1
|
Guo MS, Wu Q, Xia Y, Wu J, Wang X, Yuen GKW, Dong TT, Gao J, Tsim KWK. Cholinergic Signaling Mediated by Muscarinic Receptors Triggers the Ultraviolet-Induced Release of Melanosome in Cultured Melanoma Cells. Pigment Cell Melanoma Res 2024. [PMID: 39344704 DOI: 10.1111/pcmr.13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
In skin, melanin is synthesized and stored in melanosomes. In epidermal melanocytes, melanosomes are transported to and internalized by the neighboring keratinocytes, subsequently leading to skin pigmentation. Ultraviolet (UV) radiation induces the release of acetylcholine (ACh) from keratinocytes, which in turn activates ACh receptors (AChRs) on nearby melanocytes, forming a proposed "skin synapse". Here, we illustrated that the UV-induced melanosome release from cultured B16F10 melanoma cells could be mediated by co-actions of ACh. In the cell cultures, UV exposure robustly elicited melanosome release. Applied bethanechol (BeCh), an agonist of muscarinic AChR (mAChR), could significantly enhance the release. In parallel, the intracellular Ca2+ mobilization was regulated. The applied antagonists of M1 and/or M3 mAChRs could block the UV-induced melanosome release and the mobilization of intracellular Ca2+. The phosphorylation of PKC, triggered by UV and BeCh treatments, could be suppressed by the applied mAChR antagonists. The expressions of tethering complex for exocytosis, for example, Sec8, Exo70, and Rab11b, as well as synaptotagmin, were increased under UV exposure together with mAChR agonist: The inductions were fully abolished by M1 or M3 antagonist. Here, we hypothesize that the cholinergic signaling is playing roles in UV-induced exocytosis of melanosomes.
Collapse
Affiliation(s)
- Maggie Suisui Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiyun Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yingjie Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jiahui Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoyang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gary Ka Wing Yuen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| | - Jin Gao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Neurobiology and Cellular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Karl Wah Keung Tsim
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, China
| |
Collapse
|
2
|
Mastrangelo R, Okada T, Ogura T, Ogura T, Baglioni P. Direct observation of the effects of chemical fixation in MNT-1 cells: A SE-ADM and Raman study. Proc Natl Acad Sci U S A 2023; 120:e2308088120. [PMID: 38091295 PMCID: PMC10743460 DOI: 10.1073/pnas.2308088120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
Aldehydes fixation was accidentally discovered in the early 20th century and soon became a widely adopted practice in the histological field, due to an excellent staining enhancement in tissues imaging. However, the fixation process itself entails cell proteins denaturation and crosslinking. The possible presence of artifacts, that depends on the specific system under observation, must therefore be considered to avoid data misinterpretation. This contribution takes advantage of scanning electron assisted-dielectric microscopy (SE-ADM) and Raman 2D imaging to reveal the possible presence and the nature of artifacts in unstained, and paraformldehyde, PFA, fixed MNT-1 cells. The high resolution of the innovative SE-ADM technique allowed the identification of globular protein clusters in the cell cytoplasm, formed after protein denaturation and crosslinking. Concurrently, SE-ADM images showed a preferential melanosome adsorption on the cluster's outer surface. The micron-sized aggregates were discernible in Raman 2D images, as the melanosomes signal, extracted through 2D principal component analysis, unequivocally mapped their location and distribution within the cells, appearing randomly distributed in the cytoplasm. Protein clusters were not observed in living MNT-1 cells. In this case, mature melanosomes accumulate preferentially at the cell periphery and are more closely packed than in fixed cells. Our results show that, although PFA does not affect the melanin structure, it disrupts melanosome distribution within the cells. Proteins secondary structure, conversely, is partially lost, as shown by the Raman signals related to α-helix, β-sheets, and specific amino acids that significantly decrease after the PFA treatment.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| | - Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Taku Ogura
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Piero Baglioni
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| |
Collapse
|
3
|
Netzer A, Katzir I, Baruch Leshem A, Weitman M, Lampel A. Emergent properties of melanin-inspired peptide/RNA condensates. Proc Natl Acad Sci U S A 2023; 120:e2310569120. [PMID: 37871222 PMCID: PMC10622964 DOI: 10.1073/pnas.2310569120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Most biocatalytic processes in eukaryotic cells are regulated by subcellular microenvironments such as membrane-bound or membraneless organelles. These natural compartmentalization systems have inspired the design of synthetic compartments composed of a variety of building blocks. Recently, the emerging field of liquid-liquid phase separation has facilitated the design of biomolecular condensates composed of proteins and nucleic acids, with controllable properties including polarity, diffusivity, surface tension, and encapsulation efficiency. However, utilizing phase-separated condensates as optical sensors has not yet been attempted. Here, we were inspired by the biosynthesis of melanin pigments, a key biocatalytic process that is regulated by compartmentalization in organelles, to design minimalistic biomolecular condensates with emergent optical properties. Melanins are ubiquitous pigment materials with a range of functionalities including photoprotection, coloration, and free radical scavenging activity. Their biosynthesis in the confined melanosomes involves oxidation-polymerization of tyrosine (Tyr), catalyzed by the enzyme tyrosinase. We have now developed condensates that are formed by an interaction between a Tyr-containing peptide and RNA and can serve as both microreactors and substrates for tyrosinase. Importantly, partitioning of Tyr into the condensates and subsequent oxidation-polymerization gives rise to unique optical properties including far-red fluorescence. We now demonstrate that individual condensates can serve as sensors to detect tyrosinase activity, with a limit of detection similar to that of synthetic fluorescent probes. This approach opens opportunities to utilize designer biomolecular condensates as diagnostic tools for various disorders involving abnormal enzymatic activity.
Collapse
Affiliation(s)
- Amit Netzer
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Itai Katzir
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Michal Weitman
- Department of Chemistry Materials, Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv69978, Israel
- Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
4
|
Möller JKS, Linowiecka K, Gagat M, Brożyna AA, Foksiński M, Wolnicka-Glubisz A, Pyza E, Reiter RJ, Tulic MK, Slominski AT, Steinbrink K, Kleszczyński K. Melanogenesis Is Directly Affected by Metabolites of Melatonin in Human Melanoma Cells. Int J Mol Sci 2023; 24:14947. [PMID: 37834395 PMCID: PMC10573520 DOI: 10.3390/ijms241914947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (N1-acetyl-N2-formyl-5-methoxykynurenine, AFMK) and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) are endogenously produced in human epidermis. Melatonin, produced by the pineal gland, brain and peripheral organs, displays a diversity of physiological functions including anti-inflammatory, immunomodulatory, and anti-tumor capacities. Herein, we assessed their regulatory effect on melanogenesis using amelanotic (A375, Sk-Mel-28) and highly pigmented (MNT-1, melanotic) human melanoma cell lines. We discovered that subjected compounds decrease the downstream pathway of melanin synthesis by causing a significant drop of cyclic adenosine monophosphate (cAMP) level, the microphthalmia-associated transcription factor (MITF) and resultant collapse of tyrosinase (TYR) activity, and melanin content comparatively to N-phenylthiourea (PTU, a positive control). We observed a reduction in pigment in melanosomes visualized by the transmission electron microscopy. Finally, we assessed the role of G-protein-coupled seven-transmembrane-domain receptors. Obtained results revealed that nonselective MT1 and MT2 receptor antagonist (luzindole) or selective MT2 receptor antagonist (4-P-PDOT) did not affect dysregulation of the melanin pathway indicating a receptor-independent mechanism. Our findings, together with the current state of the art, provide a convenient experimental model to study the complex relationship between metabolites of melatonin and the control of pigmentation serving as a future and rationale strategy for targeted therapies of melanoma-affected patients.
Collapse
Affiliation(s)
- Jack K. S. Möller
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (J.K.S.M.); (K.S.)
| | - Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (K.L.); (A.A.B.)
- Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Anna A. Brożyna
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (K.L.); (A.A.B.)
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| | - Meri K. Tulic
- Team 12, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d’Azur, 06200 Nice, France;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (J.K.S.M.); (K.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (J.K.S.M.); (K.S.)
| |
Collapse
|
5
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Bajpai VK, Swigut T, Mohammed J, Naqvi S, Arreola M, Tycko J, Kim TC, Pritchard JK, Bassik MC, Wysocka J. A genome-wide genetic screen uncovers determinants of human pigmentation. Science 2023; 381:eade6289. [PMID: 37561850 PMCID: PMC10901463 DOI: 10.1126/science.ade6289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation. In agreement with their melanin-promoting function, the majority of screen hits were up-regulated in melanocytes from darkly pigmented individuals. We further unraveled functions of KLF6 as a transcription factor that regulates melanosome maturation and pigmentation in vivo, and of the endosomal trafficking protein COMMD3 in modulating melanosomal pH. Our study reveals a plethora of melanin-promoting genes, with broad implications for human variation, cell biology, and medicine.
Collapse
Affiliation(s)
- Vivek K. Bajpai
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Martin Arreola
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Tayne C. Kim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael C. Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Lischetti U, Tastanova A, Singer F, Grob L, Carrara M, Cheng PF, Martínez Gómez JM, Sella F, Haunerdinger V, Beisel C, Levesque MP. Dynamic thresholding and tissue dissociation optimization for CITE-seq identifies differential surface protein abundance in metastatic melanoma. Commun Biol 2023; 6:830. [PMID: 37563418 PMCID: PMC10415364 DOI: 10.1038/s42003-023-05182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Multi-omics profiling by CITE-seq bridges the RNA-protein gap in single-cell analysis but has been largely applied to liquid biopsies. Applying CITE-seq to clinically relevant solid biopsies to characterize healthy tissue and the tumor microenvironment is an essential next step in single-cell translational studies. In this study, gating of cell populations based on their transcriptome signatures for use in cell type-specific ridge plots allowed identification of positive antibody signals and setting of manual thresholds. Next, we compare five skin dissociation protocols by taking into account dissociation efficiency, captured cell type heterogeneity and recovered surface proteome. To assess the effect of enzymatic digestion on transcriptome and epitope expression in immune cell populations, we analyze peripheral blood mononuclear cells (PBMCs) with and without dissociation. To further assess the RNA-protein gap, RNA-protein we perform codetection and correlation analyses on thresholded protein values. Finally, in a proof-of-concept study, using protein abundance analysis on selected surface markers in a cohort of healthy skin, primary, and metastatic melanoma we identify CD56 surface marker expression on metastatic melanoma cells, which was further confirmed by multiplex immunohistochemistry. This work provides practical guidelines for processing and analysis of clinically relevant solid tissue biopsies for biomarker discovery.
