hinders their wider availability. Here, we developed a tool, Mobile-element Assisted Glycoconjugation by Insertion on Chromosome, MAGIC, a novel biotechnological platform that overcomes the limitations of the current conjugate vaccine design method(s). As a model, we focused our design on a leading bioconjugation method using N-oligosaccharyltransferase (OTase), PglB. The installation of MAGIC led to at least twofold increase in glycoconjugate yield via MAGIC when compared to conventional N-OTase based bioconjugation method(s). Then, we improved MAGIC to (a) allow rapid installation of glycoengineering component(s), (b) omit the usage of antibiotics, (c) reduce the dependence on protein induction agents. Furthermore, we show the modularity of the MAGIC platform in performing glycoengineering in bacterial species that are less genetically tractable than the commonly used Escherichia coli. The MAGIC system promises a rapid, robust and versatile method to develop vaccines against serious bacterial pathogens. We anticipate the utility of the MAGIC platform could enhance vaccines production due to its compatibility with virtually any bioconjugation method, thus expanding vaccine biopreparedness toolbox.
Collapse
Affiliation(s)
- Sherif Abouelhadid
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Elizabeth R Atkins
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Emily J Kay
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Ian J Passmore
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Simon J North
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Burhan Lehri
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul Hitchen
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Eirik Bakke
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Mohammed Rahman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Janine T Bossé
- Department of Infectious Diseases, Imperial College London, London, W2 1NY, UK
| | - Yanwen Li
- Department of Infectious Diseases, Imperial College London, London, W2 1NY, UK
| | - Vanessa S Terra
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul R Langford
- Department of Infectious Diseases, Imperial College London, London, W2 1NY, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
7
|
Patnaik A, Rai SK, Dhaked RK. Recent Advancements and Novel Approaches Contributing to the Present Arsenal of Prophylaxis and Treatment Strategies Against Category A Bacterial Biothreat Agents. Indian J Microbiol 2023; 63:161-172. [PMID: 37325016 PMCID: PMC10220334 DOI: 10.1007/s12088-023-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2023] [Indexed: 06/17/2023] Open
Abstract
Bacterial pathogens have always been a part of the ecosystem in which we thrive. Some pathogens have caused deadly outbreaks in the past and have been exploited as an agent of threat. Natural hotspots for these biological pathogens are widely distributed throughout the world and hence they remain clinically important. Technological advancement and change in general lifestyle has driven the evolution of these pathogens into more virulent and resistant variants. There has been a growing concern over the development of multidrug-resistant bacterial strains that could be used as bioweapons. This rapid change in pathogens also propels the field of science to develop and innovate new strategies and methodologies which are superior and safer to the existing ones. Some bacterial agents like-Bacillus anthracis, Yersinia pestis, Francisella tularensis and toxins produced by strains of Clostridium botulinum, have been segregated as Category A substances as they pose imminent threat to public health with a history of life threatening and catastrophic disease. This review highlights some encouraging developments and value additions in the current plan of action for protection against these select biothreat bacterial pathogens.
Collapse
Affiliation(s)
- Abhinandan Patnaik
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| | - Sharad Kumar Rai
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| |
Collapse
|
8
|
Moeller T, Shah SB, Lai K, Lopez-Barbosa N, Desai P, Wang W, Zhong Z, Redmond D, Singh A, DeLisa MP. Profiling Germinal Center-like B Cell Responses to Conjugate Vaccines Using Synthetic Immune Organoids. ACS CENTRAL SCIENCE 2023; 9:787-804. [PMID: 37122450 PMCID: PMC10141597 DOI: 10.1021/acscentsci.2c01473] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Indexed: 05/03/2023]
Abstract
Glycoengineered bacteria have emerged as a cost-effective platform for rapid and controllable biosynthesis of designer conjugate vaccines. However, little is known about the engagement of such conjugates with naïve B cells to induce the formation of germinal centers (GC), a subanatomical microenvironment that converts naïve B cells into antibody-secreting plasma cells. Using a three-dimensional biomaterials-based B-cell follicular organoid system, we demonstrate that conjugates triggered robust expression of hallmark GC markers, B cell receptor clustering, intracellular signaling, and somatic hypermutation. These responses depended on the relative immunogenicity of the conjugate and correlated with the humoral response in vivo. The occurrence of these mechanisms was exploited for the discovery of high-affinity antibodies against components of the conjugate on a time scale that was significantly shorter than for typical animal immunization-based workflows. Collectively, these findings highlight the potential of synthetic organoids for rapidly predicting conjugate vaccine efficacy as well as expediting antigen-specific antibody discovery.
