1
|
Bakker R, Bairagi A, Rodríguez M, Tripodi GL, Pereverzev AY, Roithová J. Hydrogen Bonding Effect on the Oxygen Binding and Activation in Cobalt(III)-Peroxo Complexes. Inorg Chem 2023; 62:1728-1734. [PMID: 36657013 PMCID: PMC9890563 DOI: 10.1021/acs.inorgchem.2c04260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cobalt(III)peroxo complexes serve as model metal complexes mediating oxygen activation. We report a systematic study of the effect of hydrogen bonding on the O2 binding energy and the O-O bond activation within the cobalt(III)peroxo complexes. To this end, we prepared a series of tris(pyridin-2-ylmethyl)amine-based cobalt(III)peroxo complexes having either none, one, two, or three amino groups in the secondary coordination sphere. The hydrogen bonding between the amino group(s) and the peroxo ligand was investigated within the isolated complexes in the gas phase using helium tagging infrared photodissociation spectroscopy, energy-resolved collision-induced dissociation experiments, and density functional theory. The results show that the hydrogen bonding stabilizes the cobalt(III)peroxo core, but the effect is only 10-20 kJ mol-1. Introducing the first amino group to the secondary coordination sphere has the largest stabilization effect; more amino groups do not change the results significantly. The amino group can transfer a hydrogen atom to the peroxo ligands, which results in the O-O bond cleavage. This process is thermodynamically favored over the O2 elimination but entropically disfavored.
Collapse
|
2
|
Oliveira JP, Queiroz MH, Provasi PF, Rivelino R. A NMR hybrid J-coupling alternation (hJCA) parameter linearly correlated to properties of intermolecular H-bonded chains. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Rosen AS, Mian MR, Islamoglu T, Chen H, Farha OK, Notestein JM, Snurr RQ. Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O2 Binding: Design Rules and Ambient Temperature O2 Chemisorption in a Cobalt–Triazolate Framework. J Am Chem Soc 2020; 142:4317-4328. [DOI: 10.1021/jacs.9b12401] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M. Rasel Mian
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q. Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Lin H, Wang X. The effects of gasotransmitters on bronchopulmonary dysplasia. Eur J Pharmacol 2020; 873:172983. [PMID: 32017936 DOI: 10.1016/j.ejphar.2020.172983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD), which remains a major clinical problem for preterm infants, is caused mainly by hyperoxia, mechanical ventilation and inflammation. Many approaches have been developed with the aim of decreasing the incidence of or alleviating BPD, but effective methods are still lacking. Gasotransmitters, a type of small gas molecule that can be generated endogenously, exert a protective effect against BPD-associated lung injury; nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are three such gasotransmitters. The protective effects of NO have been extensively studied in animal models of BPD, but the results of these studies are inconsistent with those of clinical trials. NO inhalation seems to have no effect on BPD, although side effects have been reported. NO inhalation is not recommended for BPD treatment in preterm infants, except those with severe pulmonary hypertension. Both CO and H2S decreased lung injury in BPD rodent models in preclinical studies. Another small gas molecule, hydrogen, exerts a protective effect against BPD. The nuclear factor erythroid-derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis seems to play a central role in the protective effect of these gasotransmitters on BPD. Gasotransmitters play important roles in mammals, but further clinical trials are needed to explore their effects on BPD.
Collapse
Affiliation(s)
- Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
5
|
Bhadra M, Lee JYC, Cowley RE, Kim S, Siegler MA, Solomon EI, Karlin KD. Intramolecular Hydrogen Bonding Enhances Stability and Reactivity of Mononuclear Cupric Superoxide Complexes. J Am Chem Soc 2018; 140:9042-9045. [PMID: 29957998 PMCID: PMC6217813 DOI: 10.1021/jacs.8b04671] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[(L)CuII(O2•-)]+ (i.e., cupric-superoxo) complexes, as the first and/or key reactive intermediates in (bio)chemical Cu-oxidative processes, including in the monooxygenases PHM and DβM, have been systematically stabilized by intramolecular hydrogen bonding within a TMPA ligand-based framework. Also, gradual strengthening of ligand-derived H-bonding dramatically enhances the [(L)CuII(O2•-)]+ reactivity toward hydrogen-atom abstraction (HAA) of phenolic O-H bonds. Spectroscopic properties of the superoxo complexes and their azido analogues, [(L)CuII(N3-)]+, also systematically change as a function of ligand H-bonding capability.
Collapse
Affiliation(s)
- Mayukh Bhadra
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jung Yoon C. Lee
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ryan E. Cowley
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sunghee Kim
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kenneth D. Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Molecular basis of hemoglobin adaptation in the high-flying bar-headed goose. PLoS Genet 2018; 14:e1007331. [PMID: 29608560 PMCID: PMC5903655 DOI: 10.1371/journal.pgen.1007331] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/17/2018] [Accepted: 03/23/2018] [Indexed: 01/14/2023] Open
Abstract
During the adaptive evolution of a particular trait, some selectively fixed mutations may be directly causative and others may be purely compensatory. The relative contribution of these two classes of mutation to adaptive phenotypic evolution depends on the form and prevalence of mutational pleiotropy. To investigate the nature of adaptive substitutions and their pleiotropic effects, we used a protein engineering approach to characterize the molecular basis of hemoglobin (Hb) adaptation in the high-flying bar-headed goose (Anser indicus), a hypoxia-tolerant species renowned for its trans-Himalayan migratory flights. To test the effects of observed substitutions on evolutionarily relevant genetic backgrounds, we synthesized all possible genotypic intermediates in the line of descent connecting the wildtype bar-headed goose genotype with the most recent common ancestor of bar-headed goose and its lowland relatives. Site-directed mutagenesis experiments revealed one major-effect mutation that significantly increased Hb-O2 affinity on all possible genetic backgrounds. Two other mutations exhibited smaller average effect sizes and less additivity across backgrounds. One of the latter mutations produced a concomitant increase in the autoxidation rate, a deleterious side-effect that was fully compensated by a second-site mutation at a spatially proximal residue. The experiments revealed three key insights: (i) subtle, localized structural changes can produce large functional effects; (ii) relative effect sizes of function-altering mutations may depend on the sequential order in which they occur; and (iii) compensation of deleterious pleiotropic effects may play an important role in the adaptive evolution of protein function.
Collapse
|
7
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
8
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
9
|
Alberti MN, Polyhach Y, Tzirakis MD, Tödtli L, Jeschke G, Diederich F. Exploring the Strength of the H-Bond in Synthetic Models for Heme Proteins: The Importance of the N−H Acidity of the Distal Base. Chemistry 2016; 22:10194-202. [DOI: 10.1002/chem.201601505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mariza N. Alberti
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Manolis D. Tzirakis
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Laura Tödtli
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry; ETH Zurich; Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - François Diederich
- Laboratorium für Organische Chemie; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
10
|
Zhang W, Wang Y, Leng Y, Zhang P, Zhang J, Jiang P. Hydrogen bond-directed encapsulation of metalloporphyrin into the microcages of zeolite imidazolate frameworks for synergistic biomimetic catalysis. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00538a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In efforts to replicate the 3D model and desirable function of haemoglobin, the zeolite imidazolate framework (ZIF-8) was delineated for an ideal host matrix to accommodate custom-designed porphyrin molecules via hydrogen bonding.
