1
|
Erickson PA, Bangerter A, Gunter A, Polizos NT, Bergland AO. Limited population structure but signals of recent selection in introduced African Fig Fly (Zaprionus indianus) in North America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614190. [PMID: 39386550 PMCID: PMC11463544 DOI: 10.1101/2024.09.20.614190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Invasive species have devastating consequences for human health, food security, and the environment. Many invasive species adapt to new ecological niches following invasion, but little is known about the early steps of adaptation. Here we examine population genomics of a recently introduced drosophilid in North America, the African Fig Fly, Zaprionus indianus. This species is likely intolerant of subfreezing temperatures and recolonizes temperate environments yearly. We generated a new chromosome-level genome assembly for Z. indianus. Using resequencing of over 200 North American individuals collected over four years in temperate Virginia, plus a single collection from subtropical Florida, we tested for signatures of recolonization, population structure, and adaptation within invasive populations. We show founding populations are sometimes small and contain close genetic relatives, yet temporal population structure and differentiation of populations is mostly absent across recurrent recolonization events. Although we find limited signals of genome-wide spatial or temporal population structure, we identify haplotypes on the X chromosome that are repeatedly differentiated between Virginia and Florida populations. These haplotypes show signatures of natural selection and are not found in African populations. We also find evidence for several large structural polymorphisms segregating within North America populations and show X chromosome evolution in invasive populations is strikingly different from the autosomes. These results show that despite limited population structure, populations may rapidly evolve genetic differences early in an invasion. Further uncovering how these genomic regions influence invasive potential and success in new environments will advance our understanding of how organisms evolve in changing environments.
Collapse
|
2
|
Battlay P, Yeaman S, Hodgins KA. Impacts of pleiotropy and migration on repeated genetic adaptation. Genetics 2024; 228:iyae111. [PMID: 38996046 PMCID: PMC11373517 DOI: 10.1093/genetics/iyae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
Observations of genetically repeated evolution (repeatability) in complex organisms are incongruent with the Fisher-Orr model, which implies that repeated use of the same gene should be rare when mutations are pleiotropic (i.e. affect multiple traits). When spatially divergent selection occurs in the presence of migration, mutations of large effect are more strongly favored, and hence, repeatability is more likely, but it is unclear whether this observation is limited by pleiotropy. Here, we explore this question using individual-based simulations of a two-patch model incorporating multiple quantitative traits governed by mutations with pleiotropic effects. We explore the relationship between fitness trade-offs and repeatability by varying the alignment between mutation effect and spatial variation in trait optima. While repeatability decreases with increasing trait dimensionality, trade-offs in mutation effects on traits do not strongly limit the contribution of a locus of large effect to repeated adaptation, particularly under increased migration. These results suggest that repeatability will be more pronounced for local rather than global adaptation. Whereas pleiotropy limits repeatability in a single-population model, when there is local adaptation with gene flow, repeatability can occur if some loci are able to produce alleles of large effect, even when there are pleiotropic trade-offs.
Collapse
Affiliation(s)
- Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Yi X, Kemppainen P, Reid K, Chen Y, Rastas P, Fraimout A, Merilä J. Heterogeneous genomic architecture of skeletal armour traits in sticklebacks. J Evol Biol 2024; 37:995-1008. [PMID: 39073424 DOI: 10.1093/jeb/voae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
Whether populations adapt to similar selection pressures using the same underlying genetic variants depends on population history and the distribution of standing genetic variation at the metapopulation level. Studies of sticklebacks provide a case in point: when colonizing and adapting to freshwater habitats, three-spined sticklebacks (Gasterosteus aculeatus) with high gene flow tend to fix the same adaptive alleles in the same major loci, whereas nine-spined sticklebacks (Pungitius pungitius) with limited gene flow tend to utilize a more heterogeneous set of loci. In accordance with this, we report results of quantitative trait locus (QTL) analyses using a backcross design showing that lateral plate number variation in the western European nine-spined sticklebacks mapped to 3 moderate-effect QTL, contrary to the major-effect QTL in three-spined sticklebacks and different from the 4 QTL previously identified in the eastern European nine-spined sticklebacks. Furthermore, several QTL were identified associated with variation in lateral plate size, and 3 moderate-effect QTL with body size. Together, these findings indicate more heterogenous and polygenic genetic underpinnings of skeletal armour variation in nine-spined than three-spined sticklebacks, indicating limited genetic parallelism underlying armour trait evolution in the family Gasterostidae.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Petri Kemppainen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Chen
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pasi Rastas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antoine Fraimout
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Mee JA, Carson B, Yeaman S. Conditionally Deleterious Mutation Load Accumulates in Genomic Islands of Local Adaptation but Can Be Purged with Sufficient Genotypic Redundancy. Am Nat 2024; 204:43-54. [PMID: 38857343 DOI: 10.1086/730186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractLocal adaptation frequently evolves in patches or environments that are connected via migration. In these cases, genomic regions that are linked to a locally adapted locus experience reduced effective migration rates. Via individual-based simulations of a two-patch system, we show that this reduced effective migration results in the accumulation of conditionally deleterious mutations, but not universally deleterious mutations, adjacent to adaptive loci. When there is redundancy in the genetic basis of local adaptation (i.e., genotypic redundancy), turnover of locally adapted polymorphisms allows conditionally deleterious mutation load to be purged. The amount of mutational load that accumulates adjacent to locally adapted loci is dependent on redundancy, recombination rate, migration rate, population size, strength of selection, and the phenotypic effect size of adaptive alleles. Our results highlight the need to be cautious when interpreting patterns of local adaptation at the level of phenotype or fitness, as the genetic basis of local adaptation can be transient, and evolution may confer a degree of maladaptation to nonlocal environments.