Collapse
Affiliation(s)
- Tyler
D. Moeller
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shivem B. Shah
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kristine Lai
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Natalia Lopez-Barbosa
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Primit Desai
- Biochemistry,
Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weiyao Wang
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhe Zhong
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David Redmond
- Institute
for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, New York 10021, United States
- Department
of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, New York 10021, United States
| | - Ankur Singh
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew P. DeLisa
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
- Biochemistry,
Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Han Y, Luo P, Zeng H, Wang P, Xu J, Chen P, Chen X, Chen Y, Cao Q, Zhai R, Xia J, Deng S, Cheng A, Cheng C, Song H. The effect of O-antigen length determinant wzz on the immunogenicity of Salmonella Typhimurium for Escherichia coli O2 O-polysaccharides delivery. Vet Res 2023; 54:15. [PMID: 36849993 PMCID: PMC9969949 DOI: 10.1186/s13567-023-01142-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/15/2022] [Indexed: 03/01/2023] Open
Abstract
Attenuated Salmonella Typhimurium is a promising antigen delivery system for live vaccines such as polysaccharides. The length of polysaccharides is a well-known key factor in modulating the immune response induced by glycoconjugates. However, the relationship between the length of Lipopolysaccharide (LPS) O-antigen (OAg) and the immunogenicity of S. Typhimurium remains unclear. In this study, we assessed the effect of OAg length determined by wzzST on Salmonella colonization, cell membrane permeability, antimicrobial activity, and immunogenicity by comparing the S. Typhimurium wild-type ATCC14028 strain to those with various OAg lengths of the ΔwzzST mutant and ΔwzzST::wzzECO2. The analysis of the OAg length distribution revealed that, except for the very long OAg, the short OAg length of 2-7 repeat units (RUs) was obtained from the ΔwzzST mutant, the intermediate OAg length of 13-21 RUs was gained from ΔwzzST::wzzECO2, and the long OAg length of over 20 RUs was gained from the wild-type. In addition, we found that the OAg length affected Salmonella colonization, cell permeability, and antibiotic resistance. Immunization of mice revealed that shortening the OAg length by altering wzzST had an effect on serum bactericidal ability, complement deposition, and humoral immune response. S. Typhimurium mutant strain ΔwzzST::wzzECO2 possessed good immunogenicity and was the optimum option for delivering E. coli O2 O-polysaccharides. Furthermore, the attenuated strain ATCC14028 ΔasdΔcrpΔcyaΔrfbPΔwzzST::wzzECO2-delivered E. coli O2 OAg gene cluster outperforms the ATCC14028 ΔasdΔcrpΔcyaΔrfbP in terms of IgG eliciting, cytokine expression, and immune protection in chickens. This study sheds light on the role of OAg length in Salmonella characteristics, which may have a potential application in optimizing the efficacy of delivered polysaccharide vaccines.
Collapse
Affiliation(s)
- Yue Han
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China ,grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Luo
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Huan Zeng
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Pu Wang
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Jiali Xu
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Pengju Chen
- Henan Institute of Morden Chinese Veterinary Medicine, Zhengzhou, 450002 China ,Shangdong Xindehui Biotechnology Co., Ltd, Yunchengxian, 274700 China
| | - Xindan Chen
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Yuji Chen
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Qiyu Cao
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Ruidong Zhai
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Jing Xia
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Simin Deng
- grid.443483.c0000 0000 9152 7385Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300 China
| | - Anchun Cheng
- grid.80510.3c0000 0001 0185 3134Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changyong Cheng
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal, Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Stefanetti G, MacLennan CA, Micoli F. Impact and Control of Sugar Size in Glycoconjugate Vaccines. Molecules 2022; 27:molecules27196432. [PMID: 36234967 PMCID: PMC9572008 DOI: 10.3390/molecules27196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glycoconjugate vaccines have contributed enormously to reducing and controlling encapsulated bacterial infections for over thirty years. Glycoconjugate vaccines are based on a carbohydrate antigen that is covalently linked to a carrier protein; this is necessary to cause T cell responses for optimal immunogenicity, and to protect young children. Many interdependent parameters affect the immunogenicity of glycoconjugate vaccines, including the size of the saccharide antigen. Here, we examine and discuss the impact of glycan chain length on the efficacy of glycoconjugate vaccines and report the methods employed to size polysaccharide antigens, while highlighting the underlying reaction mechanisms. A better understanding of the impact of key parameters on the immunogenicity of glycoconjugates is critical to developing a new generation of highly effective vaccines.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| | - Calman Alexander MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