Collapse
Affiliation(s)
- Weijie Zhang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Ying Wang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yan Leng
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Pingbo Zhang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Jian Zhang
- School of Chemistry and Environmental Science
- Lanzhou City University
- Lanzhou 730000
- PR China
| | - Pingping Jiang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
11
|
Ultrafast Structural Fluctuations of Myoglobin-Bound Thiocyanate and Selenocyanate Ions Measured with Two-Dimensional Infrared Photon Echo Spectroscopy. Chemphyschem 2015; 16:3468-76. [DOI: 10.1002/cphc.201500606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/27/2015] [Indexed: 11/07/2022]
|
12
|
Shadrina MS, Peslherbe GH, English AM. O2 and Water Migration Pathways between the Solvent and Heme Pockets of Hemoglobin with Open and Closed Conformations of the Distal HisE7. Biochemistry 2015; 54:5279-89. [PMID: 26226401 DOI: 10.1021/acs.biochem.5b00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemoglobin transports O2 by binding the gas at its four hemes. Hydrogen bonding between the distal histidine (HisE7) and heme-bound O2 significantly increases the affinity of human hemoglobin (HbA) for this ligand. HisE7 is also proposed to regulate the release of O2 to the solvent via a transient E7 channel. To reveal the O2 escape routes controlled by HisE7 and to evaluate its role in gating heme access, we compare simulations of O2 diffusion from the distal heme pockets of the T and R states of HbA performed with HisE7 in its open (protonated) and closed (neutral) conformations. Irrespective of HisE7's conformation, we observe the same four or five escape routes leading directly from the α- or β-distal heme pockets to the solvent. Only 21-53% of O2 escapes occur via these routes, with the remainder escaping through routes that encompass multiple internal cavities in HbA. The conformation of the distal HisE7 controls the escape of O2 from the heme by altering the distal pocket architecture in a pH-dependent manner, not by gating the E7 channel. Removal of the HisE7 side chain in the GlyE7 variant exposes the distal pockets to the solvent, and the percentage of O2 escapes to the solvent directly from the α- or β-distal pockets of the mutant increases to 70-88%. In contrast to O2, the dominant water route from the bulk solvent is gated by HisE7 because protonation and opening of this residue dramatically increase the rate of influx of water into the empty distal heme pockets. The occupancy of the distal heme site by a water molecule, which functions as an additional nonprotein barrier to binding of the ligand to the heme, is also controlled by HisE7. Overall, analysis of gas and water diffusion routes in the subunits of HbA and its GlyE7 variant sheds light on the contribution of distal HisE7 in controlling polar and nonpolar ligand movement between the solvent and the hemes.
Collapse
Affiliation(s)
- Maria S Shadrina
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University , Montreal, Quebec H4B 1R6, Canada
| | - Gilles H Peslherbe
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University , Montreal, Quebec H4B 1R6, Canada
| | - Ann M English
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling and PROTEO, Concordia University , Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
13
|
Affiliation(s)
- Yue Yuan
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Ming F. Tam
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Virgil Simplaceanu
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Chien Ho
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| |
Collapse
|
14
|
Activity of histidine in peripheral blood erythrocytes of pregnant women during exacerbation of cytomegalovirus infection. Bull Exp Biol Med 2014; 157:765-8. [PMID: 25348566 DOI: 10.1007/s10517-014-2662-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 10/24/2022]
Abstract
We studied the effect of active cytomegalovirus infection on histidine content in peripheral blood erythrocytes of pregnant women at gestation weeks 20-22 and its involvement into hemoglobin oxygenation. Using the histochemical technique developed by us, we studied the distribution of products of specific reaction for histidine in peripheral blood erythrocytes of pregnant women. The percentage of histidine-positive erythrocytes and their area were evaluated. The relationship between the distribution of the products of the reaction for histidine in peripheral blood erythrocytes of pregnant women and the titer of anti-cytomegalovirus IgG was revealed. The histidine content in peripheral blood erythrocytes of pregnant women with active cytomegalovirus infection was reduced, which impaired heme binding to globin and decreased the formation of oxyhemoglobin.
Collapse
|
15
|
Lima FA, Penfold TJ, van der Veen RM, Reinhard M, Abela R, Tavernelli I, Rothlisberger U, Benfatto M, Milne CJ, Chergui M. Probing the electronic and geometric structure of ferric and ferrous myoglobins in physiological solutions by Fe K-edge absorption spectroscopy. Phys Chem Chem Phys 2014; 16:1617-31. [PMID: 24317683 DOI: 10.1039/c3cp53683a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an iron K-edge X-ray absorption study of carboxymyoglobin (MbCO), nitrosylmyoglobin (MbNO), oxymyoglobin (MbO2), cyanomyoglobin (MbCN), aquomet myoglobin (metMb) and unligated myoglobin (deoxyMb) in physiological media. The analysis of the XANES region is performed using the full-multiple scattering formalism, implemented within the MXAN package. This reveals trends within the heme structure, absent from previous crystallographic and X-ray absorption analysis. In particular, the iron-nitrogen bond lengths in the porphyrin ring converge to a common value of about 2 Å, except for deoxyMb whose bigger value is due to the doming of the heme. The trends of the Fe-Nε (His93) bond length is found to be consistent with the effect of ligand binding to the iron, with the exception of MbNO, which is explained in terms of the repulsive trans effect. We derive a high resolution description of the relative geometry of the ligands with respect to the heme and quantify the magnitude of the heme doming in the deoxyMb form. Finally, time-dependent density functional theory is used to simulate the pre-edge spectra and is found to be in good agreement with the experiment. The XAS spectra typically exhibit one pre-edge feature which arises from transitions into the unoccupied dσ and dπ - πligand* orbitals. 1s → dπ transitions contribute weakly for MbO2, metMb and deoxyMb. However, despite this strong Fe d contribution these transitions are found to be dominated by the dipole (1s → 4p) moment due to the low symmetry of the heme environment.