Collapse
|
5
|
Venu V, Harjunmaa E, Dreau A, Brady S, Absher D, Kingsley DM, Jones FC. Fine-scale contemporary recombination variation and its fitness consequences in adaptively diverging stickleback fish. Nat Ecol Evol 2024; 8:1337-1352. [PMID: 38839849 PMCID: PMC11239493 DOI: 10.1038/s41559-024-02434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Despite deep evolutionary conservation, recombination rates vary greatly across the genome and among individuals, sexes and populations. Yet the impact of this variation on adaptively diverging populations is not well understood. Here we characterized fine-scale recombination landscapes in an adaptively divergent pair of marine and freshwater populations of threespine stickleback from River Tyne, Scotland. Through whole-genome sequencing of large nuclear families, we identified the genomic locations of almost 50,000 crossovers and built recombination maps for marine, freshwater and hybrid individuals at a resolution of 3.8 kb. We used these maps to quantify the factors driving variation in recombination rates. We found strong heterochiasmy between sexes but also differences in recombination rates among ecotypes. Hybrids showed evidence of significant recombination suppression in overall map length and in individual loci. Recombination rates were lower not only within individual marine-freshwater-adaptive loci, but also between loci on the same chromosome, suggesting selection on linked gene 'cassettes'. Through temporal sampling along a natural hybrid zone, we found that recombinants showed traits associated with reduced fitness. Our results support predictions that divergence in cis-acting recombination modifiers, whose functions are disrupted in hybrids, may play an important role in maintaining differences among adaptively diverging populations.
Collapse
Affiliation(s)
- Vrinda Venu
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Los Alamos National Laboratory, New Mexico, NM, USA.
| | - Enni Harjunmaa
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- CeGAT GmbH, Tübingen, Germany
| | - Andreea Dreau
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Evotec SE 'Campus Curie', Toulouse, France
| | - Shannon Brady
- Deptartment of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - David M Kingsley
- Deptartment of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Siddiqui R, Swank S, Ozark A, Joaquin F, Travis MP, McMahan CD, Bell MA, Stuart YE. Inferring the evolution of reproductive isolation in a lineage of fossil threespine stickleback, Gasterosteus doryssus. Proc Biol Sci 2024; 291:20240337. [PMID: 38628124 PMCID: PMC11021931 DOI: 10.1098/rspb.2024.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Darwin attributed the absence of species transitions in the fossil record to his hypothesis that speciation occurs within isolated habitat patches too geographically restricted to be captured by fossil sequences. Mayr's peripatric speciation model added that such speciation would be rapid, further explaining missing evidence of diversification. Indeed, Eldredge and Gould's original punctuated equilibrium model combined Darwin's conjecture, Mayr's model and 124 years of unsuccessfully sampling the fossil record for transitions. Observing such divergence, however, could illustrate the tempo and mode of evolution during early speciation. Here, we investigate peripatric divergence in a Miocene stickleback fish, Gasterosteus doryssus. This lineage appeared and, over approximately 8000 generations, evolved significant reduction of 12 of 16 traits related to armour, swimming and diet, relative to its ancestral population. This was greater morphological divergence than we observed between reproductively isolated, benthic-limnetic ecotypes of extant Gasterosteus aculeatus. Therefore, we infer that reproductive isolation was evolving. However, local extinction of G. doryssus lineages shows how young, isolated, speciating populations often disappear, supporting Darwin's explanation for missing evidence and revealing a mechanism behind morphological stasis. Extinction may also account for limited sustained divergence within the stickleback species complex and help reconcile speciation rate variation observed across time scales.
Collapse
Affiliation(s)
- Raheyma Siddiqui
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Samantha Swank
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Allison Ozark
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Franklin Joaquin
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Matthew P. Travis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA
| | | | - Michael A. Bell
- University of California Museum of Paleontology, Berkeley, CA, USA
| | - Yoel E. Stuart
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Lee G, Sanderson BJ, Ellis TJ, Dilkes BP, McKay JK, Ågren J, Oakley CG. A large-effect fitness trade-off across environments is explained by a single mutation affecting cold acclimation. Proc Natl Acad Sci U S A 2024; 121:e2317461121. [PMID: 38289961 PMCID: PMC10861903 DOI: 10.1073/pnas.2317461121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.