Collapse
Affiliation(s)
- Ulrike Lischetti
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Franziska Singer
- ETH Zurich, NEXUS Personalized Health Technologies, Wagistrasse 18, 8952, Schlieren, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Linda Grob
- ETH Zurich, NEXUS Personalized Health Technologies, Wagistrasse 18, 8952, Schlieren, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Matteo Carrara
- ETH Zurich, NEXUS Personalized Health Technologies, Wagistrasse 18, 8952, Schlieren, Switzerland
- SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Phil F Cheng
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Veronika Haunerdinger
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Rus AA, Militaru IV, Popa I, Munteanu CVA, Sima LE, Platt N, Platt FM, Petrescu ȘM. NPC1 plays a role in the trafficking of specific cargo to melanosomes. J Biol Chem 2023; 299:105024. [PMID: 37423302 PMCID: PMC10407747 DOI: 10.1016/j.jbc.2023.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome. Using a NPC1-KO melanoma cell model, we found that the cellular phenotype of Niemann-Pick disease type C1 is associated with a decreased pigmentation accompanied by low expression of the melanogenic enzyme tyrosinase. We propose that the defective processing and localization of tyrosinase, occurring in the absence of NPC1, is a major determinant of the pigmentation impairment in NPC1-KO cells. Along with tyrosinase, two other pigmentation genes, tyrosinase-related protein 1 and Dopachrome-tautomerase have lower protein levels in NPC1 deficient cells. In contrast with the decrease in pigmentation-related protein expression, we also found a significant intracellular accumulation of mature PMEL17, the structural protein of melanosomes. As opposed to the normal dendritic localization of melanosomes, the disruption of melanosome matrix generation in NPC1 deficient cells causes an accumulation of immature melanosomes adjacent to the plasma membrane. Together with the melanosomal localization of NPC1 in WT cells, these findings suggest that NPC1 is directly involved in tyrosinase transport from the trans-Golgi network to melanosomes and melanosome maturation, indicating a novel function for NPC1.
Collapse
Affiliation(s)
- Alina Adriana Rus
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana V Militaru
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana Popa
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania.
| |
Collapse
|
9
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
10
|
Sun D, Qi X, Wen H, Li C, Li J, Chen J, Tao Z, Zhu M, Zhang X, Li Y. The genetic basis and potential molecular mechanism of yellow-albino northern snakehead ( Channa argus). Open Biol 2023; 13:220235. [PMID: 36789536 PMCID: PMC9929503 DOI: 10.1098/rsob.220235] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Body colour is an important economic trait for commercial fishes. Recently, a new colour morph displaying market-favoured yellow skin (termed as yellow-mutant, YM) of northern snakehead (Channa argus) was discovered in China. We confirmed that YM snakehead is an albino with complete loss of melanin in the skin and eyes by histological and ultrastructural observations, and inherited as a recessive Mendelian trait. By applying genomic analysis approaches, in combination with gene knockdown and rescue experiments, we suggested a non-sense mutation in slc45a2 (c.383G > A) is the causation for the YM snakehead. Notably, significantly higher levels of key melanogenesis genes (tyr, tyrp1, dct and pmel) and phospho-MITF protein were detected in YM snakehead than those in wild-type individuals, and the underlying mechanism was further investigated by comparative transcriptomic analysis. Results revealed that differential expressed genes involved in pathways like MAPK, WNT and calcium signalling were significantly induced in YM snakehead, which might account for the increased amount of melanogenesis elements, and presumably be stimulated by fibroblast-derived melanogenic factors in a paracrine manner. Our study clarified the genetic basis of colour variation in C. argus and provided the preliminary clue indicating the potential involvement of fibroblasts in pigmentation in fish.
Collapse
Affiliation(s)
- Donglei Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jianlong Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiwei Chen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zexin Tao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mingxin Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
11
|
Anti-Melanogenic Potential of Natural and Synthetic Substances: Application in Zebrafish Model. Molecules 2023; 28:molecules28031053. [PMID: 36770722 PMCID: PMC9920495 DOI: 10.3390/molecules28031053] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.
Collapse
|
12
|
Yang S, Zeng H, Jiang L, Fu C, Gao L, Zhang L, Zhang Y, Zhang X, Zhu L, Zhang F, Chen J, Huang J, Zeng Q. Melatonin reduces melanogenesis by inhibiting the paracrine effects of keratinocytes. Exp Dermatol 2023; 32:511-520. [PMID: 36620869 DOI: 10.1111/exd.14743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Keratinocytes regulate melanogenesis in a paracrine manner. Previous studies have shown that melatonin can directly inhibit melanin production in the melanocytes. However, it is unclear whether melatonin can also indirectly regulate melanogenesis through the keratinocytes. In this study, we explored the role of melatonin in regulating keratinocyte-mediated melanogenesis using reconstructed human epidermis (RHE). Melatonin showed an inhibitory effect on melanin synthesis in this model. Furthermore, the conditioned media from melatonin-treated HaCaT cells downregulated melanogenesis-related genes, including MITF, TYR, TYRP1, DCT and RAB27A in the pigment MNT1 cells, and decreased levels of phosphorylated ERK, JNK and p38. RNA sequencing further showed that mitochondrial functions and oxidative stress pathway in the MNT1 cells were inhibited by the conditioned medium from melatonin-treated HaCaT cells. Furthermore, melatonin reduced the secretion of ET-1 and PTGS2 from HaCaT cells by inhibiting the JAK2/STAT3 signalling pathway. In conclusion, melatonin downregulates the paracrine factors ET-1 and PTGS2 in the keratinocytes by inhibiting the JAK2/STAT3 pathway, which reduces melanin production in pigment cells. Thus, melatonin has a potential therapeutic effect on skin pigmentation disorders.
Collapse
Affiliation(s)
- Siyu Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yushan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Okada T, Iwayama T, Ogura T, Murakami S, Ogura T. Structural analysis of melanosomes in living mammalian cells using scanning electron-assisted dielectric microscopy with deep neural network. Comput Struct Biotechnol J 2022; 21:506-518. [PMID: 36618988 PMCID: PMC9807747 DOI: 10.1016/j.csbj.2022.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Melanins are the main pigments found in mammals. Their synthesis and transfer to keratinocytes have been widely investigated for many years. However, analysis has been mainly carried out using fixed rather than live cells. In this study, we have analysed the melanosomes in living mammalian cells using newly developed scanning electron-assisted dielectric microscopy (SE-ADM). The melanosomes in human melanoma MNT-1 cells were observed as clear black particles in SE-ADM. The main structure of melanosomes was toroidal while that of normal melanocytes was ellipsoidal. In tyrosinase knockout MNT-1 cells, not only the black particles in the SE-ADM images but also the Raman shift of melanin peaks completely disappeared suggesting that the black particles were really melanosomes. We developed a deep neural network (DNN) system to automatically detect melanosomes in cells and analysed their diameter and roundness. In terms of melanosome morphology, the diameter of melanosomes in melanoma cells did not change while that in normal melanocytes increased during culture. The established DNN analysis system with SE-ADM can be used for other particles, e.g. exosomes, lysosomes, and other biological particles.
Collapse
Affiliation(s)
- Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taku Ogura
- Chemical Business Unit, Nikko Chemicals Co., Ltd., Itabashi-ku, Tokyo 174-0046, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan,Correspondence to: Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
14
|
Hong C, Yang L, Zhang Y, Li Y, Wu H. Epimedium brevicornum Maxim. Extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis/transfer. Front Pharmacol 2022; 13:963160. [PMID: 36249817 PMCID: PMC9557186 DOI: 10.3389/fphar.2022.963160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Epimedium brevicornum Maxim. (Epimedii Folium) is a traditional medicine widely utilized in China for sexual dysfunction and osteoporosis treatment. Recently, studies have reported that Epimedium flavonoid icariin displayed hair growth and melanogenic ability by targeting tyrosinase activity. Nevertheless, icariin hydrolysate icariside II and icaritin cause depigmentation due to their tyrosinase inhibition. These pigment functional discrepancies from Epimedium constituents arouse our great interest. Then, this study focused on the pigmentation effects of Epimedii Folium extract (EFE) on melanin synthesis and melanosome biogenesis/transfer, and further identified the bioactive constituents. First, in in vitro systemic studies, we discovered that the potent melanogenic and repigmented effects of EFE were dependent on concentration and amount of time in multi-melanocytes, normal human skin tissue, and vitiligo perilesional areas. In vivo, EFE exhibited repigmented effect on two kinds of depigmented models of N-phenylthiourea-induced zebrafish and hydroquinone-induced mice. Mechanistically, EFE strongly promoted tyrosinase activity and upregulated the protein expression of tyrosinase families which finally contribute to melanin biosynthesis by activating the MAPK/ERK1/2 signal pathway. In addition, EFE effectively increased melanosome number, accelerated melanosome maturity and cytoplasmic transport through the growth/extension of melanocyte dendrites, and induced melanosome transfer from melanocyte to keratinocyte for pigmentation. The six main flavonoid ingredients were identified among EFE. Compared to others, epimedin B (EB) was confirmed as a high-content, low-toxicity, and effective melanogenic compound in EFE. Taking all these together, this study systematically demonstrates the potential pigmentation effect of Epimedium brevicornum Maxim., and clarifies its related molecular mechanisms and melanogenesis basis. These results give additional insight into Epimedium herb pharmacology and may provide a novel therapy basis for hypopigmentation disorders.
