1
|
Liska JP, Rowley DP, Nguyen TTK, Muthmann JO, Butts DA, Yates J, Huk AC. Running modulates primate and rodent visual cortex differently. eLife 2024; 12:RP87736. [PMID: 39560660 PMCID: PMC11575896 DOI: 10.7554/elife.87736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
When mice run, activity in their primary visual cortex (V1) is strongly modulated. This observation has altered conceptions of a brain region assumed to be a passive image processor. Extensive work has followed to dissect the circuits and functions of running-correlated modulation. However, it remains unclear whether visual processing in primates might similarly change during locomotion. We therefore measured V1 activity in marmosets while they viewed stimuli on a treadmill. In contrast to mouse, running-correlated modulations of marmoset V1 were small and tended to be slightly suppressive. Population-level analyses revealed trial-to-trial fluctuations of shared gain across V1 in both species, but while strongly correlated with running in mice, gain modulations were smaller and more often negatively correlated with running in marmosets. Thus, population-wide fluctuations of V1 may reflect a common feature of mammalian visual cortical function, but important quantitative differences point to distinct consequences for the relation between vision and action in primates versus rodents.
Collapse
Affiliation(s)
- John P Liska
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Declan P Rowley
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
- Departments of Ophthalmology and Psychiatry & Biobehavioral Sciences, Fuster Laboratory for Cognitive Neuroscience, UCLA, Los Angeles, United States
| | - Trevor Thai Kim Nguyen
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Jens-Oliver Muthmann
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, United States
| | - Jacob Yates
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, United States
| | - Alexander C Huk
- Departments of Neuroscience and Psychology, Center for Perceptual Systems, Institute for Neuroscience, The University of Texas at Austin, Austin, United States
- Departments of Ophthalmology and Psychiatry & Biobehavioral Sciences, Fuster Laboratory for Cognitive Neuroscience, UCLA, Los Angeles, United States
| |
Collapse
|
2
|
Lustig C, Bohnen NI. The Middle Managers: Thalamic and Cholinergic Contributions To Coordinating Top-Down And Bottom-Up Processing. Curr Opin Behav Sci 2024; 58:101406. [PMID: 39220566 PMCID: PMC11361277 DOI: 10.1016/j.cobeha.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Methodological advances have facilitated extensive revision of traditional views of thalamic and cholinergic contributions to cognition and behavior. Increasing attention to the integrative capabilities of the thalamus highlights its role beyond a simple sensory relay, recognizing its complex connectivity and role in orchestrating different phases of attention. Correspondingly, modern conceptualizations position the cholinergic system as key in integrating sensory information with attention and goals. These theoretical developments have occurred largely in parallel, but have large conceptual overlap. We review this overlap, including evidence from animal, patient, neuroimaging, and computational studies, and suggest thalamo-cholinergic cognition plays a key role in coordinating stable and flexible attention.
Collapse
|
3
|
Haikal C, Winston GM, Kaplitt MG. Cognitive dysfunction in animal models of human lewy-body dementia. Front Aging Neurosci 2024; 16:1369733. [PMID: 39104707 PMCID: PMC11298446 DOI: 10.3389/fnagi.2024.1369733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Cognitive impairments are a common feature of synucleinopathies such as Parkinson's Disease Dementia and Dementia with Lewy Bodies. These pathologies are characterized by accumulation of Lewy bodies and Lewy neurites as well as neuronal cell death. Alpha-synuclein is the main proteinaceous component of Lewy bodies and Lewy neurites. To model these pathologies in vivo, toxins that selectively target certain neuronal populations or different means of inducing alpha-synuclein aggregation can be used. Alpha-synuclein accumulation can be induced by genetic manipulation, viral vector overexpression or the use of preformed fibrils of alpha-synuclein. In this review, we summarize the cognitive impairments associated with different models of synucleinopathies and relevance to observations in human diseases.
Collapse
Affiliation(s)
- Caroline Haikal
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| | - Graham M. Winston
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| | - Michael G. Kaplitt
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
4
|
Ambrad Giovannetti E, Rancz E. Behind mouse eyes: The function and control of eye movements in mice. Neurosci Biobehav Rev 2024; 161:105671. [PMID: 38604571 DOI: 10.1016/j.neubiorev.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The mouse visual system has become the most popular model to study the cellular and circuit mechanisms of sensory processing. However, the importance of eye movements only started to be appreciated recently. Eye movements provide a basis for predictive sensing and deliver insights into various brain functions and dysfunctions. A plethora of knowledge on the central control of eye movements and their role in perception and behaviour arose from work on primates. However, an overview of various eye movements in mice and a comparison to primates is missing. Here, we review the eye movement types described to date in mice and compare them to those observed in primates. We discuss the central neuronal mechanisms for their generation and control. Furthermore, we review the mounting literature on eye movements in mice during head-fixed and freely moving behaviours. Finally, we highlight gaps in our understanding and suggest future directions for research.