Collapse
Affiliation(s)
- Gwonjin Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Brian J. Sanderson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Thomas J. Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Brian P. Dilkes
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
| | - John K. McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO80523
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
8
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: the genomic basis of environmental adaptation in house mice ( Mus musculus domesticus) from the Americas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564674. [PMID: 37961195 PMCID: PMC10634997 DOI: 10.1101/2023.10.30.564674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Parallel clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in regulatory regions. Genes containing the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, and development or function of the eye as well as traits associated with the cardiovascular and renal systems. We then combined these results with published results from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects, providing strong evidence of parallel adaptation and identifying genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, United States of America
| |
Collapse
|
9
|
Sherpa S, Paris JR, Silva‐Rocha I, Di Canio V, Carretero MA, Ficetola GF, Salvi D. Genetic depletion does not prevent rapid evolution in island-introduced lizards. Ecol Evol 2023; 13:e10721. [PMID: 38034325 PMCID: PMC10682264 DOI: 10.1002/ece3.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Experimental introductions of species have provided some of the most tractable examples of rapid phenotypic changes, which may reflect plasticity, the impact of stochastic processes, or the action of natural selection. Yet to date, very few studies have investigated the neutral and potentially adaptive genetic impacts of experimental introductions. We dissect the role of these processes in shaping the population differentiation of wall lizards in three Croatian islands (Sušac, Pod Kopište, and Pod Mrčaru), including the islet of Pod Mrčaru, where experimentally introduced lizards underwent rapid (~30 generations) phenotypic changes associated with a shift from an insectivorous to a plant-based diet. Using a genomic approach (~82,000 ddRAD loci), we confirmed a founder effect during introduction and very low neutral genetic differentiation between the introduced population and its source. However, genetic depletion did not prevent rapid population growth, as the introduced lizards exhibited population genetic signals of expansion and are known to have reached a high density. Our genome-scan analysis identified just a handful of loci showing large allelic shifts between ecologically divergent populations. This low overall signal of selection suggests that the extreme phenotypic differences observed among populations are determined by a small number of large-effect loci and/or that phenotypic plasticity plays a major role in phenotypic changes. Nonetheless, functional annotation of the outlier loci revealed some candidate genes relevant to diet-induced adaptation, in agreement with the hypothesis of directional selection. Our study provides important insights on the evolutionary potential of bottlenecked populations in response to new selective pressures on short ecological timescales.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | - Josephine R. Paris
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'AmbienteUniversità degli Studi dell'AquilaL'Aquila‐CoppitoItaly
| | - Iolanda Silva‐Rocha
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Viola Di Canio
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
| | - Miguel Angel Carretero
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | | | - Daniele Salvi
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'AmbienteUniversità degli Studi dell'AquilaL'Aquila‐CoppitoItaly
| |
Collapse
|
10
|
James ME, Allsopp RN, Groh JS, Kaur A, Wilkinson MJ, Ortiz-Barrientos D. Uncovering the genetic architecture of parallel evolution. Mol Ecol 2023; 32:5575-5589. [PMID: 37740681 DOI: 10.1111/mec.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/25/2023]
Abstract
Identifying the genetic architecture underlying adaptive traits is exceptionally challenging in natural populations. This is because associations between traits not only mask the targets of selection but also create correlated patterns of genomic divergence that hinder our ability to isolate causal genetic effects. Here, we examine the repeated evolution of components of the auxin pathway that have contributed to the replicated loss of gravitropism (i.e. the ability of a plant to bend in response to gravity) in multiple populations of the Senecio lautus species complex in Australia. We use a powerful approach which combines parallel population genomics with association mapping in a Multiparent Advanced Generation Inter-Cross (MAGIC) population to break down genetic and trait correlations to reveal how adaptive traits evolve during replicated evolution. We sequenced auxin and shoot gravitropism-related gene regions in 80 individuals from six natural populations (three parallel divergence events) and 133 individuals from a MAGIC population derived from two of the recently diverged natural populations. We show that artificial tail selection on gravitropism in the MAGIC population recreates patterns of parallel divergence in the auxin pathway in the natural populations. We reveal a set of 55 auxin gene regions that have evolved repeatedly during the evolution of the species, of which 50 are directly associated with gravitropism divergence in the MAGIC population. Our work creates a strong link between patterns of genomic divergence and trait variation contributing to replicated evolution by natural selection, paving the way to understand the origin and maintenance of adaptations in natural populations.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Robin N Allsopp
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jeffrey S Groh
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Avneet Kaur
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
11
|
Matthews DG, Dial TR, Lauder GV. Genes, Morphology, Performance, and Fitness: Quantifying Organismal Performance to Understand Adaptive Evolution. Integr Comp Biol 2023; 63:843-859. [PMID: 37422435 DOI: 10.1093/icb/icad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
To understand the complexities of morphological evolution, we must understand the relationships between genes, morphology, performance, and fitness in complex traits. Genomicists have made tremendous progress in finding the genetic basis of many phenotypes, including a myriad of morphological characters. Similarly, field biologists have greatly advanced our understanding of the relationship between performance and fitness in natural populations. However, the connection from morphology to performance has primarily been studied at the interspecific level, meaning that in most cases we lack a mechanistic understanding of how evolutionarily relevant variation among individuals affects organismal performance. Therefore, functional morphologists need methods that will allow for the analysis of fine-grained intraspecific variation in order to close the path from genes to fitness. We suggest three methodological areas that we believe are well suited for this research program and provide examples of how each can be applied within fish model systems to build our understanding of microevolutionary processes. Specifically, we believe that structural equation modeling, biological robotics, and simultaneous multi-modal functional data acquisition will open up fruitful collaborations among biomechanists, evolutionary biologists, and field biologists. It is only through the combined efforts of all three fields that we will understand the connection between evolution (acting at the level of genes) and natural selection (acting on fitness).