Collapse
Affiliation(s)
- Chen Hong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Wu, ; Yiming Li,
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Wu, ; Yiming Li,
| |
Collapse
|
15
|
Valli F, García Vior MC, Ezquerra Riega SD, Roguin LP, Marino J. Melanosomal targeting via caveolin-1 dependent endocytosis mediates ZN(II) phthalocyanine phototoxic action in melanoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112505. [PMID: 35839543 DOI: 10.1016/j.jphotobiol.2022.112505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Melanosomes have been considered crucial targets in melanoma treatments. In this study we explored the role of melanosomes in photodynamic therapy (PDT), employing the synthetic Zn(II) phthalocyanine Pc13, a potent photosensitizer that promotes melanoma cell death after irradiation. Phototoxic action is mediated by reactive oxygen species increase. The internalization mechanism of Pc13 and its consequent subcellular localization were evaluated in melanotic B16-F0 cells. Pharmacological inhibitors of dynamin or caveolae, but not of clathrin, decreased Pc13 cellular uptake and phototoxicity. Similar results were obtained when cells over-expressed dominant negative mutants of dynamin-2 and caveolin-1, indicating that Pc13 is internalized by caveolae-mediated endocytosis. Confocal microscopy analysis revealed that Pc13 targets melanosomes and damage of these structures after irradiation was demonstrated by transmission electron microscopy. Treatment of pigmented B16-F0 and WM35 melanoma cells with the melanin synthesis inhibitor phenylthiourea for 48 h led to cell depigmentation and enhanced cell death after irradiation, whereas a 3-h period of inhibition did not modify melanin content but produced a marked reduction of Pc13 phototoxicity, together with a decrease of oxidative melanin synthesis intermediates. In contrast, the effect of Pc13 in amelanotic A375 cells was not altered by phenylthiourea treatment. These results provide evidence that melanosomes have a dual role in the efficacy of PDT. While melanin antagonizes the phototoxic action of Pc13, the release of cytotoxic synthetic intermediates to cytosol after irradiation and melanosome damage is conducive to the phototoxic response. Based on these findings, we demonstrate that melanosome-targeted PDT could be an effective approach for melanoma treatment.
Collapse
Affiliation(s)
- Federico Valli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina
| | - María C García Vior
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, CONICET, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Sergio D Ezquerra Riega
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, CONICET, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Leonor P Roguin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Julieta Marino
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
16
|
An X, Lv J, Wang F. Pterostilbene inhibits melanogenesis, melanocyte dendricity and melanosome transport through cAMP/PKA/CREB pathway. Eur J Pharmacol 2022; 932:175231. [PMID: 36038012 DOI: 10.1016/j.ejphar.2022.175231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
Pterostilbene is a trans stilbene compound, which is an effective component of herbaceous plants such as Dalbergia woods and Vaccinium. Although pterostilbene has many uses in anti-inflammatory, anti-oxidant and anti-tumor, its whitening effect is drawing more and more attention, the mechanism of melanogenesis and melanosome transport still needs further study. In this research, we tried to further investigate how melanocyte melanogenesis is affected by pterostilbene and whether pterostilbene play a part in melanin transport. Our results showed that pterostilbene has a potent inhibitory effect on melanogenesis in B16F10 cells (3 μM, p < 0.001), in-vitro human skin (10 μM, p < 0.05) and zebrafish embryos (3 μM, p < 0.01). Besides, pterostilbene not only inhibited melanogenesis, but also inhibited melanocyte dendritic development and melanosome transport. Pterostilbene mainly plays a role by inhibiting cAMP/PKA/CREB signal pathway. After the cAMP/PKA/CREB signaling pathway was inhibited, tyrosinase activity and the expression of MITF, TYR, Rab27A, Rab17 and gp100 were decreased, which in turn suppressed melanogenesis, melanocyte dendritic development and melanosome transport. Our findings showed that pterostilbene can potently inhibit melanogenesis and melanosome transport, suggesting the applicability of pterostilbene in skin lightning. Therefore, a novel pharmacologic way to treat hyperpigmentation has been proposed.
Collapse
Affiliation(s)
- Xiaohong An
- Botanee Bio-technology Group Co., Ltd., Yunnan, 650000, China; Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, 200000, China
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Feifei Wang
- Botanee Bio-technology Group Co., Ltd., Yunnan, 650000, China; Shanghai Jiyan Bio-pharmaceutical Co., Ltd., Shanghai, 200000, China.
| |
Collapse
|
17
|
Mitofusin-2 Negatively Regulates Melanogenesis by Modulating Mitochondrial ROS Generation. Cells 2022; 11:cells11040701. [PMID: 35203350 PMCID: PMC8869806 DOI: 10.3390/cells11040701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inter-organellar communication is emerging as one of the most crucial regulators of cellular physiology. One of the key regulators of inter-organellar communication is Mitofusin-2 (MFN2). MFN2 is also involved in mediating mitochondrial fusion–fission dynamics. Further, it facilitates mitochondrial crosstalk with the endoplasmic reticulum, lysosomes and melanosomes, which are lysosome-related organelles specialized in melanin synthesis within melanocytes. However, the role of MFN2 in regulating melanocyte-specific cellular function, i.e., melanogenesis, remains poorly understood. Here, using a B16 mouse melanoma cell line and primary human melanocytes, we report that MFN2 negatively regulates melanogenesis. Both the transient and stable knockdown of MFN2 leads to enhanced melanogenesis, which is associated with an increase in the number of mature (stage III and IV) melanosomes and the augmented expression of key melanogenic enzymes. Further, the ectopic expression of MFN2 in MFN2-silenced cells leads to the complete rescue of the phenotype at the cellular and molecular levels. Mechanistically, MFN2-silencing elevates mitochondrial reactive-oxygen-species (ROS) levels which in turn increases melanogenesis. ROS quenching with the antioxidant N-acetyl cysteine (NAC) reverses the MFN2-knockdown-mediated increase in melanogenesis. Moreover, MFN2 expression is significantly lower in the darkly pigmented primary human melanocytes in comparison to lightly pigmented melanocytes, highlighting a potential contribution of lower MFN2 levels to higher physiological pigmentation. Taken together, our work establishes MFN2 as a novel negative regulator of melanogenesis.
Collapse
|
18
|
Kim HM, Oh S, Choi CH, Yang JY, Kim S, Kang D, Son KH, Byun K. Attenuation Effect of Radiofrequency Irradiation on UV-B-Induced Skin Pigmentation by Decreasing Melanin Synthesis and through Upregulation of Heat Shock Protein 70. Molecules 2021; 26:molecules26247648. [PMID: 34946730 PMCID: PMC8708156 DOI: 10.3390/molecules26247648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Excess melanin deposition in the skin causes cosmetic problems. HSP70 upregulation decreases microphthalmia-associated transcription factor (MITF) expression, which eventually decreases tyrosinase activity and melanogenesis. Ultraviolet (UV) radiation upregulates p53, which increases the melanocortin receptor (MC1R) and MITF. Furthermore, HSP70 decreases p53 and radiofrequency irradiation (RF) increases HSP70. We evaluated whether RF increased HSP70 and decreased p53, consequently decreasing the MITF/tyrosinase pathway and melanogenesis in UV-B radiated animal skin. Various RF combinations with 50, 100, and 150 ms and 5, 10, and 15 W were performed on the UV-B radiated mouse skin every 2 d for 28 d. When RF was performed with 100 ms/10 W, melanin deposition, evaluated by Fontana–Masson staining, decreased without skin crust formation in the UV-B radiated skin. Thus, we evaluated the effect of RF on decreasing melanogenesis in the HEMn and UV-B radiated skin at a setting of 100 ms/10 W. HSP70 expression was decreased in the UV-B radiated skin but was increased by RF. The expression of p53, MC1R, and MITF increased in the UV-B radiated skin but was decreased by RF. The expression of p53, MC1R, and MITF increased in the α-MSH treated HEMn but was decreased by RF. The decreasing effects of RF on p53, MC1R, CREB and MITF were higher than those of HSP70-overexpressed HEMn. The decreasing effect of RF on p53, MC1R, CREB, and MITF disappeared in the HSP70-silenced HEMn. MC1R, CREB, and MITF were not significantly decreased by the p53 inhibitor in α-MSH treated HEMn. RF induced a greater decrease in MC1R, CREB, and MITF than the p53 inhibitor. Therefore, RF may have decreased melanin synthesis by increasing HSP70 and decreasing p53, thus decreasing MC1R/CREB/MITF and tyrosinase activity.
Collapse
Affiliation(s)
- Hyoung Moon Kim
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Jin Young Yang
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Sunggeun Kim
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Donghwan Kang
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
- Correspondence: (K.H.S.); (K.B.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
- Correspondence: (K.H.S.); (K.B.)
| |
Collapse
|
19
|
Park CH, Kim G, Lee Y, Kim H, Song MJ, Lee DH, Chung JH. A natural compound harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway. J Dermatol Sci 2021; 103:16-24. [PMID: 34030962 DOI: 10.1016/j.jdermsci.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Melanin plays important roles in determining human skin color and protecting human skin cells against harmful ultraviolet light. However, abnormal hyperpigmentation in some areas of the skin may become aesthetically unpleasing, resulting in the need for effective agents or methods to regulate undesirable hyperpigmentation. OBJECTIVE We investigated the effect of harmine, a natural harmala alkaloid belonging to the beta-carboline family, on melanin synthesis and further explored the signaling pathways involved in its mechanism of action. METHODS Human MNT-1 melanoma cells and human primary melanocytes were treated with harmine, chemical inhibitors, small interfering RNAs, or mammalian expression vectors. Cell viability, melanin content, and expression of various target molecules were assessed. RESULTS Harmine decreased melanin synthesis and tyrosinase expression in human MNT-1 melanoma cells. Inhibition of DYRK1A, a harmine target, decreased melanin synthesis and tyrosinase expression. Further studies revealed that nuclear translocation of NFATC3, a potential DYRK1A substrate, was induced via the harmine/DYRK1A pathway and that NFATC3 knockdown increased melanin synthesis and tyrosinase expression. Suppression of melanin synthesis and tyrosinase expression via the harmine/DYRK1A pathway was significantly attenuated by NFATC3 knockdown. Furthermore, harmine also decreased melanin synthesis and tyrosinase expression through regulation of NFATC3 in human primary melanocytes. CONCLUSION Our results indicate that harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway and suggest that the DYRK1A/NFATC3 pathway may be a potential target for the development of depigmenting agents.