11
|
Biselli R, Nisini R, Lista F, Autore A, Lastilla M, De Lorenzo G, Peragallo MS, Stroffolini T, D’Amelio R. A Historical Review of Military Medical Strategies for Fighting Infectious Diseases: From Battlefields to Global Health. Biomedicines 2022; 10:2050. [PMID: 36009598 PMCID: PMC9405556 DOI: 10.3390/biomedicines10082050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
The environmental conditions generated by war and characterized by poverty, undernutrition, stress, difficult access to safe water and food as well as lack of environmental and personal hygiene favor the spread of many infectious diseases. Epidemic typhus, plague, malaria, cholera, typhoid fever, hepatitis, tetanus, and smallpox have nearly constantly accompanied wars, frequently deeply conditioning the outcome of battles/wars more than weapons and military strategy. At the end of the nineteenth century, with the birth of bacteriology, military medical researchers in Germany, the United Kingdom, and France were active in discovering the etiological agents of some diseases and in developing preventive vaccines. Emil von Behring, Ronald Ross and Charles Laveran, who were or served as military physicians, won the first, the second, and the seventh Nobel Prize for Physiology or Medicine for discovering passive anti-diphtheria/tetanus immunotherapy and for identifying mosquito Anopheline as a malaria vector and plasmodium as its etiological agent, respectively. Meanwhile, Major Walter Reed in the United States of America discovered the mosquito vector of yellow fever, thus paving the way for its prevention by vector control. In this work, the military relevance of some vaccine-preventable and non-vaccine-preventable infectious diseases, as well as of biological weapons, and the military contributions to their control will be described. Currently, the civil-military medical collaboration is getting closer and becoming interdependent, from research and development for the prevention of infectious diseases to disasters and emergencies management, as recently demonstrated in Ebola and Zika outbreaks and the COVID-19 pandemic, even with the high biocontainment aeromedical evacuation, in a sort of global health diplomacy.
Collapse
Affiliation(s)
- Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Florigio Lista
- Dipartimento Scientifico, Policlinico Militare, Comando Logistico dell’Esercito, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Alberto Autore
- Osservatorio Epidemiologico della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Marco Lastilla
- Istituto di Medicina Aerospaziale, Comando Logistico dell’Aeronautica Militare, Viale Piero Gobetti 2, 00185 Roma, Italy
| | - Giuseppe De Lorenzo
- Comando Generale dell’Arma dei Carabinieri, Dipartimento per l’Organizzazione Sanitaria e Veterinaria, Viale Romania 45, 00197 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell’Esercito, Via S. Stefano Rotondo 4, 00184 Roma, Italy
| | - Tommaso Stroffolini
- Dipartimento di Malattie Infettive e Tropicali, Policlinico Umberto I, 00161 Roma, Italy
| | - Raffaele D’Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Via di Grottarossa 1035-1039, 00189 Roma, Italy
| |
Collapse
|
12
|
Roberts LM, Wehrly TD, Leighton I, Hanley P, Lovaglio J, Smith BJ, Bosio CM. Circulating T Cells Are Not Sufficient for Protective Immunity against Virulent Francisella tularensis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1180-1188. [PMID: 35149529 PMCID: PMC8881340 DOI: 10.4049/jimmunol.2100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
Pulmonary infections elicit a combination of tissue-resident and circulating T cell responses. Understanding the contribution of these anatomically distinct cellular pools in protective immune responses is critical for vaccine development. Francisella tularensis is a highly virulent bacterium capable of causing lethal systemic disease following pulmonary infection for which there is no currently licensed vaccine. Although T cells are required for survival of F. tularensis infection, the relative contribution of tissue-resident and circulating T cells is not completely understood, hampering design of effective, long-lasting vaccines directed against this bacterium. We have previously shown that resident T cells were not sufficient to protect against F. tularensis, suggesting circulating cells may serve a critical role in host defense. To elucidate the role of circulating T cells, we used a model of vaccination and challenge of parabiotic mice. Intranasally infected naive mice conjoined to immune animals had increased numbers of circulating memory T cells and similar splenic bacterial burdens as vaccinated-vaccinated pairs. However, bacterial loads in the lungs of naive parabionts were significantly greater than those observed in vaccinated-vaccinated pairs, but despite early control of F. tularensis replication, all naive-vaccinated pairs succumbed to infection. Together, these data define the specific roles of circulating and resident T cells in defense against infection that is initiated in the pulmonary compartment but ultimately causes disseminated disease. These data also provide evidence for employing vaccination strategies that elicit both pools of T cells for immunity against F. tularensis and may be a common theme for other disseminating bacterial infections.