Collapse
Affiliation(s)
- Frederico A Lima
- École Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne, CH, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nishimura R, Shibata T, Ishigami I, Ogura T, Tai H, Nagao S, Matsuo T, Hirota S, Shoji O, Watanabe Y, Imai K, Neya S, Suzuki A, Yamamoto Y. Electronic Control of Discrimination between O2 and CO in Myoglobin Lacking the Distal Histidine Residue. Inorg Chem 2013; 53:1091-9. [DOI: 10.1021/ic402625s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryu Nishimura
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Tomokazu Shibata
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Izumi Ishigami
- Department of Life Science, Graduate
School of Life Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Department of Life Science, Graduate
School of Life Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takashi Matsuo
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kiyohiro Imai
- Department of Frontier Bioscience, Faculty
of Bioscience and Applied Chemistry, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Saburo Neya
- Department of Physical Chemistry, Graduate
School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba 260-8675, Japan
| | - Akihiro Suzuki
- Department of Materials Engineering, Nagaoka National College of Technology, Nagaoka 940-8532, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
17
|
Liao MS, Huang MJ, Watts JD. Effects of local protein environment on the binding of diatomic molecules to heme in myoglobins. DFT and dispersion-corrected DFT studies. J Mol Model 2013; 19:3307-23. [PMID: 23661270 PMCID: PMC3726265 DOI: 10.1007/s00894-013-1864-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
The heme-AB binding energies (AB = CO, O2) in a wild-type myoglobin (Mb) and two mutants (H64L, V68N) of Mb have been investigated in detail with both DFT and dispersion-corrected DFT methods, where H64L and V68N represent two different, opposite situations. Several dispersion correction approaches were tested in the calculations. The effects of the local protein environment were accounted for by including the five nearest surrounding residues in the calculated systems. The specific role of histidine-64 in the distal pocket was examined in more detail in this study than in other studies in the literature. Although the present calculated results do not change the previous conclusion that the hydrogen bonding by the distal histidine-64 residue plays a major role in the O2/CO discrimination by Mb, more details about the interaction between the protein environment and the bound ligand have been revealed in this study by comparing the binding energies of AB to a porphyrin and the various myoglobins. The changes in the experimental binding energies from one system to another are well reproduced by the calculations. Without constraints on the residues in geometry optimization, the dispersion correction is necessary, since it improves the calculated structures and energetic results significantly.
Collapse
Affiliation(s)
- Meng-Sheng Liao
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| | - Ming-Ju Huang
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| | - John D. Watts
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| |
Collapse
|
18
|
Tam MF, Rice NW, Maillett DH, Simplaceanu V, Ho NT, Tam TCS, Shen TJ, Ho C. Autoxidation and oxygen binding properties of recombinant hemoglobins with substitutions at the αVal-62 or βVal-67 position of the distal heme pocket. J Biol Chem 2013; 288:25512-25521. [PMID: 23867463 DOI: 10.1074/jbc.m113.474841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The E11 valine in the distal heme pocket of either the α- or β-subunit of human adult hemoglobin (Hb A) was replaced by leucine, isoleucine, or phenylalanine. Recombinant proteins were expressed in Escherichia coli and purified for structural and functional studies. (1)H NMR spectra were obtained for the CO and deoxy forms of Hb A and the mutants. The mutations did not disturb the α1β2 interface in either form, whereas the H-bond between αHis-103 and βGln-131 in the α1β1 interfaces of the deoxy α-subunit mutants was weakened. Localized structural changes in the mutated heme pocket were detected for the CO form of recombinant Hb (rHb) (αV62F), rHb (βV67I), and rHb (βV67F) compared with Hb A. In the deoxy form the proximal histidyl residue in the β-subunit of rHb (βV67F) has been altered. Furthermore, the interactions between the porphyrin ring and heme pocket residues have been perturbed in rHb (αV62I), rHb (αV62F), and rHb (βV67F). Functionally, the oxygen binding affinity (P50), cooperativity (n50), and the alkaline Bohr Effect of the three α-subunit mutants and rHb (βV67L) are similar to those of Hb A. rHb (βV67I) and rHb (βV67F) exhibit low and high oxygen affinity, respectively. rHb (βV67F) has P50 values lower that those reported for rHb (αL29F), a B10 mutant studied previously in our laboratory (Wiltrout, M. E., Giovannelli, J. L., Simplaceanu, V., Lukin, J. A., Ho, N. T., and Ho, C. (2005) Biochemistry 44, 7207-7217). These E11 mutations do not slow down the autoxidation and azide-induced oxidation rates of the recombinant proteins. Results from this study provide new insights into the roles of E11 mutants in the structure-function relationship in hemoglobin.
Collapse
Affiliation(s)
- Ming F Tam
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Natalie W Rice
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - David H Maillett
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Virgil Simplaceanu
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Nancy T Ho
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Tsuey Chyi S Tam
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Tong-Jian Shen
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Chien Ho
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
19
|
Dickson CF, Rich AM, D'Avigdor WMH, Collins DAT, Lowry JA, Mollan TL, Khandros E, Olson JS, Weiss MJ, Mackay JP, Lay PA, Gell DA. α-Hemoglobin-stabilizing protein (AHSP) perturbs the proximal heme pocket of oxy-α-hemoglobin and weakens the iron-oxygen bond. J Biol Chem 2013; 288:19986-20001. [PMID: 23696640 DOI: 10.1074/jbc.m112.437509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Hemoglobin (αHb)-stabilizing protein (AHSP) is a molecular chaperone that assists hemoglobin assembly. AHSP induces changes in αHb heme coordination, but how these changes are facilitated by interactions at the αHb·AHSP interface is not well understood. To address this question we have used NMR, x-ray absorption spectroscopy, and ligand binding measurements to probe αHb conformational changes induced by AHSP binding. NMR chemical shift analyses of free CO-αHb and CO-αHb·AHSP indicated that the seven helical elements of the native αHb structure are retained and that the heme Fe(II) remains coordinated to the proximal His-87 side chain. However, chemical shift differences revealed alterations of the F, G, and H helices and the heme pocket of CO-αHb bound to AHSP. Comparisons of iron-ligand geometry using extended x-ray absorption fine structure spectroscopy showed that AHSP binding induces a small 0.03 Å lengthening of the Fe-O2 bond, explaining previous reports that AHSP decreases αHb O2 affinity roughly 4-fold and promotes autooxidation due primarily to a 3-4-fold increase in the rate of O2 dissociation. Pro-30 mutations diminished NMR chemical shift changes in the proximal heme pocket, restored normal O2 dissociation rate and equilibrium constants, and reduced O2-αHb autooxidation rates. Thus, the contacts mediated by Pro-30 in wild-type AHSP promote αHb autooxidation by introducing strain into the proximal heme pocket. As a chaperone, AHSP facilitates rapid assembly of αHb into Hb when βHb is abundant but diverts αHb to a redox resistant holding state when βHb is limiting.