Collapse
Affiliation(s)
- Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Goeun Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Yuri Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Dean DN, Lee JC. Linking Parkinson's Disease and Melanoma: Interplay Between α-Synuclein and Pmel17 Amyloid Formation. Mov Disord 2021; 36:1489-1498. [PMID: 34021920 DOI: 10.1002/mds.28655] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the death of dopaminergic neurons within the substantia nigra of the brain. Melanoma is a cancer of melanocytes, pigmented cells that give rise to skin tone, hair, and eye color. Although these two diseases fundamentally differ, with PD leading to cell degeneration and melanoma leading to cell proliferation, epidemiological evidence has revealed a reciprocal relationship where patients with PD are more susceptible to melanoma and patients with melanoma are more susceptible to PD. The hallmark pathology observed in PD brains is intracellular inclusions, of which the primary component is proteinaceous α-synuclein (α-syn) amyloid fibrils. α-Syn also has been detected in cultured melanoma cells and tissues derived from patients with melanoma, where an inverse correlation exists between α-syn expression and pigmentation. Although this has led to the prevailing hypothesis that α-syn inhibits enzymes involved in melanin biosynthesis, we recently reported an alternative hypothesis in which α-syn interacts with and modulates the aggregation of Pmel17, a functional amyloid that serves as a scaffold for melanin biosynthesis. In this perspective, we review the literature describing the epidemiological and molecular connections between PD and melanoma, presenting both the prevailing hypothesis and our amyloid-centric hypothesis. We offer our views of the essential questions that remain unanswered to motivate future investigations. Understanding the behavior of α-syn in melanoma could not only provide novel approaches for treating melanoma but also could reveal insights into the role of α-syn in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dexter N Dean
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Strobel SB, Machiraju D, Hülsmeyer I, Becker JC, Paschen A, Jäger D, Wels WS, Bachmann M, Hassel JC. Expression of Potential Targets for Cell-Based Therapies on Melanoma Cells. Life (Basel) 2021; 11:life11040269. [PMID: 33805080 PMCID: PMC8064084 DOI: 10.3390/life11040269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Tumor antigen-specific redirection of cytotoxic T cells (CTLs) or natural killer (NK) cells including chimeric antigen receptor (CAR-) and T cell receptor (TCR-) cell therapy is currently being evaluated in different tumor entities including melanoma. Expression of melanoma-specific antigen recognized by the respective CAR or TCR directly or presented by HLA molecules is an indispensable prerequisite for this innovative therapy. In this study, we investigated in 168 FFPE tumor specimens of patients with stage I-IV melanoma the protein expression of HER2, TRP2, ABCB5, gp100, p53, and GD2 by immunohistochemistry (IHC). These results were correlated with clinical parameters. Membrane expression of HER2 and GD2 was also investigated in ten melanoma cell lines by flow cytometry for which corresponding tumors were analyzed by IHC. Our results demonstrated that gp100 was the most frequently overexpressed protein (61%), followed by TRP2 (50%), GD2 (38%), p53 (37%), ABCB5 (17%), and HER2 (3%). TRP2 expression was higher in primary tumors compared to metastases (p = 0.005). Accordingly, TRP2 and ABCB5 expression was significantly associated with lower tumor thickness of the primary (p = 0.013 and p = 0.025). There was no association between protein expression levels and survival in advanced melanoma patients. Flow cytometric analysis revealed abundant surface expression of GD2 and HER2 in all melanoma cell lines. The discordant HER2 expression in situ and in vitro suggests a tissue culture associated induction. In summary, our data support the use of gp100 and GD2 as a potential target for developing engineered TCR- or CAR-cell therapies, respectively, against melanoma.
Collapse
Affiliation(s)
- Sophia B. Strobel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
| | - Devayani Machiraju
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
| | - Ingrid Hülsmeyer
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
| | - Jürgen C. Becker
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141 Essen, Germany
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Annette Paschen
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Jäger
- National Center for Tumor Diseases (NCT) Heidelberg, Department of Medical Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases, German Cancer Research Center, Clinical Cooperation Unit Applied Tumor Immunity, 69120 Heidelberg, Germany
| | - Winfried S. Wels
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.H.); (J.C.B.); (A.P.); (W.S.W.)
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590 Frankfurt am Main, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University Hospital ‘Carl Gustav Carus’, TU Dresden, 01307 Dresden, Germany
- Tumor Immunology, University Cancer Center (UCC) ‘Carl Gustav Carus’, TU Dresden, 01307 Dresden, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.B.S.); (D.M.)
- Correspondence:
| |
Collapse
|
22
|
The Anti-Melanogenesis Effect of 3,4-Dihydroxybenzalacetone through Downregulation of Melanosome Maturation and Transportation in B16F10 and Human Epidermal Melanocytes. Int J Mol Sci 2021; 22:ijms22062823. [PMID: 33802228 PMCID: PMC7999661 DOI: 10.3390/ijms22062823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The biosynthesis pathway of melanin is a series of oxidative reactions that are catalyzed by melanin-related proteins, including tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Reagents or materials with antioxidative or free radical-scavenging activities may be candidates for anti-melanogenesis. 3,4-Dihydroxybenzalacetone (DBL) is a polyphenol isolated from fungi, such as Phellinus obliguus (Persoon) Pilat and P. linteus. In this study, we investigated the effects and mechanisms of DBL on antioxidation and melanogenesis in murine melanoma cells (B16F10) and human epidermal melanocytes (HEMs). The results indicated that DBL scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals, and exhibited potent reducing power, indicating that it displays strong antioxidative activity. DBL also inhibited the expression of TYR, TRP-1, TRP-2, and microphthalmia-related transcription factor (MITF) in both the cells. In addition, DBL inhibited hyperpigmentation in B16F10 and HEMs by regulating the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3 beta (GSK3β), and mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinase (ERK) signaling pathways. DBL not only shortened dendritic melanocytes but also inhibited premelanosome protein 17 (PMEL17) expression, slowing down the maturation of melanosome transportation. These results indicated that DBL promotes anti-melanogenesis by inhibiting the transportation of melanosomes. Therefore, DBL is a potent antioxidant and depigmenting agent that may be used in whitening cosmetics.
Collapse
|
23
|
Genomic variations and signatures of selection in Wuhua yellow chicken. PLoS One 2020; 15:e0241137. [PMID: 33095808 PMCID: PMC7584229 DOI: 10.1371/journal.pone.0241137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Wuhua yellow chicken (WHYC) is an important traditional yellow-feathered chicken from China, which is characterized by its white tail feathers, white flight feathers, and strong disease resistance. However, the genomic basis of these unique traits associated with WHYC is poorly understood. In this study, whole-genome resequencing was performed with an average coverage of 20.77-fold to investigate heritable variation and identify selection signals in WHYC. Reads were mapped onto the chicken reference genome (Galgal5) with a coverage of 85.95%. After quality control, 11,953,471 single nucleotide polymorphisms and 1,069,574 insertion/deletions were obtained. In addition, 41,408 structural variants and 33,278 copy number variants were found. Comparative genomic analysis of WHYC and other yellow-feathered chicken breeds showed that selected regions were enriched in genes involved in transport and catabolism, immune system, infectious diseases, signal transduction, and signaling molecules and interactions. Several genes associated with disease resistance were also identified, including IFNA, IFNB, CD86, IL18, IL11RA, VEGFC, and ATG10. Furthermore, our results suggest that PMEL and TYRP1 may contribute to the white feather coloring in WHYC. These findings can improve our understanding of the genetic characteristics of WHYC and may contribute to future breed improvement.