Collapse
Affiliation(s)
- Lydia M Roberts
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tara D Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ian Leighton
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| |
Collapse
|
13
|
Jiang X, Bai J, Zhang H, Yuan J, Lu G, Wang Y, Jiang L, Liu B, Huang D, Feng L. Development of an O-polysaccharide based recombinant glycoconjugate vaccine in engineered E. coli against ExPEC O1. Carbohydr Polym 2022; 277:118796. [PMID: 34893224 DOI: 10.1016/j.carbpol.2021.118796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Extraintestinal pathogenic Escherichia coli O1 is a frequently identified serotype that causes serious infections and is often refractory to antimicrobial therapy. Glycoconjugate vaccine represents a promising measure to reduce ExPEC infections. Herein, we designed an O1-specific glyco-optimized chassis strain for manufacture of O-polysaccharide (OPS) antigen and OPS-based bioconjugate. Specifically, OPS and OPS-based glycoprotein were synthesized in glyco-optimized chassis strain, when compared to the unmeasurable level of the parent strain. The optimal expression of oligosaccharyltransferase and carrier protein further improved the titer. MS analysis elucidated the correct structure of resulting bioconjugate at routine and unreported glycosylation sequons of carrier protein, with a higher glycosylation efficiency. Finally, purified bioconjugate stimulated mouse to generate specific IgG antibodies and protected them against virulent ExPEC O1 challenge. The plug-and-play glyco-optimized platform is suitable for bioconjugate synthesis, thus providing a potential platform for future medical applications.
Collapse
Affiliation(s)
- Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jing Bai
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Huijing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| |
Collapse
|
14
|
Stefanetti G, Borriello F, Richichi B, Zanoni I, Lay L. Immunobiology of Carbohydrates: Implications for Novel Vaccine and Adjuvant Design Against Infectious Diseases. Front Cell Infect Microbiol 2022; 11:808005. [PMID: 35118012 PMCID: PMC8803737 DOI: 10.3389/fcimb.2021.808005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carbohydrates are ubiquitous molecules expressed on the surface of nearly all living cells, and their interaction with carbohydrate-binding proteins is critical to many immunobiological processes. Carbohydrates are utilized as antigens in many licensed vaccines against bacterial pathogens. More recently, they have also been considered as adjuvants. Interestingly, unlike other types of vaccines, adjuvants have improved immune response to carbohydrate-based vaccine in humans only in a few cases. Furthermore, despite the discovery of many new adjuvants in the last years, aluminum salts, when needed, remain the only authorized adjuvant for carbohydrate-based vaccines. In this review, we highlight historical and recent advances on the use of glycans either as vaccine antigens or adjuvants, and we review the use of currently available adjuvants to improve the efficacy of carbohydrate-based vaccines. A better understanding of the mechanism of carbohydrate interaction with innate and adaptive immune cells will benefit the design of a new generation of glycan-based vaccines and of immunomodulators to fight both longstanding and emerging diseases.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Division of Immunology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ivan Zanoni
- Division of Immunology, Division of Gastroenterology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Luigi Lay
- Department of Chemistry, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Anish C, Beurret M, Poolman J. Combined effects of glycan chain length and linkage type on the immunogenicity of glycoconjugate vaccines. NPJ Vaccines 2021; 6:150. [PMID: 34893630 PMCID: PMC8664855 DOI: 10.1038/s41541-021-00409-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
The development and use of antibacterial glycoconjugate vaccines have significantly reduced the occurrence of potentially fatal childhood and adult diseases such as bacteremia, bacterial meningitis, and pneumonia. In these vaccines, the covalent linkage of bacterial glycans to carrier proteins augments the immunogenicity of saccharide antigens by triggering T cell-dependent B cell responses, leading to high-affinity antibodies and durable protection. Licensed glycoconjugate vaccines either contain long-chain bacterial polysaccharides, medium-sized oligosaccharides, or short synthetic glycans. Here, we discuss factors that affect the glycan chain length in vaccines and review the available literature discussing the impact of glycan chain length on vaccine efficacy. Furthermore, we evaluate the available clinical data on licensed glycoconjugate vaccine preparations with varying chain lengths against two bacterial pathogens, Haemophilus influenzae type b and Neisseria meningitidis group C, regarding a possible correlation of glycan chain length with their efficacy. We find that long-chain glycans cross-linked to carrier proteins and medium-sized oligosaccharides end-linked to carriers both achieve high immunogenicity and efficacy. However, end-linked glycoconjugates that contain long untethered stretches of native glycan chains may induce hyporesponsiveness by T cell-independent activation of B cells, while cross-linked medium-sized oligosaccharides may suffer from suboptimal saccharide epitope accessibility.