Collapse
Affiliation(s)
- Claire F Dickson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Spiro TG, Soldatova AV, Balakrishnan G. CO, NO and O 2 as Vibrational Probes of Heme Protein Interactions. Coord Chem Rev 2013; 257:511-527. [PMID: 23471138 PMCID: PMC3587108 DOI: 10.1016/j.ccr.2012.05.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The gaseous XO molecules (X = C, N or O) bind to the heme prosthetic group of heme proteins, and thereby activate or inhibit key biological processes. These events depend on interactions of the surrounding protein with the FeXO adduct, interactions that can be monitored via the frequencies of the Fe-X and X-O bond stretching modes, νFeX and νXO. The frequencies can be determined by vibrational spectroscopy, especially resonance Raman spectroscopy. Backbonding, the donation of Fe dπ electrons to the XO π* orbitals, is a major bonding feature in all the FeXO adducts. Variations in backbonding produce negative νFeX/νXO correlations, which can be used to gauge electrostatic and H-bonding effects in the protein binding pocket. Backbonding correlations have been established for all the FeXO adducts, using porphyrins with electron donating and withdrawing substituents. However the adducts differ in their response to variations in the nature of the axial ligand, and to specific distal interactions. These variations provide differing vantages for evaluating the nature of protein-heme interactions. We review experimental studies that explore these variations, and DFT computational studies that illuminate the underlying physical mechanisms.
Collapse
Affiliation(s)
- Thomas G. Spiro
- Department of Chemistry, University of Washington Box 351700, Seattle, Washington 98195
| | | | - Gurusamy Balakrishnan
- Department of Chemistry, University of Washington Box 351700, Seattle, Washington 98195
| |
Collapse
|
21
|
Vankayala SL, Hargis JC, Woodcock HL. Unlocking the binding and reaction mechanism of hydroxyurea substrates as biological nitric oxide donors. J Chem Inf Model 2012; 52:1288-97. [PMID: 22519847 DOI: 10.1021/ci300035c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxyurea is the only FDA approved treatment of sickle cell disease. It is believed that the primary mechanism of action is associated with the pharmacological elevation of nitric oxide in the blood; however, the exact details of this are still unclear. In the current work, we investigate the atomic level details of this process using a combination of flexible-ligand/flexible-receptor virtual screening coupled with energetic analysis that decomposes interaction energies. Utilizing these methods, we were able to elucidate the previously unknown substrate binding modes of a series of hydroxyurea analogs to hemoglobin and the concomitant structural changes of the enzyme. We identify a backbone carbonyl that forms a hydrogen bond with bound substrates. Our results are consistent with kinetic and electron paramagnetic resonance (EPR) measurements of hydroxyurea-hemoglobin reactions, and a full mechanism is proposed that offers new insights into possibly improving substrate binding and/or reactivity.
Collapse
Affiliation(s)
- Sai Lakshmana Vankayala
- Department of Chemistry and Center for Molecular Diversity in Drug Design, Discovery, and Delivery, University of South Floridar, Tampa, Florida 33620, USA
| | | | | |
Collapse
|
22
|
Franzen S, Thompson MK, Ghiladi RA. The dehaloperoxidase paradox. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:578-88. [DOI: 10.1016/j.bbapap.2011.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 12/01/2022]
|
23
|
D'Antonio J, Ghiladi RA. Reactivity of deoxy- and oxyferrous dehaloperoxidase B from Amphitrite ornata: identification of compound II and its ferrous-hydroperoxide precursor. Biochemistry 2011; 50:5999-6011. [PMID: 21619067 DOI: 10.1021/bi200311u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is a bifunctional enzyme that possesses both hemoglobin and peroxidase activities. The bifunctional nature of DHP as a globin peroxidase appears to be at odds with the traditional starting oxidation state for each individual activity. Namely, reversible oxygen binding is only mediated via a ferrous heme in globins, and peroxidase activity is initiated from ferric centers and to the exclusion of the oxyferrous oxidation state from the peroxidase cycle. Thus, to address what appears to be a paradox, herein we report the details of our investigations into the DHP catalytic cycle when initiated from the deoxy- and oxyferrous states using biochemical assays, stopped-flow UV-visible, and rapid-freeze-quench electron paramagnetic resonance spectroscopies, and anaerobic methods. We demonstrate the formation of Compound II directly from deoxyferrous DHP B upon its reaction with hydrogen peroxide and show that this occurs both in the presence and in the absence of trihalophenol. Prior to the formation of Compound II, we have identified a new species that we have preliminarily attributed to a ferrous-hydroperoxide precursor that undergoes heterolysis to generate the aforementioned ferryl intermediate. Taken together, the results demonstrate that the oxyferrous state in DHP is a peroxidase competent starting species, and an updated catalytic cycle for DHP is proposed in which the ferric oxidation state is not an obligatory starting point for the peroxidase catalytic cycle of dehaloperoxidase. The data presented herein provide a link between the peroxidase and oxygen transport activities, which furthers our understanding of how this bifunctional enzyme is able to unite its two inherent functions in one system.
Collapse
Affiliation(s)
- Jennifer D'Antonio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | |
Collapse
|
24
|
Rifkind JM, Nagababu E, Ramasamy S. The quaternary hemoglobin conformation regulates the formation of the nitrite-induced bioactive intermediate and the dissociation of nitric oxide from this intermediate. Nitric Oxide 2011; 24:102-9. [PMID: 21236353 PMCID: PMC3178107 DOI: 10.1016/j.niox.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/03/2010] [Accepted: 01/06/2011] [Indexed: 11/21/2022]
Abstract
Deoxyhemoglobin reduces nitrite to nitric oxide (NO). In order to study the effect of the hemoglobin quaternary conformation on the nitrite reaction, we compared T-state deoxyhemoglobin with R-state deoxyhemoglobin produced by reacting hemoglobin with carboxypeptidase-A prior to deoxygenation. The nitrite reaction with deoxyhemoglobin was followed by chemiluminescence, electron paramagnetic resonance and visible spectroscopy. The initial steps in this reaction involve the binding of nitrite to deoxyhemoglobin followed by the formation of an electron delocalized metastable intermediate that retains potential NO bioactivity. This reaction is shown by visible spectroscopy to occur 5.6 times faster in the R-state than in the T-state. However, the dissociation of NO from the delocalized intermediate is shown to be facilitated by the T-quaternary conformation with a 9.6 fold increase in the rate constant. The preferred NO-release in the T-state, which has a higher affinity for the membrane, can result in the NO diffusing out of the RBC and being released to the vasculature at low partial pressures of oxygen.