Collapse
|
24
|
Ruggieri M, Polizzi A, Catanzaro S, Bianco ML, Praticò AD, Di Rocco C. Neurocutaneous melanocytosis (melanosis). Childs Nerv Syst 2020; 36:2571-2596. [PMID: 33048248 DOI: 10.1007/s00381-020-04770-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
Abstract
Neurocutaneous melanosis (NCM; MIM # 249400; ORPHA: 2481], first reported by the Bohemian pathologist Rokitansky in 1861, and now more precisely defined as neurocutaneous melanocytosis, is a rare, congenital syndrome characterised by the association of (1) congenital melanocytic nevi (CMN) of the skin with overlying hypertrichosis, presenting as (a) large (LCMN) or giant and/or multiple (MCMN) melanocytic lesions (or both; sometimes associated with smaller "satellite" nevi) or (b) as proliferative melanocytic nodules; and (2) melanocytosis (with infiltration) of the brain parenchyma and/or leptomeninges. CMN of the skin and leptomeningeal/nervous system infiltration are usually benign, more rarely may progress to melanoma or non-malignant melanosis of the brain. Approximately 12% of individuals with LCMN will develop NCM: wide extension and/or dorsal axial distribution of LCMN increases the risk of NCM. The CMN are recognised at birth and are distributed over the skin according to 6 or more patterns (6B patterns) in line with the archetypical patterns of distribution of mosaic skin disorders. Neurological manifestations can appear acutely in infancy, or more frequently later in childhood or adult life, and include signs/symptoms of intracranial hypertension, seizures/epilepsy, cranial nerve palsies, motor/sensory deficits, cognitive/behavioural abnormalities, sleep cycle anomalies, and eventually neurological deterioration. NMC patients may be symptomatic or asymptomatic, with or without evidence of the typical nervous system changes at MRI. Associated brain and spinal cord malformations include the Dandy-Walker malformation (DWM) complex, hemimegalencephaly, cortical dysplasia, arachnoid cysts, Chiari I and II malformations, syringomyelia, meningoceles, occult spinal dysraphism, and CNS lipoma/lipomatosis. There is no systemic involvement, or only rarely. Pathogenically, single postzygotic mutations in the NRAS (neuroblastoma RAS viral oncogene homologue; MIM # 164790; at 1p13.2) proto-oncogene explain the occurrence of single/multiple CMNs and melanocytic and non-melanocytic nervous system lesions in NCM: these disrupt the RAS/ERK/mTOR/PI3K/akt pathways. Diagnostic/surveillance work-ups require physical examination, ophthalmoscopy, brain/spinal cord magnetic resonance imaging (MRI) and angiography (MRA), positron emission tomography (PET), and video-EEG and IQ testing. Treatment strategies include laser therapy, chemical peeling, dermabrasion, and surgical removal/grafting for CMNs and shunt surgery and surgical removal/chemo/radiotherapy for CNS lesions. Biologically targeted therapies tailored (a) BRAF/MEK in NCM mice (MEK162) and GCMN (trametinib); (b) PI3K/mTOR (omipalisib/GSK2126458) in NMC cells; (c) RAS/MEK (vemurafenib and trametinib) in LCMNs cells; or created experimental NMC cells (YP-MEL).
Collapse
Affiliation(s)
- Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy.
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Stefano Catanzaro
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
- Unit of Neonatology and Neonatal Intensive Care Unit (NICU), AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Postgraduate Programme in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea D Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Concezio Di Rocco
- Pediatric Neurosurgery, International Neuroscience Institute (INI), Hannover, Germany
| |
Collapse
|
25
|
Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H, Jimbow K. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int J Mol Sci 2020; 21:ijms21176129. [PMID: 32854423 PMCID: PMC7503925 DOI: 10.3390/ijms21176129] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Melanogenesis is the biological and biochemical process of melanin and melanosome biosynthesis. Melanin is formed by enzymic reactions of tyrosinase family proteins that convert tyrosine to form brown-black eumelanin and yellow-red pheomelanin within melanosomal compartments in melanocytes, following the cascades of events interacting with a series of autocrine and paracrine signals. Fully melanized melanosomes are delivered to keratinocytes of the skin and hair. The symbiotic relation of a melanocyte and an associated pool of keratinocytes is called epidermal melanin unit (EMU). Microphthalmia-associated transcription factor (MITF) plays a vital role in melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes for promoting melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis. Diseases involving alterations of EMU show various forms of pigmentation phenotypes. This review introduces four major topics of melanogenesis cascade that include (1) melanocyte development and differentiation, (2) melanogenesis and intracellular trafficking for melanosome biosynthesis, (3) melanin pigmentation and pigment-type switching, and (4) development of a novel therapeutic approach for malignant melanoma by elucidation of melanogenesis cascade.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
| | - Jiro Ogino
- Department of Pathology, JR Sapporo Hospital, Sapporo 060-0033, Hokkaido, Japan;
| | - Hitoshi Sohma
- Department of Biomedical Engineering, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan;
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Hokkaido, Japan; (T.H.); (T.K.); (H.U.)
| | - Kowichi Jimbow
- Institute of Dermatology & Cutaneous Sciences, Sapporo 060-0042, Hokkaido, Japan
- Correspondence: ; Tel.: +81-11-887-8266
| |
Collapse
|
26
|
McMenamin PG, Shields GT, Seyed-Razavi Y, Kalirai H, Insall RH, Machesky LM, Coupland SE. Melanoblasts Populate the Mouse Choroid Earlier in Development Than Previously Described. Invest Ophthalmol Vis Sci 2020; 61:33. [PMID: 32797202 PMCID: PMC7441366 DOI: 10.1167/iovs.61.10.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Human choroidal melanocytes become evident in the last trimester of development, but very little is known about them. To better understand normal and diseased choroidal melanocyte biology we examined their precursors, melanoblasts (MB), in mouse eyes during development, particularly their relation to the developing vasculature and immune cells. Methods Naïve B6(Cg)-Tyrc-2J/J albino mice were used between embryonic (E) day 15.5 and postnatal (P) day 8, with adult controls. Whole eyes, posterior segments, or dissected choroidal wholemounts were stained with antibodies against tyrosinase-related protein 2, ionized calcium binding adaptor molecule-1 or isolectin B4, and examined by confocal microscopy. Immunoreactive cell numbers in the choroid were quantified with Imaris. One-way ANOVA with Tukey's post hoc test assessed statistical significance. Results Small numbers of MB were present in the presumptive choroid at E15.5 and E18.5. The density significantly increased between E18.5 (381.4 ± 45.8 cells/mm2) and P0 (695.2 ± 87.1 cells/mm2; P = 0.032). In postnatal eyes MB increased in density and formed multiple layers beneath the choriocapillaris. MB in the periocular mesenchyme preceded the appearance of vascular structures at E15.5. Myeloid cells (Ionized calcium binding adaptor molecule-1-positive) were also present at high densities from this time, and attained adult-equivalent densities by P8 (556.4 ± 73.6 cells/mm2). Conclusions We demonstrate that choroidal MB and myeloid cells are both present at very early stages of mouse eye development (E15.5). Although MB and vascularization seemed to be unlinked early in choroidal development, they were closely associated at later stages. MB did not migrate into the choroid in waves, nor did they have a consistent relationship with nerves.
Collapse
Affiliation(s)
- Paul G. McMenamin
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Graham T. Shields
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yashar Seyed-Razavi
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Robert H. Insall
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura M. Machesky
- CRUK Beatson Institute, Bearsden, University of Glasgow, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
27
|
Kleszczyński K, Kim TK, Bilska B, Sarna M, Mokrzynski K, Stegemann A, Pyza E, Reiter RJ, Steinbrink K, Böhm M, Slominski AT. Melatonin exerts oncostatic capacity and decreases melanogenesis in human MNT-1 melanoma cells. J Pineal Res 2019; 67:e12610. [PMID: 31532834 PMCID: PMC7924888 DOI: 10.1111/jpi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
Melanogenesis is a key parameter of differentiation in melanocytes and melanoma cells; therefore, search for factors regulating this pathway are strongly desired. Herein, we investigated the effects of melatonin, a ubiquitous physiological mediator that is found throughout animals and plants. In mammals, the pineal gland secretes this indoleamine into the blood circulation to exert an extensive repertoire of biological activities. Our in vitro assessment indicates an oncostatic capacity of melatonin in time-dependent manner (24, 48, 72 hours) in highly pigmented MNT-1 melanoma cells. The similar pattern of regulation regarding cell viability was observed in amelanotic Sk-Mel-28 cells. Subsequently, MNT-1 cells were tested for the first time for evaluation of melanin/melatonin interaction. Thus primary, electron paramagnetic resonance (EPR) spectroscopy demonstrated that melatonin reduced melanin content. Artificially induced disturbances of melanogenesis by selected inhibitors (N-phenylthiourea or kojic acid) were slightly antagonized by melatonin. Additionally, analysis using transmission electron microscopy has shown that melatonin, particularly at higher dose of 10-3 mol/L, triggered the appearance of premelanosomes (stage I-II of melanosome) and MNT-1 cells synthesize de novo endogenous melatonin shown by LC-MS. In conclusion, these studies show a melanogenic-like function of melatonin suggesting it as an advantageous agent for treatment of pigmentary disorders.
Collapse
Affiliation(s)
| | - Tae-Kang Kim
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krystian Mokrzynski
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster, Germany
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | | | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
28
|
Zhang Z, Gong J, Sviderskaya EV, Wei A, Li W. Mitochondrial NCKX5 regulates melanosomal biogenesis and pigment production. J Cell Sci 2019; 132:jcs232009. [PMID: 31201282 PMCID: PMC6679581 DOI: 10.1242/jcs.232009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/03/2019] [Indexed: 01/02/2023] Open
Abstract
Oculocutaneous albinism (OCA) is a heterogeneous and autosomal recessive hypopigmentation disorder, which is caused by mutations of genes involved in pigment biosynthesis or melanosome biogenesis. We have previously identified NCKX5 (also known as SLC24A5) as a causative gene for OCA type 6 (OCA6). However, the pathogenesis of OCA6 is unknown. We found that NCKX5 is localized to mitochondria, not to melanosomes. Pharmacological inhibition of mitochondrial function or NCKX exchanger activity reduced pigment production. Loss of NCKX5 attenuated Ca2+ enrichment in melanosomes, which compromised PMEL fibril formation, melanosome maturation and pigment production. Thus, we have defined a new class of hypopigmentation attributable to dysfunctional mitochondria and an impairment of mitochondrial Ca2+ transfer into melanosomes. Thus, it is possible that mitochondrial function could have a role in the graying of hair in older people and formation of hypopigmented lesions in vitiligo patients.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Juanjuan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Elena V Sviderskaya
- Cell Signalling Research Centre, St. George's, University of London, London SW17 0RE, UK
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
- Shunyi Women and Children's Hospital of Beijing Children's Hospital, Beijing 101300, China
| |
Collapse
|
29
|
Zhou D, Ota K, Nardin C, Feldman M, Widman A, Wind O, Simon A, Reilly M, Levin LR, Buck J, Wakamatsu K, Ito S, Zippin JH. Mammalian pigmentation is regulated by a distinct cAMP-dependent mechanism that controls melanosome pH. Sci Signal 2018; 11:11/555/eaau7987. [PMID: 30401788 DOI: 10.1126/scisignal.aau7987] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The production of melanin increases skin pigmentation and reduces the risk of skin cancer. Melanin production depends on the pH of melanosomes, which are more acidic in lighter-skinned than in darker-skinned people. We showed that inhibition of soluble adenylyl cyclase (sAC) controlled pigmentation by increasing the pH of melanosomes both in cells and in vivo. Distinct from the canonical melanocortin 1 receptor (MC1R)-dependent cAMP pathway that controls pigmentation by altering gene expression, we found that inhibition of sAC increased pigmentation by increasing the activity of tyrosinase, the rate-limiting enzyme in melanin synthesis, which is more active at basic pH. We demonstrated that the effect of sAC activity on pH and melanin production in human melanocytes depended on the skin color of the donor. Last, we identified sAC inhibitors as a new class of drugs that increase melanosome pH and pigmentation in vivo, suggesting that pharmacologic inhibition of this pathway may affect skin cancer risk or pigmentation conditions.