Collapse
Affiliation(s)
- Chakkumkal Anish
- grid.497529.40000 0004 0625 7026Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| | - Michel Beurret
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands.
| | - Jan Poolman
- grid.497529.40000 0004 0625 7026Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| |
Collapse
|
16
|
The bacterial tyrosine kinase system CpsBCD governs the length of capsule polymers. Proc Natl Acad Sci U S A 2021; 118:2103377118. [PMID: 34732571 DOI: 10.1073/pnas.2103377118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.
Collapse
|
17
|
Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Rev Vaccines 2021; 20:1515-1538. [PMID: 34550840 DOI: 10.1080/14760584.2021.1984889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
18
|
α-Galactosylceramide-Reactive NKT Cells Increase IgG1 Class Switch against a Clostridioides difficile Polysaccharide Antigen and Enhance Immunity against a Live Pathogen Challenge. Infect Immun 2021; 89:e0043821. [PMID: 34424751 DOI: 10.1128/iai.00438-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
All clinical Clostridioides difficile strains identified to date express a surface capsule-like polysaccharide structure known as polysaccharide II (PSII). The PSII antigen is immunogenic and, when conjugated to a protein carrier, induces a protective antibody response in animal models. Given that CD1d-restricted natural killer T (NKT) cells promote antibody responses, including those against carbohydrates, we tested the hypothesis that immunization with PSII and a CD1d-binding glycolipid adjuvant could lead to enhanced protection against a live C. difficile challenge. We purified PSII from a clinical isolate of C. difficile and immunized B6 mice with PSII alone or PSII plus the CD1d-binding glycolipid α-galactosylceramide (α-GC). PSII-specific IgM and IgG titers were evident in sera from immunized mice. The inclusion of α-GC had a modest influence on isotype switch but increased the IgG1/IgG2c ratio. Enhanced protection against C. difficile disease was achieved by inclusion of the α-GC ligand and was associated with reduced bacterial numbers in fecal pellets. In contrast, NKT-deficient Traj18-/- mice were not protected by the PSII/α-GC immunization modality. Absence of NKT cells similarly had a modest effect on isotype switch, but ratios of IgG1/IgG2c decreased. These results indicate that α-GC-driven NKT cells move the humoral immune response against C. difficile PSII antigen toward Th2-driven IgG1 and may contribute to augmented protection. This study suggests that NKT activation represents a pathway for additional B-cell help that could be used to supplement existing efforts to develop vaccines against polysaccharides derived from C. difficile and other pathogens.