Collapse
Affiliation(s)
- David G Matthews
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Terry R Dial
- Department of Biology and Ecology Center, Utah State University, Moab, UT 84322, USA
- Department of Environment and Society, Utah State University, Moab, UT 84322, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Mee JA, Yap E, Wuitchik DM. Pelvic spine reduction affects diet but not gill raker morphology in two polymorphic brook stickleback ( Culaea inconstans) populations. Ecol Evol 2023; 13:e10526. [PMID: 37720063 PMCID: PMC10500054 DOI: 10.1002/ece3.10526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
Pelvic spine polymorphism occurs in several species in the stickleback family (Gasterosteidae). Given the similar phenotypic polymorphisms in multiple stickleback species, we sought to determine the extent of parallelism in the ecological correlates of pelvic spine reduction. Based on a metabarcoding analysis of brook stickleback gut contents in two polymorphic populations, we found that significant diet differences were associated with pelvic spine reduction, but we found no clear or consistent trend supporting a tendency for benthic feeding in pelvic-reduced brook sticklebacks. These results contrast with those found in threespine sticklebacks where pelvic spine reduction is often associated with a benthic diet. Hence, we found non-parallel consequences of spine polymorphism across species. Furthermore, a difference in gill raker morphology has been frequently observed between ecomorphs with different diets in many fish species. However, we found no evidence of any difference in gill raker morphology associated with pelvic spine polymorphism in brook sticklebacks.
Collapse
Affiliation(s)
- Jonathan A. Mee
- Department of BiologyMount Royal UniversityCalgaryAlbertaCanada
| | - Emily Yap
- Department of BiologyMount Royal UniversityCalgaryAlbertaCanada
| | | |
Collapse
|
13
|
Foster BJ, McCulloch GA, Foster Y, Kroos GC, King TM, Waters JM. ebony underpins Batesian mimicry in melanic stoneflies. Mol Ecol 2023; 32:4986-4998. [PMID: 37503654 DOI: 10.1111/mec.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
The evolution of Batesian mimicry - whereby harmless species avoid predation through their resemblance to harmful species - has long intrigued biologists. In rare cases, Batesian mimicry is linked to intraspecific colour variation, in which only some individuals within a population resemble a noxious 'model'. Here, we assess intraspecific colour variation within a widespread New Zealand stonefly, wherein highly melanized individuals of Zelandoperla closely resemble a chemically defended aposematic stonefly, Austroperla cyrene. We assess convergence in the colour pattern of these two species, compare their relative palatability to predators, and use genome-wide association mapping to assess the genetic basis of this resemblance. Our analysis reveals that melanized Zelandoperla overlap significantly with Austroperla in colour space but are significantly more palatable to predators, implying that they are indeed Batesian mimics. Analysis of 194,773 genome-wide SNPs reveals an outlier locus (ebony) strongly differentiating melanic versus non-melanic Zelandoperla. Genotyping of 338 specimens from a single Zelandoperla population indicates that ebony explains nearly 70% of the observed variance in melanism. As ebony has a well-documented role in insect melanin biosynthesis, our findings indicate this locus has a conserved function across deeply divergent hexapod lineages. Distributional records suggest a link between the occurrence of melanic Zelandoperla and the forested ecosystems where the model Austroperla is abundant, suggesting the potential for adaptive shifts in this system underpinned by environmental change.
Collapse
Affiliation(s)
- Brodie J Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Yasmin Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Gracie C Kroos
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Tania M King
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
14
|
Neto C, Hancock A. Genetic Architecture of Flowering Time Differs Between Populations With Contrasting Demographic and Selective Histories. Mol Biol Evol 2023; 40:msad185. [PMID: 37603463 PMCID: PMC10461413 DOI: 10.1093/molbev/msad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Understanding the evolutionary factors that impact the genetic architecture of traits is a central goal of evolutionary genetics. Here, we investigate how quantitative trait variation accumulated over time in populations that colonized a novel environment. We compare the genetic architecture of flowering time in Arabidopsis populations from the drought-prone Cape Verde Islands and their closest outgroup population from North Africa. We find that trait polygenicity is severely reduced in the island populations compared to the continental North African population. Further, trait architectures and reconstructed allelic histories best fit a model of strong directional selection in the islands in accord with a Fisher-Orr adaptive walk. Consistent with this, we find that large-effect variants that disrupt major flowering time genes (FRI and FLC) arose first, followed by smaller effect variants, including ATX2 L125F, which is associated with a 4-day reduction in flowering time. The most recently arising flowering time-associated loci are not known to be directly involved in flowering time, consistent with an omnigenic signature developing as the population approaches its trait optimum. Surprisingly, we find no effect in the natural population of EDI-Cvi-0 (CRY2 V367M), an allele for which an effect was previously validated by introgression into a Eurasian line. Instead, our results suggest the previously observed effect of the EDI-Cvi-0 allele on flowering time likely depends on genetic background, due to an epistatic interaction. Altogether, our results provide an empirical example of the effects demographic history and selection has on trait architecture.