Collapse
Affiliation(s)
- Dalee Zhou
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Koji Ota
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Charlee Nardin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.,Service de Dermatologie, Centre Hospitalier Universitaire, Besançon 25030, France
| | - Michelle Feldman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Adam Widman
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Olivia Wind
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Amanda Simon
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Michael Reilly
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake 470-1192, Japan
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
30
|
Malcov-Brog H, Alpert A, Golan T, Parikh S, Nordlinger A, Netti F, Sheinboim D, Dror I, Thomas L, Cosson C, Gonen P, Stanevsky Y, Brenner R, Perluk T, Frand J, Elgavish S, Nevo Y, Rahat D, Tabach Y, Khaled M, Shen-Orr SS, Levy C. UV-Protection Timer Controls Linkage between Stress and Pigmentation Skin Protection Systems. Mol Cell 2018; 72:444-456.e7. [PMID: 30401431 PMCID: PMC6224604 DOI: 10.1016/j.molcel.2018.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/15/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022]
Abstract
Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage. UV exposure frequency reveals a trade-off between skin protection programs MITF dynamics synchronize skin stress responses and pigmentation MITF serves as a UV-protection timer Two negative regulatory loops involving miR-148a and HIF1α underlie MITF dynamics
Collapse
Affiliation(s)
- Hagar Malcov-Brog
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ayelet Alpert
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alice Nordlinger
- INSERM U1186, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif 94805, France
| | - Francesca Netti
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Danna Sheinboim
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laetitia Thomas
- INSERM U1186, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif 94805, France
| | - Camille Cosson
- INSERM U1186, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif 94805, France
| | - Pinchas Gonen
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | - Jacob Frand
- E. Wolfson Medical Center, Holon 58100, Israel
| | - Sharona Elgavish
- Bioinformatics Unit of the I-CORE Computation Center, Hebrew University, Jerusalem 91120, Israel
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, Hebrew University, Jerusalem 91120, Israel
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel
| | - Mehdi Khaled
- INSERM U1186, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif 94805, France.
| | - Shai S Shen-Orr
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
31
|
Bergtold C, Hauser D, Chaumont A, El Yakhlifi S, Mateescu M, Meyer F, Metz-Boutigue MH, Frisch B, Schaaf P, Ihiawakrim D, Ersen O, Monnier CA, Petri-Fink A, Rothen-Rutishauser B, Ball V. Mimicking the Chemistry of Natural Eumelanin Synthesis: The KE Sequence in Polypeptides and in Proteins Allows for a Specific Control of Nanosized Functional Polydopamine Formation. Biomacromolecules 2018; 19:3693-3704. [DOI: 10.1021/acs.biomac.8b00818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Camille Bergtold
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Daniel Hauser
- Adolphe Merkle Institute, University of Fribourg, 4 Chemin des Verdiers, CH-1700 Fribourg, Switzerland
| | - Alain Chaumont
- Faculté de Chimie, Chimie de la Matière Complexe, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7140, 4 rue Blaise Pascal, 67081, Strasbourg, France
| | - Salima El Yakhlifi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Mihaela Mateescu
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg France
| | - Florent Meyer
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Marie-Hélène Metz-Boutigue
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Benoît Frisch
- Université de Strasbourg, Faculté de Pharmacie, Laboratoire de Conception et application de molécules bioactives, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Pierre Schaaf
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg France
- Centre National de la Recherche Scientifique, Institut Charles Sadron, Unité Propre 22, 23 rue du Loess, 67034 Strasbourg, France
| | - Dris Ihiawakrim
- Centre National de la Recherche Scientifique, Institut de Physique et de Chimie des Matériaux, Unité Mixte de Recherche 7504, 23 rue du Loess, 67034, Strasbourg, Cedex 2, France
| | - Ovidiu Ersen
- Centre National de la Recherche Scientifique, Institut de Physique et de Chimie des Matériaux, Unité Mixte de Recherche 7504, 23 rue du Loess, 67034, Strasbourg, Cedex 2, France
| | - Christophe A. Monnier
- Adolphe Merkle Institute, University of Fribourg, 4 Chemin des Verdiers, CH-1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, 4 Chemin des Verdiers, CH-1700 Fribourg, Switzerland
| | | | - Vincent Ball
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 rue Humann, 67085 Strasbourg Cedex, France
| |
Collapse
|
32
|
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci 2018; 40:328-347. [PMID: 29752874 DOI: 10.1111/ics.12466] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Collapse
Affiliation(s)
- C Serre
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - V Busuttil
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - J-M Botto
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| |
Collapse
|
33
|
Bergam P, Reisecker JM, Rakvács Z, Kucsma N, Raposo G, Szakacs G, van Niel G. ABCB6 Resides in Melanosomes and Regulates Early Steps of Melanogenesis Required for PMEL Amyloid Matrix Formation. J Mol Biol 2018; 430:3802-3818. [PMID: 29940187 DOI: 10.1016/j.jmb.2018.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023]
Abstract
Genetically inheritable pigmentation defects provide a unique opportunity to reveal the function of proteins contributing to melanogenesis. Dyschromatosis universalis hereditaria (DUH) is a rare pigmentary genodermatosis associated with mutations in the ABCB6 gene. Here we use optical and electron microscopy imaging combined with biochemical tools to investigate the localization and function of ABCB6 in pigment cells. We show that ABCB6 localizes to the membrane of early melanosomes and lysosomes of the human melanocytic cell line MNT-1. Depletion of ABCB6 by siRNA impaired PMEL amyloidogenesis in early melanosomes and induced aberrant accumulation of multilamellar aggregates in pigmented melanosomes. PMEL fibril formation and normal maturation of pigmented melanosomes could be restored by the overexpression of wild-type ABCB6 but not by variants containing an inactivating catalytic mutation (K629M) or the G579E DUH mutation. In line with the impairment of PMEL matrix formation in the absence of ABCB6, morphological analysis of the retinal pigment epithelium of ABCB6 knockout mice revealed a significant decrease of melanosome numbers. Our study extends the localization of ABCB6 to melanosomes, suggesting a potential link between the function of ABCB6 and the etiology of DUH to amyloid formation in pigment cells.
Collapse
Affiliation(s)
- Ptissam Bergam
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France
| | | | - Zsófia Rakvács
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary
| | - Graça Raposo
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France
| | - Gergely Szakacs
- Institute of Cancer Research, Medical University Vienna, Vienna, Austria; Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest 1117, Hungary.
| | - Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'Ulm, 75231 Paris, France; Centre National de la Recherche Scientifique, UMR144, Paris F-75248, France; Cell and Tissue Imaging Core Facility PICT-IBiSA, Institut Curie, Paris, France; Center for Psychiatry and Neuroscience, Hopital Saint-Anne, Université Descartes, INSERM U894, Paris, France.
| |
Collapse
|
34
|
Yi WJ, Su MY, Shi Y, Jiang S, Xu SZ, Lei TC. Degraded melanocores are incompetent to protect epidermal keratinocytes against UV damage. Cell Cycle 2018; 17:844-857. [PMID: 29623762 DOI: 10.1080/15384101.2018.1456601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Melanosomes are membrane-bound intracellular organelles that are uniquely generated by melanocytes (MCs) in the basal layer of human epidermis. Highly pigmented mature melanosomes are transferred from MCs to keratinocytes (KCs), and then positioned in the supra-nuclear region to ensure protection against ultraviolet radiation (UVR). However, the molecular mechanism underlying melanosome (or melanin pigment) transfer remains enigmatic. Emerging evidence shows that exo-/endo-cytosis of the melanosome core (termed melanocore) has been considered as the main transfer manner between MCs and KCs. As KCs in the skin migrate up from the basal layer and undergo terminal differentiation, the melanocores they have taken up from MCs are subjected to degradation. In this study, we isolated individual melanocores from human MCs in culture and then induced their destruction/disruption using a physical approach. The results demonstrate that the ultrastructural integrity of melanocores is essential for their antioxidant and photoprotective properties. In addition, we also show that cathepsin V (CTSV), a lysosomal acid protease, is involved in melanocore degradation in calcium-induced differentiated KCs and is also suppressed in KCs following exposure to UVA or UVB radiation. Thus, our study demonstrates that change in the proportion of melanocores in the intact/undegraded state by CTSV-related degradation in KCs affects photoprotection of the skin.