Collapse
|
19
|
Synthesis and delivery of Streptococcus pneumoniae capsular polysaccharides by recombinant attenuated Salmonella vaccines. Proc Natl Acad Sci U S A 2021; 118:2013350118. [PMID: 33380455 PMCID: PMC7812815 DOI: 10.1073/pnas.2013350118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pneumococcal infection-caused diseases are responsible for substantial morbidity and mortality worldwide. Traditional pneumococcal vaccines are developed based on purified capsular polysaccharides (CPS) or CPS conjugated to a protein carrier. Production processes of the traditional vaccines are laborious, and thereby increase the vaccine cost and limit their use in developing nations. A cost-effective pneumococcal vaccine using the recombinant attenuated Salmonella vaccine (RASV) was developed in this study. We cloned and expressed genes for seven serotypes of CPSs in the RASV strain. The RASV-delivered CPSs induced robust humoral and cell-mediated responses and mediated efficient protection of mice against pneumococcal infection. Our work provides an innovative strategy for mass producing low-cost bioconjugated polysaccharide vaccines for needle-free mucosal delivery against pneumococcal infections. Streptococcus pneumoniae capsular polysaccharides (CPSs) are major determinants of bacterial pathogenicity. CPSs of different serotypes form the main components of the pneumococcal vaccines Pneumovax, Prevnar7, and Prevnar13, which substantially reduced the S. pneumoniae disease burden in developed countries. However, the laborious production processes of traditional polysaccharide-based vaccines have raised the cost of the vaccines and limited their impact in developing countries. The aim of this study is to develop a kind of low-cost live vaccine based on using the recombinant attenuated Salmonella vaccine (RASV) system to protect against pneumococcal infections. We cloned genes for seven different serotypes of CPSs to be expressed by the RASV strain. Oral immunization of mice with the RASV-CPS strains elicited robust Th1 biased adaptive immune responses. All the CPS-specific antisera mediated opsonophagocytic killing of the corresponding serotype of S. pneumoniae in vitro. The RASV-CPS2 and RASV-CPS3 strains provided efficient protection of mice against challenge infections with either S. pneumoniae strain D39 or WU2. Synthesis and delivery of S. pneumoniae CPSs using the RASV strains provide an innovative strategy for low-cost pneumococcal vaccine development, production, and use.
Collapse
|
20
|
Han Y, Luo P, Chen Y, Xu J, Sun J, Guan C, Wang P, Chen M, Zhang X, Zhu Y, Zhu T, Zhai R, Cheng C, Song H. Regulated delayed attenuation improves vaccine efficacy in preventing infection from avian pathogenic Escherichia coli O 78 and Salmonella typhimurium. Vet Microbiol 2021; 254:109012. [PMID: 33611126 DOI: 10.1016/j.vetmic.2021.109012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) O78 and Salmonella typhimurium (S. Typhimurium) are two leading bacterial pathogens that cause significant economic loss in the poultry industry. O-antigen is an important immunogen of these two bacteria to induce host protective immune responses during infection. To develop a bivalent vaccine against APEC O78 and S. Typhimurium, the attenuated Salmonella ST01 (Δasd ΔrfbP Δcrp) was genetically constructed to deliver APEC O78 O-antigen polysaccharide (OPS), which stably expresses OPS with asd+ balanced-lethal system in vitro and in vivo. After oral immunization, the recombinant attenuated Salmonella vaccine (RASV) strain ST01 (pSS26-O78) provided insufficient protection against the APEC O78 challenge. Therefore, the regulated delayed attenuation strain ST02 (Δasd ΔrfbP ΔPcrp::TTaraC PBADcrp) was further constructed by regulating cyclic AMP receptor protein (crp) with araC PBAD cassette to better present the heterologous O-antigen to the host immune system. The innovative recombinant strain ST02 (pSS26-O78) stimulated robust antibody responses against APEC O78 and S. Typhimurium OPS, with serum titers over 1:800 for both IgG and IgA, thereby providing the complement-mediated bactericidal activity and stronger protection against APEC O78 and S. Typhimurium infection. Collectively, this study demonstrates a biologically-conjugated polysaccharide vaccine candidate that can enhance homologous protection against APEC O78 and S. Typhimurium.
Collapse
Affiliation(s)
- Yue Han
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Ping Luo
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Yuji Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Jiali Xu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Jing Sun
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Chiyu Guan
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Pu Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Mianmian Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Yueyue Zhu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Tingting Zhu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Ruidong Zhai
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Changyong Cheng
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China.
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China.
| |
Collapse
|
21
|
Virulence of Francisella tularensis Subspecies holarctica Biovar japonica and Phenotypic Change during Serial Passages on Artificial Media. Microorganisms 2020; 8:microorganisms8121881. [PMID: 33261098 PMCID: PMC7760542 DOI: 10.3390/microorganisms8121881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis (F. tularensis) is the etiological agent of the zoonotic disease tularemia. F. tularensis subspecies holarctica biovar japonica has rarely been isolated in Japan and is considered to have moderate virulence, although the biological properties of fresh isolates have not been analyzed in detail. Here, we analyzed the virulence of two strains of F. tularensis subspecies holarctica biovar japonica (NVF1 and KU-1) and their phenotypic stability during serial passages in Eugon chocolate agar (ECA) and Chamberlain's chemically defined medium (CDM) based agar (CDMA). C57BL/6 mice intradermally inoculated with 101 colony-forming units of NVF1 or KU-1 died within 9 days, with a median time to death of 7.5 and 7 days, respectively. Both NVF1 and KU-1 strains passaged on ECA 10 times had comparable virulence prior to passaging, whereas strains passaged on ECA 20 times and on CDMA 50 times were attenuated. Attenuated strains had decreased viability in 0.01% H2O2 and lower intracellular growth rates, suggesting both properties are important for F. tularensis virulence. Additionally, passage on ECA of the KU-1 strains altered lipopolysaccharide antigenicity and bacterial susceptibility to β-lactam antibiotics. Our data demonstrate F. tularensis strain virulence in Japan and contribute to understanding phenotypic differences between natural and laboratory environments.