Collapse
Affiliation(s)
- Célia Neto
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hancock
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
15
|
Oakley CG, Schemske DW, McKay JK, Ågren J. Ecological genetics of local adaptation in Arabidopsis: An 8-year field experiment. Mol Ecol 2023; 32:4570-4583. [PMID: 37317048 DOI: 10.1111/mec.17045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade-offs? Here we address these questions in the self-pollinating, annual plant Arabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade-offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8-year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3-year study, identifying one new genetic trade-off and resolving one genetic trade-off into two conditionally adaptive QTL.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan, USA
| | - John K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Hoedjes KM, Kostic H, Flatt T, Keller L. A Single Nucleotide Variant in the PPARγ-homolog Eip75B Affects Fecundity in Drosophila. Mol Biol Evol 2023; 40:7005670. [PMID: 36703226 PMCID: PMC9922802 DOI: 10.1093/molbev/msad018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.
Collapse
Affiliation(s)
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
17
|
Yamaguchi R, Wiley B, Otto SP. The phoenix hypothesis of speciation. Proc Biol Sci 2022; 289:20221186. [PMID: 36382528 PMCID: PMC9667362 DOI: 10.1098/rspb.2022.1186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2023] Open
Abstract
Genetic divergence among allopatric populations builds reproductive isolation over time. This process is accelerated when populations face a changing environment that allows large-effect mutational differences to accumulate, but abrupt change also places populations at risk of extinction. Here we use simulations of Fisher's geometric model with explicit population dynamics to explore the genetic changes that occur in the face of environmental changes. Because evolutionary rescue leads to the fixation of mutations whose phenotypic effects are larger on average compared with populations not at risk of extinction, these mutations are thus more likely to lead to reproductive isolation. We refer to the formation of new species from the ashes of populations in decline as the phoenix hypothesis of speciation. The phoenix hypothesis predicts more substantial hybrid fitness breakdown among populations surviving a higher extinction risk. The hypothesis was supported when many loci underlie adaptation. With only a small number of potential rescue mutations, however, mutations that fixed in different populations were more likely to be identical, with such parallel changes reducing isolation. Consequently, reproductive isolation builds fastest in populations subject to an intermediate extinction risk, given a limited number of mutations available for adaptation.
Collapse
Affiliation(s)
- Ryo Yamaguchi
- Department of Advanced Transdisciplinary Science, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Bryn Wiley
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Sarah P. Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| |
Collapse
|
18
|
Westram AM, Stankowski S, Surendranadh P, Barton N. What is reproductive isolation? J Evol Biol 2022; 35:1143-1164. [PMID: 36063156 PMCID: PMC9542822 DOI: 10.1111/jeb.14005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Reproductive isolation (RI) is a core concept in evolutionary biology. It has been the central focus of speciation research since the modern synthesis and is the basis by which biological species are defined. Despite this, the term is used in seemingly different ways, and attempts to quantify RI have used very different approaches. After showing that the field lacks a clear definition of the term, we attempt to clarify key issues, including what RI is, how it can be quantified in principle, and how it can be measured in practice. Following other definitions with a genetic focus, we propose that RI is a quantitative measure of the effect that genetic differences between populations have on gene flow. Specifically, RI compares the flow of neutral alleles in the presence of these genetic differences to the flow without any such differences. RI is thus greater than zero when genetic differences between populations reduce the flow of neutral alleles between populations. We show how RI can be quantified in a range of scenarios. A key conclusion is that RI depends strongly on circumstances-including the spatial, temporal and genomic context-making it difficult to compare across systems. After reviewing methods for estimating RI from data, we conclude that it is difficult to measure in practice. We discuss our findings in light of the goals of speciation research and encourage the use of methods for estimating RI that integrate organismal and genetic approaches.
Collapse
Affiliation(s)
- Anja M. Westram
- IST AustriaKlosterneuburgAustria
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | | | | | | |
Collapse
|
19
|
Abstract
Speciation is the process by which barriers to gene flow evolve between populations. Although we now know that speciation is largely driven by natural selection, knowledge of the agents of selection and the genetic and genomic mechanisms that facilitate divergence is required for a satisfactory theory of speciation. In this essay, we highlight three advances/problems in our understanding of speciation that have arisen from studies of the genes and genomic regions that underlie the evolution of reproductive isolation. First, we describe how the identification of “speciation” genes makes it possible to identify the agents of selection causing the evolution of reproductive isolation, while also noting that the link between the genetics of phenotypic divergence and intrinsic postzygotic reproductive barriers remains tenuous. Second, we discuss the important role of recombination suppressors in facilitating speciation with gene flow, but point out that the means and timing by which reproductive barriers become associated with recombination cold spots remains uncertain. Third, we establish the importance of ancient genetic variation in speciation, although we argue that the focus of speciation studies on evolutionarily young groups may bias conclusions in favor of ancient variation relative to new mutations.
Collapse
|
20
|
Abstract
The rediscovery of Mendel’s work showing that the heredity of phenotypes is controlled by discrete genes was followed by the reconciliation of Mendelian genetics with evolution by natural selection in the middle of the last century with the Modern Synthesis. In the past two decades, dramatic advances in genomic methods have facilitated the identification of the loci, genes, and even individual mutations that underlie phenotypic variants that are the putative targets of natural selection. Moreover, these methods have also changed how we can study adaptation by flipping the problem around, allowing us to first examine what loci show evidence of having been under selection, and then connecting these genetic variants to phenotypic variation. As a result, we now have an expanding list of actual genetic changes that underlie potentially adaptive phenotypic variation. Here, we synthesize how considering the effects of these adaptive loci in the context of cellular environments, genomes, organisms, and populations has provided new insights to the genetic architecture of adaptation.