Collapse
Affiliation(s)
| | - Ede Rancz
- INMED, INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
5
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Bava JM, Wang Z, Bick SK, Englot DJ, Constantinidis C. Improving Visual Working Memory with Cholinergic Deep Brain Stimulation. Brain Sci 2023; 13:917. [PMID: 37371395 PMCID: PMC10296349 DOI: 10.3390/brainsci13060917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Acetylcholine is a critical modulatory neurotransmitter for cognitive function. Cholinergic drugs improve cognitive performance and enhance neuronal activity in the sensory and association cortices. An alternative means of improving cognitive function is through the use of deep brain stimulation. Prior animal studies have demonstrated that stimulation of the nucleus basalis of Meynert through DBS improves cognitive performance on a visual working memory task to the same degree as cholinesterase inhibitors. Additionally, unlike current pharmacological treatments for neurocognitive disorders, DBS does not lose efficacy over time and adverse effects are rare. These findings suggest that DBS may be a promising alternative for treating cognitive impairments in neurodegenerative disorders such as Alzheimer's disease. Thus, further research and human trials should be considered to assess the potential of DBS as a therapeutic treatment for these disorders.
Collapse
Affiliation(s)
- Janki M. Bava
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA;
| | - Sarah K. Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; (J.M.B.); (D.J.E.)
- Neuroscience Program, Vanderbilt University, Nashville, TN 37235, USA;
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Abstract
Visual processing is dynamically controlled by multiple neuromodulatory molecules that modify the responsiveness of neurons and the strength of the connections between them. In particular, modulatory control of processing in the lateral geniculate nucleus of the thalamus, V1, and V2 will alter the outcome of all subsequent processing of visual information, including the extent to and manner in which individual inputs contribute to perception and decision making and are stored in memory. This review addresses five small-molecule neuromodulators-acetylcholine, dopamine, serotonin, noradrenaline, and histamine-considering the structural basis for their action, and the effects of their release, in the early visual pathway of the macaque monkey. Traditionally, neuromodulators are studied in isolation and in discrete circuits; this review makes a case for considering the joint action of modulatory molecules and differences in modulatory effects across brain areas as a better means of understanding the diverse roles that these molecules serve.
Collapse
Affiliation(s)
- Anita A Disney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
| |
Collapse
|
8
|
Electrical stimulation of the nucleus basalis of meynert: a systematic review of preclinical and clinical data. Sci Rep 2021; 11:11751. [PMID: 34083732 PMCID: PMC8175342 DOI: 10.1038/s41598-021-91391-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/24/2021] [Indexed: 12/09/2022] Open
Abstract
Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has been clinically investigated in Alzheimer’s disease (AD) and Lewy body dementia (LBD). However, the clinical effects are highly variable, which questions the suggested basic principles underlying these clinical trials. Therefore, preclinical and clinical data on the design of NBM stimulation experiments and its effects on behavioral and neurophysiological aspects are systematically reviewed here. Animal studies have shown that electrical stimulation of the NBM enhanced cognition, increased the release of acetylcholine, enhanced cerebral blood flow, released several neuroprotective factors, and facilitates plasticity of cortical and subcortical receptive fields. However, the translation of these outcomes to current clinical practice is hampered by the fact that mainly animals with an intact NBM were used, whereas most animals were stimulated unilaterally, with different stimulation paradigms for only restricted timeframes. Future animal research has to refine the NBM stimulation methods, using partially lesioned NBM nuclei, to better resemble the clinical situation in AD, and LBD. More preclinical data on the effect of stimulation of lesioned NBM should be present, before DBS of the NBM in human is explored further.
Collapse
|
9
|
Feng G, Jensen FE, Greely HT, Okano H, Treue S, Roberts AC, Fox JG, Caddick S, Poo MM, Newsome WT, Morrison JH. Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. Proc Natl Acad Sci U S A 2020; 117:24022-24031. [PMID: 32817435 PMCID: PMC7533691 DOI: 10.1073/pnas.2006515117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recently developed new genome-editing technologies, such as the CRISPR/Cas system, have opened the door for generating genetically modified nonhuman primate (NHP) models for basic neuroscience and brain disorders research. The complex circuit formation and experience-dependent refinement of the human brain are very difficult to model in vitro, and thus require use of in vivo whole-animal models. For many neurodevelopmental and psychiatric disorders, abnormal circuit formation and refinement might be at the center of their pathophysiology. Importantly, many of the critical circuits and regional cell populations implicated in higher human cognitive function and in many psychiatric disorders are not present in lower mammalian brains, while these analogous areas are replicated in NHP brains. Indeed, neuropsychiatric disorders represent a tremendous health and economic burden globally. The emerging field of genetically modified NHP models has the potential to transform our study of higher brain function and dramatically facilitate the development of effective treatment for human brain disorders. In this paper, we discuss the importance of developing such models, the infrastructure and training needed to maximize the impact of such models, and ethical standards required for using these models.
Collapse
Affiliation(s)
- Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - Henry T Greely
- Center for Law and the Biosciences, Stanford University, Stanford, CA 94305
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjukuku, 160-8592 Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, 351-0106 Saitama, Wakoshi, Japan
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, 37073 Goettingen, Germany
| | - Angela C Roberts
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sarah Caddick
- The Gatsby Charitable Foundation, SW1V 1AP London, United Kingdom
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - William T Newsome
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - John H Morrison
- California National Primate Research Center, University of California, Davis, CA 95616;
- Department of Neurology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
10
|
Buffalo EA, Movshon JA, Wurtz RH. From basic brain research to treating human brain disorders. Proc Natl Acad Sci U S A 2019; 116:26167-26172. [PMID: 31871205 PMCID: PMC6936684 DOI: 10.1073/pnas.1919895116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Elizabeth A. Buffalo
- Department of Physiology and Biophysics, School of Medicine, Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | | | - Robert H. Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|