Collapse
Affiliation(s)
- Joseph M Rifkind
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
25
|
Yuan Y, Simplaceanu V, Ho NT, Ho C. An investigation of the distal histidyl hydrogen bonds in oxyhemoglobin: effects of temperature, pH, and inositol hexaphosphate. Biochemistry 2010; 49:10606-15. [PMID: 21077639 DOI: 10.1021/bi100927p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of X-ray crystal structures and electron paramagnetic resonance (EPR) measurements, it has been inferred that the O(2) binding to hemoglobin is stabilized by the hydrogen bonds between the oxygen ligands and the distal histidines. Our previous study by multinuclear nuclear magnetic resonance (NMR) spectroscopy has provided the first direct evidence of such H-bonds in human normal adult oxyhemoglobin (HbO(2) A) in solution. Here, the NMR spectra of uniformly (15)N-labeled recombinant human Hb A (rHb A) and five mutant rHbs in the oxy form have been studied under various experimental conditions of pH and temperature and also in the presence of an organic phosphate, inositol hexaphosphate (IHP). We have found significant effects of pH and temperature on the strength of the H-bond markers, i.e., the cross-peaks for the side chains of the two distal histidyl residues, α58His and β63His, which form H-bonds with the O(2) ligands. At lower pH and/or higher temperature, the side chains of the distal histidines appear to be more mobile, and the exchange with water molecules in the distal heme pockets is faster. These changes in the stability of the H-bonds with pH and temperature are consistent with the changes in the O(2) affinity of Hb as a function of pH and temperature and are clearly illustrated by our NMR experiments. Our NMR results have also confirmed that this H-bond in the β-chain is weaker than that in the α-chain and is more sensitive to changes in pH and temperature. IHP has only a minor effect on these H-bond markers compared to the effects of pH and temperature. These H-bonds are sensitive to mutations in the distal heme pockets but not affected directly by the mutations in the quaternary interfaces, i.e., α(1)β(1) and/or α(1)β(2) subunit interface. These findings provide new insights regarding the roles of temperature, hydrogen ion, and organic phosphate in modulating the structure and function of hemoglobin in solution.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | |
Collapse
|
26
|
Birukou I, Schweers RL, Olson JS. Distal histidine stabilizes bound O2 and acts as a gate for ligand entry in both subunits of adult human hemoglobin. J Biol Chem 2010; 285:8840-54. [PMID: 20080971 PMCID: PMC2838306 DOI: 10.1074/jbc.m109.053934] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 01/13/2010] [Indexed: 11/06/2022] Open
Abstract
The role of the distal histidine in regulating ligand binding to adult human hemoglobin (HbA) was re-examined systematically by preparing His(E7) to Gly, Ala, Leu, Gln, Phe, and Trp mutants of both Hb subunits. Rate constants for O(2), CO, and NO binding were measured using rapid mixing and laser photolysis experiments designed to minimize autoxidation of the unstable apolar E7 mutants. Replacing His(E7) with Gly, Ala, Leu, or Phe causes 20-500-fold increases in the rates of O(2) dissociation from either Hb subunit, demonstrating unambiguously that the native His(E7) imidazole side chain forms a strong hydrogen bond with bound O(2) in both the alpha and beta chains (DeltaG(His(E7)H-bond) approximately -8 kJ/mol). As the size of the E7 amino acid is increased from Gly to Phe, decreases in k(O2)', k(NO)', and calculated bimolecular rates of CO entry (k(entry)') are observed. Replacing His(E7) with Trp causes further decreases in k(O2)', k(NO)', and k(entry)' to 1-2 microM(-1) s(-1) in beta subunits, whereas ligand rebinding to alphaTrp(E7) subunits after photolysis is markedly biphasic, with fast k(O2)', k(CO)', and k(NO)' values approximately 150 microM(-1) s(-1) and slow rate constants approximately 0.1 to 1 microM(-1) s(-1). Rapid bimolecular rebinding to an open alpha subunit conformation occurs immediately after photolysis of the alphaTrp(E7) mutant at high ligand concentrations. However, at equilibrium the closed alphaTrp(E7) side chain inhibits the rate of ligand binding >200-fold. These data suggest strongly that the E7 side chain functions as a gate for ligand entry in both HbA subunits.
Collapse
Affiliation(s)
- Ivan Birukou
- From the Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005
| | - Rachel L. Schweers
- From the Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005
| | - John S. Olson
- From the Department of Biochemistry and Cell Biology and the W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005
| |
Collapse
|
27
|
Differences in coordination states of substituted tyrosine residues and quaternary structures among hemoglobin M probed by resonance Raman spectroscopy. J Biol Inorg Chem 2009; 15:147-58. [DOI: 10.1007/s00775-009-0579-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 08/13/2009] [Indexed: 11/26/2022]
|
28
|
|
29
|
Chen H, Ikeda-Saito M, Shaik S. Nature of the Fe-O2 bonding in oxy-myoglobin: effect of the protein. J Am Chem Soc 2008; 130:14778-90. [PMID: 18847206 DOI: 10.1021/ja805434m] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nature of the Fe-O2 bonding in oxy-myoglobin was probed by theoretical calculations: (a) QM/MM (hybrid quantum mechanical/molecular mechanical) calculations using DFT/MM and CASSCF/MM methods and (b) gas-phase calculations using DFT (density functional theory) and CASSCF (complete active space self-consistent field) methods. Within the protein, the O2 is hydrogen bonded by His64 and the complex feels the bulk polarity of the protein. Removal of the protein causes major changes in the complex. Thus, while CASSCF/MM and DFT/MM are similar in terms of state constitution, degree of O2 charge, and nature of the lowest triplet state, the gas-phase CASSCF(g) species is very different. Valence bond (VB) analysis of the CASSCF/MM wave function unequivocally supports the Weiss bonding mechanism. This bonding arises by electron transfer from heme-Fe(II) to O2 and the so formed species coupled then to a singlet state Fe(III)-O2(-) that possesses a dative sigma(Fe-O) bond and a weakly coupled pi(Fe-O2) bond pair. The bonding mechanism in the gas phase is similar, but now the sigma(Fe-O) bond involves higher back-donation from O2(-) to Fe(III), while the constituents of pi(Fe-O2) bond pair have greater delocalization tails. The protein thus strengthens the Fe(III)-O2(-) character of the complex and thereby affects its bonding features and the oxygen binding affinity of Mb. The VB model is generalized, showing how the protein or the axial ligand of the oxyheme complex can determine the nature of its bonding in terms of the blend of the three bonding models: Weiss, Pauling, and McClure-Goddard.