Collapse
|
21
|
Villoutreix R, de Carvalho CF, Gompert Z, Parchman TL, Feder JL, Nosil P. Testing for fitness epistasis in a transplant experiment identifies a candidate adaptive locus in Timema stick insects. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200508. [PMID: 35634927 PMCID: PMC9149791 DOI: 10.1098/rstb.2020.0508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/18/2021] [Indexed: 07/20/2023] Open
Abstract
Identifying the genetic basis of adaptation is a central goal of evolutionary biology. However, identifying genes and mutations affecting fitness remains challenging because a large number of traits and variants can influence fitness. Selected phenotypes can also be difficult to know a priori, complicating top-down genetic approaches for trait mapping that involve crosses or genome-wide association studies. In such cases, experimental genetic approaches, where one maps fitness directly and attempts to infer the traits involved afterwards, can be valuable. Here, we re-analyse data from a transplant experiment involving Timema stick insects, where five physically clustered single-nucleotide polymorphisms associated with cryptic body coloration were shown to interact to affect survival. Our analysis covers a larger genomic region than past work and revealed a locus previously not identified as associated with survival. This locus resides near a gene, Punch (Pu), involved in pteridine pigments production, implying that it could be associated with an unmeasured coloration trait. However, by combining previous and newly obtained phenotypic data, we show that this trait is not eye or body coloration. We discuss the implications of our results for the discovery of traits, genes and mutations associated with fitness in other systems, as well as for supergene evolution. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Romain Villoutreix
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier 34293, France
| | | | | | | | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier 34293, France
| |
Collapse
|
22
|
Aguirre WE, Reid K, Rivera J, Heins DC, Veeramah KR, Bell MA. Freshwater Colonization, Adaptation, and Genomic Divergence in Threespine Stickleback. Integr Comp Biol 2022; 62:388-405. [PMID: 35660873 PMCID: PMC9405723 DOI: 10.1093/icb/icac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
The Threespine Stickleback is ancestrally a marine fish, but many marine populations breed in fresh water (i.e., are anadromous), facilitating their colonization of isolated freshwater habitats a few years after they form. Repeated adaptation to fresh water during at least 10 My and continuing today has led to Threespine Stickleback becoming a premier system to study rapid adaptation. Anadromous and freshwater stickleback breed in sympatry and may hybridize, resulting in introgression of freshwater-adaptive alleles into anadromous populations, where they are maintained at low frequencies as ancient standing genetic variation. Anadromous stickleback have accumulated hundreds of freshwater-adaptive alleles that are disbursed as few loci per marine individual and provide the basis for adaptation when they colonize fresh water. Recent whole-lake experiments in lakes around Cook Inlet, Alaska have revealed how astonishingly rapid and repeatable this process is, with the frequency of 40% of the identified freshwater-adaptive alleles increasing from negligible (∼1%) in the marine founder to ≥50% within ten generations in fresh water, and freshwater phenotypes evolving accordingly. These high rates of genomic and phenotypic evolution imply very intense directional selection on phenotypes of heterozygotes. Sexual recombination rapidly assembles freshwater-adaptive alleles that originated in different founders into multilocus freshwater haplotypes, and regions important for adaptation to freshwater have suppressed recombination that keeps advantageous alleles linked within large haploblocks. These large haploblocks are also older and appear to have accumulated linked advantageous mutations. The contemporary evolution of Threespine Stickleback has provided broadly applicable insights into the mechanisms that facilitate rapid adaptation.
Collapse
Affiliation(s)
- Windsor E Aguirre
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Kerry Reid
- School of Biological Sciences, Area of Ecology and Biodiversity, University of Hong Kong, Hong Kong, SAR, China.,Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jessica Rivera
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - David C Heins
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans 70118, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Li Q, Lindtke D, Rodríguez-Ramírez C, Kakioka R, Takahashi H, Toyoda A, Kitano J, Ehrlich RL, Chang Mell J, Yeaman S. Local Adaptation and the Evolution of Genome Architecture in Threespine Stickleback. Genome Biol Evol 2022; 14:6589818. [PMID: 35594844 PMCID: PMC9178229 DOI: 10.1093/gbe/evac075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Theory predicts that local adaptation should favor the evolution of a concentrated genetic architecture, where the alleles driving adaptive divergence are tightly clustered on chromosomes. Adaptation to marine versus freshwater environments in threespine stickleback has resulted in an architecture that seems consistent with this prediction: divergence among populations is mainly driven by a few genomic regions harboring multiple quantitative trait loci for environmentally adapted traits, as well as candidate genes with well-established phenotypic effects. One theory for the evolution of these "genomic islands" is that rearrangements remodel the genome to bring causal loci into tight proximity, but this has not been studied explicitly. We tested this theory using synteny analysis to identify micro- and macro-rearrangements in the stickleback genome and assess their potential involvement in the evolution of genomic islands. To identify rearrangements, we conducted a de novo assembly of the closely related tubesnout (Aulorhyncus flavidus) genome and compared this to the genomes of threespine stickleback and two other closely related species. We found that small rearrangements, within-chromosome duplications, and lineage-specific genes (LSGs) were enriched around genomic islands, and that all three chromosomes harboring large genomic islands have experienced macro-rearrangements. We also found that duplicates and micro-rearrangements are 9.9× and 2.9× more likely to involve genes differentially expressed between marine and freshwater genotypes. While not conclusive, these results are consistent with the explanation that strong divergent selection on candidate genes drove the recruitment of rearrangements to yield clusters of locally adaptive loci.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Canada T2N 1N4