Collapse
|
22
|
Janik E, Ceremuga M, Niemcewicz M, Bijak M. Dangerous Pathogens as a Potential Problem for Public Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E591. [PMID: 33172013 PMCID: PMC7694656 DOI: 10.3390/medicina56110591] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Pathogens are various organisms, such as viruses, bacteria, fungi, and protozoa, which can cause severe illnesses to their hosts. Throughout history, pathogens have accompanied human populations and caused various epidemics. One of the most significant outbreaks was the Black Death, which occurred in the 14th century and caused the death of one-third of Europe's population. Pathogens have also been studied for their use as biological warfare agents by the former Soviet Union, Japan, and the USA. Among bacteria and viruses, there are high priority agents that have a significant impact on public health. Bacillus anthracis, Francisella tularensis, Yersinia pestis, Variola virus, Filoviruses (Ebola, Marburg), Arenoviruses (Lassa), and influenza viruses are included in this group of agents. Outbreaks and infections caused by them might result in social disruption and panic, which is why special operations are needed for public health preparedness. Antibiotic-resistant bacteria that significantly impede treatment and recovery of patients are also valid threats. Furthermore, recent events related to the massive spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an example of how virus-induced diseases cannot be ignored. The impact of outbreaks, such as SARS-CoV-2, have had far-reaching consequences beyond public health. The economic losses due to lockdowns are difficult to estimate, but it would take years to restore countries to pre-outbreak status. For countries affected by the 2019 coronavirus disease (COVID-19), their health systems have been overwhelmed, resulting in an increase in the mortality rate caused by diseases or injuries. Furthermore, outbreaks, such as SARS-CoV-2, will induce serious, wide-ranging (and possibly long-lasting) psychological problems among, not only health workers, but ordinary citizens (this is due to isolation, quarantine, etc.). The aim of this paper is to present the most dangerous pathogens, as well as general characterizations, mechanisms of action, and treatments.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| |
Collapse
|
23
|
Identification of the Pseudomonas aeruginosa O17 and O15 O-Specific Antigen Biosynthesis Loci Reveals an ABC Transporter-Dependent Synthesis Pathway and Mechanisms of Genetic Diversity. J Bacteriol 2020; 202:JB.00347-20. [PMID: 32690555 DOI: 10.1128/jb.00347-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacterial cell surface glycans, such as the O antigen component of lipopolysaccharide (LPS), are produced via the so-called Wzx/Wzy- or ABC transporter-dependent pathways. O antigens are highly diverse polysaccharides that protect bacteria from their environment and engage in important host-pathogen interactions. The specific structure and composition of O antigens are the basis of classifying bacteria into O serotypes. In the opportunistic pathogen Pseudomonas aeruginosa, there are currently 20 known O-specific antigen (OSA) structures. The clusters of genes responsible for 18 of these O antigens have been identified, all of which follow the Wzx/Wzy-dependent pathway and are located at a common locus. In this study, we located the two unidentified O antigen biosynthesis clusters responsible for the synthesis of the O15 and the O17 OSA structures by analyzing published whole-genome sequence data. Intriguingly, these clusters were found outside the conserved OSA biosynthesis locus and were likely acquired through multiple horizontal gene transfer events. Based on data from knockout and overexpression studies, we determined that the synthesis of these O antigens follows an ABC transporter-dependent rather than a Wzx/Wzy-dependent pathway. In addition, we collected evidence to show that the O15 and O17 polysaccharide chain lengths are regulated by molecular rulers with distinct and variable domain architectures. The findings in this report are critical for a comprehensive understanding of O antigen biosynthesis in P. aeruginosa and provide a framework for future studies.IMPORTANCE P. aeruginosa is a problematic opportunistic pathogen that causes diseases in those with compromised host defenses, such as those suffering from cystic fibrosis. This bacterium produces a number of virulence factors, including a serotype-specific O antigen. Here, we identified and characterized the gene clusters that produce the O15 and O17 O antigens and show that they utilize a pathway for synthesis that is distinct from that of the 18 other known serotypes. We also provide evidence that these clusters have acquired mutations in specific biosynthesis genes and have undergone extensive horizontal gene transfer within the P. aeruginosa population. These findings expand on our understanding of O antigen biosynthesis in Gram-negative bacteria and the mechanisms that drive O antigen diversity.