Collapse
Affiliation(s)
- Hui Chen
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
30
|
Degtyarenko I, Biarnés X, Nieminen RM, Rovira C. Density-functional molecular dynamics studies of biologically relevant iron and cobalt complexes with macrocyclic ligands. Coord Chem Rev 2008. [DOI: 10.1016/j.ccr.2007.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
|
32
|
Dube H, Kasumaj B, Calle C, Saito M, Jeschke G, Diederich F. Direkter Nachweis einer Wasserstoffbrücke zu gebundenem Disauerstoff in einem Modellkomplex für Myoglobin/Hämoglobin und in Cobalt-Myoglobin durch Puls-EPR. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705180] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Dube H, Kasumaj B, Calle C, Saito M, Jeschke G, Diederich F. Direct Evidence for a Hydrogen Bond to Bound Dioxygen in a Myoglobin/Hemoglobin Model System and in Cobalt Myoglobin by Pulse-EPR Spectroscopy. Angew Chem Int Ed Engl 2008; 47:2600-3. [DOI: 10.1002/anie.200705180] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Storz JF, Hoffmann FG, Opazo JC, Moriyama H. Adaptive functional divergence among triplicated alpha-globin genes in rodents. Genetics 2008; 178:1623-38. [PMID: 18245844 PMCID: PMC2278084 DOI: 10.1534/genetics.107.080903] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/05/2008] [Indexed: 11/18/2022] Open
Abstract
The functional divergence of duplicated genes is thought to play an important role in the evolution of new developmental and physiological pathways, but the role of positive selection in driving this process remains controversial. The objective of this study was to test whether amino acid differences among triplicated alpha-globin paralogs of the Norway rat (Rattus norvegicus) and the deer mouse (Peromyscus maniculatus) are attributable to a relaxation of purifying selection or to a history of positive selection that has adapted the gene products to new or modified physiological tasks. In each rodent species, the two paralogs at the 5'-end of the alpha-globin gene cluster (HBA-T1 and HBA-T2) are evolving in concert and are therefore identical or nearly identical in sequence. However, in each case, the HBA-T1 and HBA-T2 paralogs are distinguished from the third paralog at the 3'-end of the gene cluster (HBA-T3) by multiple amino acid substitutions. An analysis of genomic sequence data from several rodent species revealed that the HBA-T3 genes of Rattus and Peromyscus originated via independent, lineage-specific duplication events. In the independently derived HBA-T3 genes of both species, a likelihood analysis based on a codon-substitution model revealed that accelerated rates of amino acid substitution are attributable to positive directional selection, not to a relaxation of purifying selection. As a result of functional divergence among the triplicated alpha-globin genes in Rattus and Peromyscus, the red blood cells of both rodent species contain a mixture of functionally distinct alpha-chain hemoglobin isoforms that are predicted to have different oxygen-binding affinities. In P. maniculatus, a species that is able to sustain physiological function under conditions of chronic hypoxia at high altitude, the coexpression of distinct hemoglobin isoforms with graded oxygen affinities is expected to broaden the permissible range of arterial oxygen tensions for pulmonary/tissue oxygen transport.
Collapse
Affiliation(s)
- Jay F Storz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Understanding the molecular mechanism of hemoglobin cooperativity remains an enduring challenge. Protein forces that control ligand affinity are not directly accessible by experiment. We demonstrate that computational quantum mechanics/molecular mechanics methods can provide reasonable values of ligand binding energies in Hb, and of their dependence on allostery. About 40% of the binding energy differences between the relaxed state and tense state quaternary structures result from strain induced in the heme and its ligands, especially in one of the pyrrole rings. The proximal histidine also contributes significantly, in particular, in the alpha-chains. The remaining energy difference resides in protein contacts, involving residues responsible for locking the quaternary changes. In the alpha-chains, the most important contacts involve the FG corner, at the "hinge" region of the alpha(1)beta(2) quaternary interface. The energy differences are spread more evenly among the beta-chain residues, suggesting greater flexibility for the beta- than for the alpha-chains along the quaternary transition. Despite this chain differentiation, the chains contribute equally to the relaxed substitute state energy difference. Thus, nature has evolved a symmetric response to the quaternary structure change, which is a requirement for maximum cooperativity, via different mechanisms for the two kinds of chains.
Collapse
|
36
|
Chatake T, Shibayama N, Park SY, Kurihara K, Tamada T, Tanaka I, Niimura N, Kuroki R, Morimoto Y. Protonation States of Buried Histidine Residues in Human Deoxyhemoglobin Revealed by Neutron Crystallography. J Am Chem Soc 2007; 129:14840-1. [DOI: 10.1021/ja0749441] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiyuki Chatake
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Naoya Shibayama
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Sam-Yong Park
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Kazuo Kurihara
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Taro Tamada
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Ichiro Tanaka
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Nobuo Niimura
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Ryota Kuroki
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Yukio Morimoto
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
37
|
Maréchal JD, Maseras F, Lledós A, Mouawad L, Perahia D. A DFT study on the relative affinity for oxygen of the alpha and beta subunits of hemoglobin. J Comput Chem 2007; 27:1446-53. [PMID: 16807972 DOI: 10.1002/jcc.20427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DFT calculations are carried out on computational models of the active center of the alpha and beta subunits of hemoglobin in both its oxygenated (R) and deoxygenated (T) states. The computational models are defined by the full heme group, including all porphyrin substituents, and the four amino acids closer to it. The role of the protein environment is introduced by freezing the position of the alpha carbon atom of each of the four amino acids to the positions they have in the available PDB structures. Oxygen affinity is then evaluated by computing the energy difference between the optimized structures of the oxygenated and deoxygenated forms of each model. The results indicate a higher affinity of the alpha subunits over the beta ones. Analysis of the computed structures points out to the strength of the hydrogen bond between the distal histidine and the oxygen molecule as a key factor in discriminating the different systems.
Collapse
Affiliation(s)
- Jean-Didier Maréchal
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Bât. 430, 94105 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
38
|
Finkelstein IJ, Goj A, McClain BL, Massari AM, Merchant KA, Loring RF, Fayer MD. Ultrafast dynamics of myoglobin without the distal histidine: stimulated vibrational echo experiments and molecular dynamics simulations. J Phys Chem B 2007; 109:16959-66. [PMID: 16853158 DOI: 10.1021/jp0517201] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ultrafast protein dynamics of the CO adduct of a myoglobin mutant with the polar distal histidine replaced by a nonpolar valine (H64V) have been investigated by spectrally resolved infrared stimulated vibrational echo experiments and molecular dynamics (MD) simulations. In aqueous solution at room temperature, the vibrational dephasing rate of CO in the mutant is reduced by approximately 50% relative to the native protein. This finding confirms that the dephasing of the CO vibration in the native protein is sensitive to the interaction between the ligand and the distal histidine. The stimulated vibrational echo observable is calculated from MD simulations of H64V within a model in which vibrational dephasing is driven by electrostatic forces. In agreement with experiment, calculated vibrational echoes show slower dephasing for the mutant than for the native protein. However, vibrational echoes calculated for H64V do not show the quantitative agreement with measurements demonstrated previously for the native protein.