Collapse
Affiliation(s)
- Wen-Juan Yi
- a Department of Dermatology , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Meng-Yun Su
- a Department of Dermatology , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Ying Shi
- a Department of Dermatology , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Shan Jiang
- a Department of Dermatology , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Shi-Zheng Xu
- a Department of Dermatology , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| | - Tie-Chi Lei
- a Department of Dermatology , Renmin Hospital of Wuhan University , Wuhan 430060 , China
| |
Collapse
|
35
|
Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, del Amo EM. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev 2018; 126:23-43. [PMID: 29247767 DOI: 10.1016/j.addr.2017.12.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Pigmented ocular tissues contain melanin within the intracellular melanosomes. Drugs bind to melanin at varying extent that ranges from no binding to extensive binding. Binding may lead to drug accumulation to the pigmented tissues and prolonged drug retention in the melanin containing cells. Therefore, melanin binding is an important feature that affects ocular drug delivery and biodistribution, but this topic has not been reviewed since 1998. In this review, we present current knowledge on ocular melanin, melanosomes and binding of drugs to pigmented cells and tissues. In vitro, in vivo and in silico methods in the field were critically evaluated, because the literature in this field can be confusing if the reader does not properly understand the methodological aspects. Literature analysis includes a comprehensive table of literature data on melanin binding of drugs. Furthermore, we aimed to give some insights beyond the current literature by making a chemical structure based classification model for melanin binding of drugs and kinetic simulations that revealed significant interplay between melanin binding and drug permeability across the melanosomal and plasma membranes. Overall, more mechanistic and systematic research is needed before the impact of melanin binding on ocular drug delivery can be properly understood and predicted.
Collapse
|
36
|
The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse. J Neurosci 2017; 36:12393-12411. [PMID: 27927957 DOI: 10.1523/jneurosci.1321-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/01/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Proteome modifications downstream of monogenic or polygenic disorders have the potential to uncover novel molecular mechanisms participating in pathogenesis and/or extragenic modification of phenotypic expression. We tested this idea by determining the proteome sensitive to genetic defects in a locus encoding dysbindin, a protein required for synapse biology and implicated in schizophrenia risk. We applied quantitative mass spectrometry to identify proteins expressed in neuronal cells the abundance of which was altered after downregulation of the schizophrenia susceptibility factor dysbindin (Bloc1s8) or two other dysbindin-interacting polypeptides, which assemble into the octameric biogenesis of lysosome-related organelles complex 1 (BLOC-1). We found 491 proteins sensitive to dysbindin and BLOC-1 loss of function. Gene ontology of these 491 proteins singled out the actin cytoskeleton and the actin polymerization factor, the Arp2/3 complex, as top statistical molecular pathways contained within the BLOC-1-sensitive proteome. Subunits of the Arp2/3 complex were downregulated by BLOC-1 loss of function, thus affecting actin dynamics in early endosomes of BLOC-1-deficient cells. Furthermore, we demonstrated that Arp2/3, dysbindin, and subunits of the BLOC-1 complex biochemically and genetically interact, modulating Drosophila melanogaster synapse morphology and homeostatic synaptic plasticity. Our results indicate that ontologically prioritized proteomics identifies novel pathways that modify synaptic phenotypes associated with neurodevelopmental disorder gene defects. SIGNIFICANCE STATEMENT The mechanisms associated with schizophrenia are mostly unknown despite the increasing number of genetic loci identified that increase disease risk. We present an experimental strategy that impartially and comprehensively interrogates the proteome of neurons to identify effects of genetic mutations in a schizophrenia risk factor, dysbindin. We find that the expression of the actin polymerization complex Arp2/3 is reduced in dysbindin-deficient cells, thus affecting actin-dependent phenotypes in two cellular compartments where dysbindin resides, endosomes and presynapses. Our studies indicate that a central cellular structure affected by schizophrenia susceptibility loci is the actin cytoskeleton, an organelle necessary for synaptic function in the presynaptic and postsynaptic compartment.
Collapse
|
37
|
Ball V. Composite Materials and Films Based on Melanins, Polydopamine, and Other Catecholamine-Based Materials. Biomimetics (Basel) 2017; 2:E12. [PMID: 31105175 PMCID: PMC6352683 DOI: 10.3390/biomimetics2030012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022] Open
Abstract
Polydopamine (PDA) is related to eumelanins in its composition and structure. These pigments allow the design, inspired by natural materials, of composite nanoparticles and films for applications in the field of energy conversion and the design of biomaterials. This short review summarizes the main advances in the design of PDA-based composites with inorganic and organic materials.
Collapse
Affiliation(s)
- Vincent Ball
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France.
- Unité Mixte de Recherche 1121, Institut National de la Santé et de la Recherche Médicale, 11 rue Humann, 67085 Strasbourg Cedex, France.
| |
Collapse
|
38
|
Yoshizaki N, Hashizume R, Masaki H. A polymethoxyflavone mixture extracted from orange peels, mainly containing nobiletin, 3,3',4',5,6,7,8-heptamethoxyflavone and tangeretin, suppresses melanogenesis through the acidification of cell organelles, including melanosomes. J Dermatol Sci 2017. [PMID: 28629701 DOI: 10.1016/j.jdermsci.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Skin color is determined by melanin contents and its distribution. Melanin is synthesized in melanosomes of melanocytes, catalyzed by tyrosinase, melanogenic enzymes. Regarding the process of melanin synthesis, melanosomal pH is considered to play an important role, because it has been reported to differ between Caucasian and Black melanocytes. OBJECTIVE Although polymethoxyflavone (PMF) has many beneficial effects, it has not been reported which PMF suppresses melanogenesis. In this study, we identified the mechanism underlying the effect of PMF on melanogenesis METHODS: We determined the effects of a PMF mixture extracted from orange peels on melanogenesis, on tyrosinase expression, on the localization of tyrosinase and on the acidification of organelles, including melanosomes, in HM3KO human melanoma cells. RESULTS TREATMENT: with the PMF mixture elicited the suppression of melanogenesis, the degradation of tyrosinase in lysosomes and the mislocalization of tyrosinase associated with the acidification of intracellular organelles, including melanosomes. The neutralization of cell organelle pH by ammonium chloride restored melanogenesis and the correct localization of tyrosinase to melanosomes, which had been suppressed by the PMF mixture. CONCLUSION These results suggest that the PMF mixture suppresses the localization of tyrosinase to melanosomes and consequently inhibits melanogenesis due to the acidification of cell organelles, including melanosomes.
Collapse
Affiliation(s)
- Norihiro Yoshizaki
- Advanced Technology Research Laboratory, NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Ron Hashizume
- Advanced Technology Research Laboratory, NOF Corporation, 5-10 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura-machi, Hachioji-shi, Tokyo 192-0982, Japan
| |
Collapse
|
39
|
Melanin and lipofuscin as hallmarks of skin aging. Postepy Dermatol Alergol 2017; 34:97-103. [PMID: 28507486 PMCID: PMC5420599 DOI: 10.5114/ada.2017.67070] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022] Open
Abstract
Discoloration are symptoms of skin aging. They are connected with presence of melanin and lipofuscin, whose excess and abnormal distribution in the skin cause dark spots to appear. Melanin is formed under the influence of tyrosinase during melanogenesis. Its content changes with age, which may be a result of menopause. Lipofuscin is another example of the age pigment. It is composed of proteins, lipids and carbohydrates. It is described as an age pigment because its content increases with age. The formation and accumulation of lipofuscin is inevitable and leads to cell and homeostasis dysfunction because it reduces the proteasome activity.
Collapse
|
40
|
Miao F, Shi Y, Fan ZF, Jiang S, Xu SZ, Lei TC. Deoxyarbutin Possesses a Potent Skin-Lightening Capacity with No Discernible Cytotoxicity against Melanosomes. PLoS One 2016; 11:e0165338. [PMID: 27776184 PMCID: PMC5077105 DOI: 10.1371/journal.pone.0165338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022] Open
Abstract
Safe and effective ingredients capable of removing undesired hyperpigmentation from facial skin are urgently needed for both pharmaceutical and cosmetic purposes. Deoxyarbutin (4-[(tetrahydro-2H-pyran-2-yl) oxy] phenol, D-Arb) is a glucoside derivative of hydroquinone. Here, we investigated the toxicity and efficacy of D-Arb at the sub-cellular level (directly on melanosomes) and skin pigmentation using in vivo and in vitro models to compare with its parent compound hydroquinone (1,4-benzenediol, HQ). At first, we examined the ultrastructural changes of melanosomes in hyperpigmented guinea pig skin induced by 308-nm monochromatic excimer lightand/or treated with HQ and D-Arb using transmission electron microscopy. The results showed that prominent changes in the melanosomal membrane, such as bulb-like structure and even complete rupture of the outer membranes, were found in the skin after topical application of 5% HQ for 10 days. These changes were barely observed in the skin treated with D-Arb. To further clarify whether membrane toxicity of HQ was a direct result of the compound treatment, we also examinedultrastructural changes of individual melanosomes purified from MNT1 human melanoma cells. Similar observations were obtained from the naked melanosome model in vitro. Finally, we determined the effects of melanosomal fractions exposed to HQ or D-Arb on hydroxyl radical generation in the Fenton reaction utilizing an electron spin resonance assay. D-Arb-treated melanosomesexhibit a moderate hydroxyl radical-scavenging activity, whereas HQ-treated melanosomessignificantly generate more hydroxyl free radicals. This study suggests that D-Arb possesses a potent ability in skin lightening and antioxidation with less melanosome cytotoxicity.