Collapse
|
24
|
Peng LH, Liang X, Chang RH, Mu JY, Chen HE, Yoshida A, Osatomi K, Yang JL. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. BIOFOULING 2020; 36:753-765. [PMID: 32847400 DOI: 10.1080/08927014.2020.1807520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Larval settlement and metamorphosis is essential for the development of marine invertebrates. Although polysaccharides are involved in larval settlement and metamorphosis of Mytilus coruscus, the molecular basis of polysaccharides underlying this progression remains largely unknown. Here, the roles of the polysaccharide biosynthesis-related gene 01912 of Pseudoalteromonas marina ECSMB14103 in the regulation of larval settlement and metamorphosis were examined by gene-knockout technique. Compared with biofilms (BFs) of the wild-type P. marina, Δ01912 BFs with a higher colanic acid (CA) content showed a higher inducing activity on larval settlement and metamorphosis. Deletion of the 01912 gene caused an increase in c-di-GMP levels, accompanied by a decrease in the motility, an increase in cell aggregation, and overproduction of CA. Thus, the bacterial polysaccharide biosynthesis-related gene 01912 may regulate mussel settlement by producing CA via the coordination of c-di-GMP. This work provides a deeper insight into the molecular mechanism of polysaccharides in modulating mussel settlement.
Collapse
Affiliation(s)
- Li-Hua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Rui-Heng Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jia-Yi Mu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hui-E Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
25
|
Center RJ, Boo I, Phu L, McGregor J, Poumbourios P, Drummer HE. Enhancing the antigenicity and immunogenicity of monomeric forms of hepatitis C virus E2 for use as a preventive vaccine. J Biol Chem 2020; 295:7179-7192. [PMID: 32299914 PMCID: PMC7247312 DOI: 10.1074/jbc.ra120.013015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
The E2 glycoprotein of hepatitis C virus (HCV) is the major target of broadly neutralizing antibodies (bNAbs) that are critical for the efficacy of a prophylactic HCV vaccine. We previously showed that a cell culture-derived, disulfide-linked high-molecular-weight (HMW) form of the E2 receptor-binding domain lacking three variable regions, Δ123-HMW, elicits broad neutralizing activity against the seven major genotypes of HCV. A limitation to the use of this antigen is that it is produced only at low yields and does not have a homogeneous composition. Here, we employed a sequential reduction and oxidation strategy to efficiently refold two high-yielding monomeric E2 species, D123 and a disulfide-minimized version (D123A7), into disulfide-linked HMW-like species (Δ123r and Δ123A7r). These proteins exhibited normal reactivity to bNAbs with continuous epitopes on the neutralizing face of E2, but reduced reactivity to conformation-dependent bNAbs and nonneutralizing antibodies (non-NAbs) compared with the corresponding monomeric species. Δ123r and Δ123A7r recapitulated the immunogenic properties of cell culture-derived D123-HMW in guinea pigs. The refolded antigens elicited antibodies that neutralized homologous and heterologous HCV genotypes, blocked the interaction between E2 and its cellular receptor CD81, and targeted the AS412, AS434, and AR3 domains. Of note, antibodies directed to epitopes overlapping with those of non-NAbs were absent. The approach to E2 antigen engineering outlined here provides an avenue for the development of preventive HCV vaccine candidates that induce bNAbs at higher yield and lower cost.
Collapse
Affiliation(s)
- Rob J Center
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Irene Boo
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia
| | - Lilian Phu
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Joey McGregor
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Pantelis Poumbourios
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology, Monash University, Clayton 3056, Australia
| | - Heidi E Drummer
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia; Department of Microbiology, Monash University, Clayton 3056, Australia.
| |
Collapse
|