Collapse
Affiliation(s)
- Ilya J Finkelstein
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Song XJ, Yuan Y, Simplaceanu V, Sahu SC, Ho NT, Ho C. A comparative NMR study of the polypeptide backbone dynamics of hemoglobin in the deoxy and carbonmonoxy forms. Biochemistry 2007; 46:6795-803. [PMID: 17497935 PMCID: PMC2533159 DOI: 10.1021/bi602654u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Model-free-based NMR dynamics studies have been undertaken for polypeptide backbone amide N-H bond vectors for both the deoxy and carbonmonoxy forms of chain-specific, isotopically (15N and 2H) labeled tetrameric hemoglobin (Hb) using 15N-relaxation parameters [longitudinal relaxation rate (R1), transverse relaxation rate (R2), and heteronuclear nuclear Overhauser effect (NOE)] measured at two temperatures (29 and 34 degrees C) and two magnetic field strengths (11.7 and 14.1 T). In both deoxy and carbonmonoxy forms of human normal adult hemoglobin (Hb A), the amide N-H bonds of most amino acid residues are rigid on the fast time scale (nanosecond to picosecond), except for the loop regions and certain helix-helix connections. Although rigid in deoxy-Hb A, beta146His has been found to be free from restriction of its backbone motions in the CO form, presumably due to the rupture of its hydrogen bond/salt bridge network. We now have direct dynamics evidence for this structural transition of Hb in solution. While remarkably flexible in the deoxy state, alpha31Arg and beta123Thr, neighbors in the intradimer (alpha1beta1) interface, exhibit stiffening upon CO binding. These findings imply a role for alpha31Arg and beta123Thr in the intradimer communication but contradict the results from X-ray crystallography. We have also found that there is considerable flexibility in the intradimer (alpha1beta1) interface (i.e., B, G, and H helices and the GH corner) and possible involvement of several amino acid residues (e.g., alpha31Arg, beta3Leu, beta41Phe, beta123Thr, and beta146His) in the allosteric pathway. Several amino acid residues at the intradimer interfaces, such as beta109Val, appear to be involved in possible conformational exchange processes. The dynamic picture derived from the present study provides new insights into the traditional description of the stereochemical mechanism for the cooperative oxygenation of Hb A based on X-ray crystallographic results.
Collapse
Affiliation(s)
| | | | | | | | | | - Chien Ho
- *Address all Correspondence to: Dr. Chien Ho, Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, Phone 412-268-3395; fax, 412-268-7083; Email,
| |
Collapse
|
40
|
Park SY, Yokoyama T, Shibayama N, Shiro Y, Tame JRH. 1.25 Å Resolution Crystal Structures of Human Haemoglobin in the Oxy, Deoxy and Carbonmonoxy Forms. J Mol Biol 2006; 360:690-701. [PMID: 16765986 DOI: 10.1016/j.jmb.2006.05.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 11/29/2022]
Abstract
The most recent refinement of the crystallographic structure of oxyhaemoglobin (oxyHb) was completed in 1983, and differences between this real-space refined model and later R state models have been interpreted as evidence of crystallisation artefacts, or numerous sub-states. We have refined models of deoxy, oxy and carbonmonoxy Hb to 1.25 A resolution each, and compare them with other Hb structures. It is shown that the older structures reflect the software used in refinement, and many differences with newer structures are unlikely to be physiologically relevant. The improved accuracy of our models clarifies the disagreement between NMR and X-ray studies of oxyHb, the NMR experiments suggesting a hydrogen bond to exist between the distal histidine and oxygen ligand of both the alpha and beta-subunits. The high-resolution crystal structure also reveals a hydrogen bond in both subunit types, but with subtly different geometry which may explain the very different behaviour when this residue is mutated to glycine in alpha or beta globin. We also propose a new set of relatively fixed residues to act as a frame of reference; this set contains a similar number of atoms to the well-known "BGH" frame yet shows a much smaller rmsd value between R and T state models of HbA.
Collapse
Affiliation(s)
- Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | | | | |
Collapse
|
41
|
Degtyarenko I, Nieminen RM, Rovira C. Structure and dynamics of dioxygen bound to cobalt and iron heme. Biophys J 2006; 91:2024-34. [PMID: 16751243 PMCID: PMC1557552 DOI: 10.1529/biophysj.106.083048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we use ab initio molecular dynamics simulations to analyze the structure and dynamics of the oxygen ligand in models of the oxymyoglobin active site and its cobalt-substituted analog. Our calculations are performed for iron-porphyrin and cobalt-porphyrin complexes with imidazole and oxygen as axial ligands, and we investigate the effect of the distal histidine in the structure and dynamics of the metal-oxygen unit (MeO(2), Me = Fe, Co). We find that the interaction between the distal histidine and the oxygen ligand is stronger for the cobalt complex than for the iron one, consistent with the superoxide ion character of the bound O(2). The dynamics of the O(2) ligand can be described as oscillations of the O-O axis projection on the porphyrin plane within a porphyrin quadrant combined with frequent jumps from one quadrant to another. However, the ligand motion is significantly faster for CoO(2) compared to FeO(2). As a result, the iron complex shows localized ligand sites, whereas for cobalt several configurations are possible. This gives support to the highly dynamic motion of the oxygen ligand found in several experiments on cobalt oxymyoglobin and model complexes and underlines the higher mobility of the CoO(2) fragment compared to FeO(2).
Collapse
Affiliation(s)
- Ivan Degtyarenko
- Laboratory of Physics, Helsinki University of Technology, FIN-02015 HUT, Finland
| | | | | |
Collapse
|
42
|
Shikama K. Nature of the FeO2 bonding in myoglobin and hemoglobin: A new molecular paradigm. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:83-162. [PMID: 16005052 DOI: 10.1016/j.pbiomolbio.2005.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The iron(II)-dioxygen bond in myoglobin and hemoglobin is a subject of wide interest. Studies range from examinations of physical-chemical properties dependent on its electronic structure, to investigations of the stability as a function of oxygen supply. Among these, stability properties are of particular importance in vivo. Like all known dioxygen carriers synthesized so far with transition metals, the oxygenated forms of myoglobin and hemoglobin are known to be oxidized easily to their ferric met-forms, which cannot bind molecular oxygen and are therefore physiologically inactive. The mechanistic details of this autoxidation reaction, which are of clinical, as well as of physical-chemical, interest, have long been investigated by a number of authors, but a full understanding of the heme oxidation has not been reached so far. Recent kinetic and thermodynamic studies of the stability of oxymyoglobin (MbO2) and oxyhemoglobin (HbO2) have revealed new features in the FeO2 bonding. In vivo, the iron center is always subject to a nucleophilic attack of the water molecule or hydroxyl ion, which can enter the heme pocket from the surrounding solvent and thereby irreversibly displace the bound dioxygen from MbO2 or HbO2 in the form of O2- so that the iron is converted to the ferric met-form. Since the autoxidation reaction of MbO2 or HbO2 proceeds through a nucleophilic displacement following one-electron transfer from iron(II) to the bound O2, this reaction may be viewed as a meeting point of the stabilization and the activation of molecular oxygen performed by hemoproteins. Along with these lines of evidence, we finally discuss the stability property of human HbO2 and provide with the most recent state of hemoglobin research. The HbA molecule contains two types of alphabeta contacts and seems to differentiate them quite properly for its functional properties. The alpha1beta2 or alpha2beta1 contact is associated with the cooperative oxygen binding, whereas the alpha1beta1 or alpha2beta2 contact is used for controlling the stability of the bound O2. We can thus form a unified picture for hemoglobin function by closely integrating the cooperative and the stable binding of molecular oxygen with iron(II) in aqueous solvent. These new views on the nature of FeO2 bonding and the possible role of globin moiety in stabilizing MbO2 and HbO2 are of primary importance, not only for a full understanding of various hemoprotein reactions with O2, but also for planning new molecular designs for synthetic oxygen carriers which may be able to function in aqueous solvent and at physiological temperature.