Collapse
Affiliation(s)
- Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Shi
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Feng Fan
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-Zheng Xu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
41
|
Pelkonen L, Reinisalo M, Morin-Picardat E, Kidron H, Urtti A. Isolation of Intact and Functional Melanosomes from the Retinal Pigment Epithelium. PLoS One 2016; 11:e0160352. [PMID: 27551967 PMCID: PMC4994940 DOI: 10.1371/journal.pone.0160352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Melanosomes of retinal pigment epithelium (RPE) have many vision supporting functions. Melanosome research would benefit from a method to isolate pure and characterized melanosomes. Sucrose gradient centrifugation is the most commonly used method for isolation of RPE melanosomes, but the isolated products are insufficiently characterized and their quality is unclear. Here we introduce a new gentle method for fractionation of porcine RPE that produces intact functional melanosomes with minimal cross-contamination from other cell organelles. The characterization of isolated organelles was conducted with several methods confirming the purity of the isolated melanosomal fraction (transmission electron microscopy, immunoblotting) and presence of the melanosomal membrane (fluorescence staining of melanosomal membrane, zeta potential measurement). We demonstrate that our isolation method produces RPE melanosomes with the ability to generate free phosphate (Pi) from ATP thereby proving that many membrane proteins remain functional after isolation. The isolated porcine RPE melanosomes represented V-type H+ATPase activity that was demonstrated with bafilomycin A1, a specific V-ATPase inhibitor. We anticipate that the isolation method described here can easily be optimized for the isolation of stage IV melanosomes from other pigmented cell types and tissues.
Collapse
Affiliation(s)
- Laura Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
42
|
van Niel G. Study of Exosomes Shed New Light on Physiology of Amyloidogenesis. Cell Mol Neurobiol 2016; 36:327-42. [PMID: 26983829 DOI: 10.1007/s10571-016-0357-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/27/2016] [Indexed: 12/18/2022]
Abstract
Accumulation of toxic amyloid oligomers, a key feature in the pathogenesis of amyloid-related diseases, results from an imbalance between generation and clearance of amyloidogenic proteins. Cell biology has brought to light the key roles of multivesicular endosomes (MVEs) and their intraluminal vesicles (ILVs), which can be secreted as exosomes, in amyloid generation and clearance. To better understand these roles, we have investigated a relevant physiological model of amyloid formation in pigment cells. These cells have tuned their endosomes to optimize the formation of functional amyloid fibrils from the premelanosome protein (PMEL) and to avoid potential accumulation of toxic species. The functional amyloids derived from PMEL reveal striking analogies with the generation of Aβ peptides. We have recently strengthened these analogies using extracellular vesicles as reporters of the endosomal processes that regulate PMEL melanogenesis. We have shown that in pigmented cells, apolipoprotein E (ApoE) is associated with ILVs and exosomes, and regulates the formation of PMEL amyloid fibrils in endosomes. This process secures the generation of amyloid fibrils by exploiting ILVs as amyloid-nucleating platforms. This physiological model of amyloidogenesis could shed new light on the roles of MVEs and exosomes in conditions with pathological amyloid metabolism, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, 75231, Paris, France.
- Centre National de la Recherche Scientifique, UMR144, 75248, Paris, France.
| |
Collapse
|
43
|
Jung H, Chung H, Chang SE, Kang DH, Oh ES. FK506 regulates pigmentation by maturing the melanosome and facilitating their transfer to keratinocytes. Pigment Cell Melanoma Res 2016; 29:199-209. [DOI: 10.1111/pcmr.12443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/22/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Hyejung Jung
- Department of Life Sciences; The Research Center for Cellular Homeostasis; Ewha Womans University; Seoul Korea
| | - Heesung Chung
- Department of Life Sciences; The Research Center for Cellular Homeostasis; Ewha Womans University; Seoul Korea
| | - Sung Eun Chang
- Department of Dermatology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Duk-Hee Kang
- Division of Nephrology; Department of Internal Medicine; Ewha Medical Research Center; Ewha Womans University School of Medicine; Seoul Korea
| | - Eok-Soo Oh
- Department of Life Sciences; The Research Center for Cellular Homeostasis; Ewha Womans University; Seoul Korea
| |
Collapse
|
44
|
Louros NN, Baltoumas FA, Hamodrakas SJ, Iconomidou VA. A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils. J Comput Aided Mol Des 2016; 30:153-64. [PMID: 26754844 DOI: 10.1007/s10822-015-9892-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Pmel17 is a multidomain protein involved in biosynthesis of melanin. This process is facilitated by the formation of Pmel17 amyloid fibrils that serve as a scaffold, important for pigment deposition in melanosomes. A specific luminal domain of human Pmel17, containing 10 tandem imperfect repeats, designated as repeat domain (RPT), forms amyloid fibrils in a pH-controlled mechanism in vitro and has been proposed to be essential for the formation of the fibrillar matrix. Currently, no three-dimensional structure has been resolved for the RPT domain of Pmel17. Here, we examine the structure of the RPT domain by performing sequence threading. The resulting model was subjected to energy minimization and validated through extensive molecular dynamics simulations. Structural analysis indicated that the RPT model exhibits several distinct properties of β-solenoid structures, which have been proposed to be polymerizing components of amyloid fibrils. The derived model is stabilized by an extensive network of hydrogen bonds generated by stacking of highly conserved polar residues of the RPT domain. Furthermore, the key role of invariant glutamate residues is proposed, supporting a pH-dependent mechanism for RPT domain assembly. Conclusively, our work attempts to provide structural insights into the RPT domain structure and to elucidate its contribution to Pmel17 amyloid fibril formation.
Collapse
Affiliation(s)
- Nikolaos N Louros
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Fotis A Baltoumas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece.
| |
Collapse
|
45
|
Ho T, Watt B, Spruce LA, Seeholzer SH, Marks MS. The Kringle-like Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome Protein (PMEL) Oligomerization and Disulfide Bond Configuration and Promotes Amyloid Formation. J Biol Chem 2015; 291:3595-612. [PMID: 26694611 DOI: 10.1074/jbc.m115.692442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils.
Collapse
Affiliation(s)
- Tina Ho
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and
| | - Brenda Watt
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and
| | - Lynn A Spruce
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Steven H Seeholzer
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Michael S Marks
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and the Cell and Molecular Biology Graduate Group, the Department of Pathology and Laboratory Medicine, and the Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
46
|
Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle. PLoS One 2015; 10:e0143702. [PMID: 26619124 PMCID: PMC4664286 DOI: 10.1371/journal.pone.0143702] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/08/2015] [Indexed: 01/21/2023] Open
Abstract
The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes.
Collapse
|
47
|
Abstract
Dysbindin is a schizophrenia susceptibility factor and subunit of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) required for lysosome-related organelle biogenesis, and in neurons, synaptic vesicle assembly, neurotransmission, and plasticity. Protein networks, or interactomes, downstream of dysbindin/BLOC-1 remain partially explored despite their potential to illuminate neurodevelopmental disorder mechanisms. Here, we conducted a proteome-wide search for polypeptides whose cellular content is sensitive to dysbindin/BLOC-1 loss of function. We identified components of the vesicle fusion machinery as factors downregulated in dysbindin/BLOC-1 deficiency in neuroectodermal cells and iPSC-derived human neurons, among them the N-ethylmaleimide-sensitive factor (NSF). Human dysbindin/BLOC-1 coprecipitates with NSF and vice versa, and both proteins colocalized in a Drosophila model synapse. To test the hypothesis that NSF and dysbindin/BLOC-1 participate in a pathway-regulating synaptic function, we examined the role for NSF in dysbindin/BLOC-1-dependent synaptic homeostatic plasticity in Drosophila. As previously described, we found that mutations in dysbindin precluded homeostatic synaptic plasticity elicited by acute blockage of postsynaptic receptors. This dysbindin mutant phenotype is fully rescued by presynaptic expression of either dysbindin or Drosophila NSF. However, neither reduction of NSF alone or in combination with dysbindin haploinsufficiency impaired homeostatic synaptic plasticity. Our results demonstrate that dysbindin/BLOC-1 expression defects result in altered cellular content of proteins of the vesicle fusion apparatus and therefore influence synaptic plasticity.
Collapse
|
48
|
Bin BH, Bhin J, Yang SH, Shin M, Nam YJ, Choi DH, Shin DW, Lee AY, Hwang D, Cho EG, Lee TR. Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity. PLoS One 2015. [PMID: 26057890 DOI: 10.1371/journal.pone.0129273.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Seung Ha Yang
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Misun Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Yeon-Ju Nam
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Daehee Hwang
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| |
Collapse
|
49
|
Vaman V. S. A, Poppe H, Houben R, Grunewald TGP, Goebeler M, Butt E. LASP1, a Newly Identified Melanocytic Protein with a Possible Role in Melanin Release, but Not in Melanoma Progression. PLoS One 2015; 10:e0129219. [PMID: 26061439 PMCID: PMC4465371 DOI: 10.1371/journal.pone.0129219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/06/2015] [Indexed: 12/25/2022] Open
Abstract
The LIM and SH3 protein 1 (LASP1) is a focal adhesion protein. Its expression is increased in many malignant tumors. However, little is known about the physiological role of the protein. In the present study, we investigated the expression and function of LASP1 in normal skin, melanocytic nevi and malignant melanoma. In normal skin, a distinct LASP1 expression is visible only in the basal epidermal layer while in nevi LASP1 protein is detected in all melanocytes. Melanoma exhibit no increase in LASP1 mRNA compared to normal skin. In melanocytes, the protein is bound to dynamin and mainly localized at late melanosomes along the edges and at the tips of the cell. Knockdown of LASP1 results in increased melanin concentration in the cells. Collectively, we identified LASP1 as a hitherto unknown protein in melanocytes and as novel partner of dynamin in the physiological process of membrane constriction and melanosome vesicle release.
Collapse
Affiliation(s)
- Anjana Vaman V. S.
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Heiko Poppe
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas G. P. Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology, Ludwig Maximilians University Munich, Munich, Germany
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Elke Butt
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
50
|
Bin BH, Bhin J, Yang SH, Shin M, Nam YJ, Choi DH, Shin DW, Lee AY, Hwang D, Cho EG, Lee TR. Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity. PLoS One 2015; 10:e0129273. [PMID: 26057890 PMCID: PMC4461305 DOI: 10.1371/journal.pone.0129273] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 05/06/2015] [Indexed: 11/17/2022] Open
Abstract
The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Seung Ha Yang
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Misun Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Yeon-Ju Nam
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Daehee Hwang
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| |
Collapse
|