| | - Dorothea Lindtke
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Canada T2N 1N4
| | - Carlos Rodríguez-Ramírez
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Nakagami-gun, Okinawa 903-0213, Japan
| | - Hiroshi Takahashi
- National Fisheries University, 2-7-1 Nagata-honmachi, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Rachel L Ehrlich
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia 19102, PA, USA
| | - Joshua Chang Mell
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia 19102, PA, USA
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Canada T2N 1N4
| |
Collapse
|
24
|
Font-Porterias N, McNelis MG, Comas D, Hlusko LJ. Evidence of selection in the ectodysplasin pathway among endangered aquatic mammals. Integr Org Biol 2022; 4:obac018. [PMID: 35874492 PMCID: PMC9299678 DOI: 10.1093/iob/obac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
Synopsis The ectodysplasin pathway has been a target of evolution repeatedly. Genetic variation in the key genes of this pathway (EDA, EDAR, and EDARADD) results in a rich source of pleiotropic effects across ectodermally-derived structures, including teeth, hair, sweat glands, and mammary glands. In addition, a non-canonical Wnt pathway has a very similar functional role, making variation in the WNT10A gene also of evolutionary significance. The adaptation of mammals to aquatic environments has occurred independently in at least 4 orders, whose species occupy a wide geographic range (from equatorial to polar regions) and exhibit great phenotypic variation in ectodermally-derived structures, including the presence or absence of fur and extreme lactational strategies. The role of the ectodysplasin pathway in the adaptation to aquatic environments has been never explored in mammalian species. In the present study, we analyze the genetic variation in orthologous coding sequences from EDA, EDAR, EDARADD, and WNT10A genes together with ectodermally-derived phenotypic variation from 34 aquatic and non-aquatic mammalian species to assess signals of positive selection, gene-trait coevolution, and genetic convergence. Our study reveals strong evidence of positive selection in a proportion of coding sites in EDA and EDAR genes in 3 endangered aquatic mammals (the Hawaiian monk seal, the Yangtze finless porpoise, and the sea otter). We hypothesize functional implications potentially related to the adaptation to the low-latitude aquatic environment in the Hawaiian monk seal and the freshwater in the Yangtze finless porpoise. The signal in the sea otter is likely the result of an increased genetic drift after an intense bottleneck and reduction of genetic diversity. Besides positive selection, we have not detected robust signals of gene-trait coevolution or convergent amino acid shifts in the ectodysplasin pathway associated with shared phenotypic traits among aquatic mammals. This study provides new evidence of the evolutionary role of the ectodysplasin pathway and encourages further investigation, including functional studies, to fully resolve its relationship with mammalian aquatic adaptation. Spanish La vía de la ectodisplasina ha sido objeto de la evolución repetidamente. La variación genética en los principales genes de esta vía (EDA, EDAR y EDARADD) da como resultado una gran diversidad de efectos pleiotrópicos en las estructuras derivadas del ectodermo, incluidos los dientes, el cabello, las glándulas sudoríparas y las glándulas mamarias. Además, una vía wnt no canónica tiene un papel funcional muy similar, por lo que la variación en el gen WNT10A también tiene importancia evolutiva. La adaptación de los mamíferos a los entornes acuáticos se ha producido de forma independiente en al menos cuatro órdenes, cuyas especies ocupan un amplio rango geográfico (desde regiones ecuatoriales a polares) y presentan una gran variación fenotípica en las estructuras derivadas del ectodermo, incluyendo la presencia o ausencia de pelaje y estrategias de lactancia muy diferentes. El papel de la vía de la ectodisplasina en la adaptación a entornos acuáticos no se ha explorado nunca en especies de mamíferos. En este estudio, analizamos la variación genética en las secuencias codificantes ortólogas de los genes EDA, EDAR, EDARADD y WNT10A junto con la variación fenotípica derivada del ectodermo de 34 especies de mamíferos acuáticos y no acuáticos para evaluar señales de selección positiva, coevolución gen-rasgo y convergencia genética. Nuestro estudio revela señales de selección positiva en regiones de las secuencias codificantes de los genes EDA y EDAR en tres mamíferos acuáticos en peligro de extinción (la foca monje de Hawái, la marsopa lisa y la nutria marina). Estas señales podrían tener implicaciones funcionales potencialmente relacionadas con la adaptación al entorno acuático de baja latitud en la foca monje de Hawái y el agua dulce en la marsopa lisa. La señal en la nutria marina es probablemente el resultado de una mayor deriva genética tras un intenso un cuello de botella y una reducción de la diversidad genética. A parte de selección positiva, no hemos detectado señales sólidas de coevolución gen-rasgo o cambios convergentes de aminoácidos en la vía de la ectodisplasina asociados a rasgos fenotípicos compartidos entre mamíferos acuáticos. Este estudio proporciona nuevas evidencias del papel evolutivo de la vía de la ectodisplasina y quiere promover futuras investigaciones con estudios funcionales para acabar de resolver la relación de esta vía con la adaptación acuática de los mamíferos.