Collapse
Affiliation(s)
- Keiji Shikama
- Biological Institute, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
43
|
Barrick D, Lukin JA, Simplaceanu V, Ho C. Nuclear magnetic resonance spectroscopy in the study of hemoglobin cooperativity. Methods Enzymol 2004; 379:28-54. [PMID: 15051350 DOI: 10.1016/s0076-6879(04)79002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Doug Barrick
- Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
44
|
Lukin JA, Ho C. The Structure−Function Relationship of Hemoglobin in Solution at Atomic Resolution. Chem Rev 2004; 104:1219-30. [PMID: 15008621 DOI: 10.1021/cr940325w] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan A Lukin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
45
|
Tsai CH, Simplaceanu V, Ho NT, Shen TJ, Wang D, Spiro TG, Ho C. Site mutations disrupt inter-helical H-bonds (alpha14W-alpha67T and beta15W-beta72S) involved in kinetic steps in the hemoglobin R-->T transition without altering the free energies of oxygenation. Biophys Chem 2003; 100:131-42. [PMID: 12646359 DOI: 10.1016/s0301-4622(02)00274-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three recombinant mutant hemoglobins (rHbs) of human normal adult hemoglobin (Hb A), rHb (alphaT67V), rHb (betaS72A), and rHb (alphaT67V, betaS72A), have been constructed to test the role of the tertiary intra-subunit H-bonds between alpha67T and alpha14W and between beta72S and beta15W in the cooperative oxygenation of Hb A. Oxygen-binding studies in 0.1 M sodium phosphate buffer at 29 degrees C show that rHb (alphaT67V), rHb (betaS72A), and rHb (alphaT67V, betaS72A) exhibit oxygen-binding properties similar to those of Hb A. The binding of oxygen to these rHbs is highly cooperative, with a Hill coefficient of approximately 2.8, compared to approximately 3.1 for Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (alphaT67V), rHb (betaS72A), rHb (alphaT67V, betaS72A), and Hb A have similar quaternary structures in the alpha(1)beta(2) subunit interfaces. In particular, the inter-subunit H-bonds between alpha42Tyr and beta99Asp and between beta37Trp and alpha94Asp are maintained in the mutants in the deoxy form. There are slight perturbations in the distal heme pocket region of the alpha- and beta-chains in the mutants. A comparison of the exchangeable 1H resonances of Hb A with those of these three rHbs suggests that alpha67T and beta72S are H-bonded to alpha14W and beta15W, respectively, in the CO and deoxy forms of Hb A. The absence of significant free energy changes for the oxygenation process of these three rHbs compared to those of Hb A, even though the inter-helical H-bonds are abolished, indicates that these two sets of H-bonds are of comparable strength in the ligated and unligated forms of Hb A. Thus, the mutations at alphaT67V and betaS72A do not affect the overall energetics of the oxygenation process. The preserved cooperativity in the binding of oxygen to these three mutants also implies that there are multiple interactions involved in the oxygenation process of Hb A.
Collapse
Affiliation(s)
- Ching-Hsuan Tsai
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Shikama K, Matsuoka A. Human haemoglobin: a new paradigm for oxygen binding involving two types of alphabeta contacts. ACTA ACUST UNITED AC 2003; 270:4041-51. [PMID: 14519115 DOI: 10.1046/j.1432-1033.2003.03791.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review summarizes the most recent state of haemoglobin (Hb) research based on the literature and our own results. In particular, an attempt is made to form a unified picture for haemoglobin function by reconciling the cooperative oxygen binding with the stabilization of the bound dioxygen in aqueous solvent. The HbA molecule contains two types of alphabeta contacts. One type is the alpha1beta2 or alpha2beta1 contacts, called sliding contacts, and these are strongly associated with the cooperative binding of O2 to the alpha2beta2 tetramer. The other type is the alpha1beta1 or alpha2beta2 contacts, called packing contacts, but whose role in Hb function was not clear until quite recently. However, detailed pH-dependence studies of the autoxidation rate of HbO2 have revealed that the alpha1beta1 and alpha2beta2 interfaces are used for controlling the stability of the bound O2. When the alpha1beta1 or alpha2beta2 contact is formed, the beta chain is subjected to a conformational constraint which causes the distal (E7) histidine to be tilted slightly away from the bound dioxygen, preventing the proton-catalysed nucleophilic displacement of O2- from the FeO2 by an entering water molecule. This is one of the most characteristic features of HbO2 stability. Finally we discuss the role of the alpha1beta1 or alpha2beta2 contacts by providing some examples of unstable haemoglobin mutants. These pathological mutations are found mostly on the beta chain, especially in the alpha1beta1 contact regions. In this way, HbA seems to differentiate two types of alphabeta contacts for its functional properties.
Collapse
Affiliation(s)
- Keiji Shikama
- Biological Institute, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
47
|
|
48
|
Yuan Y, Simplaceanu V, Lukin JA, Ho C. NMR investigation of the dynamics of tryptophan side-chains in hemoglobins. J Mol Biol 2002; 321:863-78. [PMID: 12206767 DOI: 10.1016/s0022-2836(02)00704-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-2683, USA
| | | | | | | |
Collapse
|
49
|
Abstract
In order to provide the appropriate level of oxygen transport to respiring tissues, we need to produce a molecular oxygen transporting system to supplement oxygen diffusion and solubility. This supplementation is provided by hemoglobin. The role of hemoglobin in providing oxygen transport from lung to tissues in the adult is well-documented and functional characteristics of the fetal hemoglobin, which provide placental oxygen exchange, are also well understood. However the characteristics of the three embryonic hemoglobins, which provide oxygen transport during the first three months of gestation, are not well recognized. This review seeks to describe the state of our understanding of the temporal control of the expression of these proteins and the oxygen binding characteristics of the individual protein molecules. The modulation of the oxygen binding properties of these proteins, by the various allosteric effectors, is described and the structural origins of these characteristics are probed.
Collapse
Affiliation(s)
- Thomas Brittain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
50
|
Merchant KA, Thompson DE, Xu QH, Williams RB, Loring RF, Fayer MD. Myoglobin-CO conformational substate dynamics: 2D vibrational echoes and MD simulations. Biophys J 2002; 82:3277-88. [PMID: 12023251 PMCID: PMC1302116 DOI: 10.1016/s0006-3495(02)75669-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Two-dimensional (2D) infrared vibrational echoes were performed on horse heart carbonmonoxymyoglobin (MbCO) in water over a range of temperatures. The A(1) and A(3) conformational substates of MbCO are found to have different dephasing rates with different temperature dependences. A frequency-frequency correlation function derived from molecular dynamics simulations on MbCO at 298 K is used to calculate the vibrational echo decay. The calculated decay shows substantial agreement with the experimentally measured decays. The 2D vibrational echo probes protein dynamics and provides an observable that can be used to test structural assignments for the MbCO conformational substates.
Collapse
Affiliation(s)
- Kusai A Merchant
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|