Collapse
Affiliation(s)
- Neus Font-Porterias
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Institut de Biologia Evolutiva (UPF-CSIC) , Barcelona , Spain
| | - Madeline G McNelis
- Department of Integrative Biology, University of California Berkeley , California , USA
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Institut de Biologia Evolutiva (UPF-CSIC) , Barcelona , Spain
| | - Leslea J Hlusko
- Department of Integrative Biology, University of California Berkeley , California , USA
- National Research Center on Human Evolution (CENIEH) , Burgos , Spain
| |
Collapse
|
25
|
Patton AH, Richards EJ, Gould KJ, Buie LK, Martin CH. Hybridization alters the shape of the genotypic fitness landscape, increasing access to novel fitness peaks during adaptive radiation. eLife 2022; 11:e72905. [PMID: 35616528 PMCID: PMC9135402 DOI: 10.7554/elife.72905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/14/2022] [Indexed: 12/30/2022] Open
Abstract
Estimating the complex relationship between fitness and genotype or phenotype (i.e. the adaptive landscape) is one of the central goals of evolutionary biology. However, adaptive walks connecting genotypes to organismal fitness, speciation, and novel ecological niches are still poorly understood and processes for surmounting fitness valleys remain controversial. One outstanding system for addressing these connections is a recent adaptive radiation of ecologically and morphologically novel pupfishes (a generalist, molluscivore, and scale-eater) endemic to San Salvador Island, Bahamas. We leveraged whole-genome sequencing of 139 hybrids from two independent field fitness experiments to identify the genomic basis of fitness, estimate genotypic fitness networks, and measure the accessibility of adaptive walks on the fitness landscape. We identified 132 single nucleotide polymorphisms (SNPs) that were significantly associated with fitness in field enclosures. Six out of the 13 regions most strongly associated with fitness contained differentially expressed genes and fixed SNPs between trophic specialists; one gene (mettl21e) was also misexpressed in lab-reared hybrids, suggesting a potential intrinsic genetic incompatibility. We then constructed genotypic fitness networks from adaptive alleles and show that scale-eating specialists are the most isolated of the three species on these networks. Intriguingly, introgressed and de novo variants reduced fitness landscape ruggedness as compared to standing variation, increasing the accessibility of genotypic fitness paths from generalist to specialists. Our results suggest that adaptive introgression and de novo mutations alter the shape of the fitness landscape, providing key connections in adaptive walks circumventing fitness valleys and triggering the evolution of novelty during adaptive radiation.
Collapse
Affiliation(s)
- Austin H Patton
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| | - Emilie J Richards
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| | - Katelyn J Gould
- Department of Biology, University of North CarolinaChapel HillUnited States
| | - Logan K Buie
- Department of Biology, University of North CarolinaChapel HillUnited States
| | - Christopher H Martin
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Museum of Vertebrate Zoology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
26
|
Chhina AK, Thompson KA, Schluter D. Adaptive divergence and the evolution of hybrid trait mismatch in threespine stickleback. Evol Lett 2022; 6:34-45. [PMID: 35127136 PMCID: PMC8802241 DOI: 10.1002/evl3.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/31/2021] [Indexed: 12/31/2022] Open
Abstract
Selection against mismatched traits in hybrids is the phenotypic analogue of intrinsic hybrid incompatibilities. Mismatch occurs when hybrids resemble one parent population for some phenotypic traits and the other parent population for other traits, and is caused by dominance in opposing directions or from segregation of alleles in recombinant hybrids. In this study, we used threespine stickleback fish (Gasterosteus aculeatus L.) to test the theoretical prediction that trait mismatch in hybrids should increase with the magnitude of phenotypic divergence between parent populations. We measured morphological traits in parents and hybrids in crosses between a marine population representing the ancestral form and twelve freshwater populations that have diverged from this ancestral state to varying degrees according to their environments. We found that trait mismatch was greater in more divergent crosses for both F1 and F2 hybrids. In the F1, the divergence–mismatch relationship was caused by traits having dominance in different directions, whereas it was caused by increasing segregating phenotypic variation in the F2. Our results imply that extrinsic hybrid incompatibilities accumulate as phenotypic divergence proceeds.
Collapse
Affiliation(s)
- Avneet K. Chhina
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
27
|
Yeaman S. Evolution of polygenic traits under global vs local adaptation. Genetics 2022; 220:iyab134. [PMID: 35134196 PMCID: PMC8733419 DOI: 10.1093/genetics/iyab134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Observations about the number, frequency, effect size, and genomic distribution of alleles associated with complex traits must be interpreted in light of evolutionary process. These characteristics, which constitute a trait's genetic architecture, can dramatically affect evolutionary outcomes in applications from agriculture to medicine, and can provide a window into how evolution works. Here, I review theoretical predictions about the evolution of genetic architecture under spatially homogeneous, global adaptation as compared with spatially heterogeneous, local adaptation. Due to the tension between divergent selection and migration, local adaptation can favor "concentrated" genetic architectures that are enriched for alleles of larger effect, clustered in a smaller number of genomic regions, relative to expectations under global adaptation. However, the evolution of such architectures may be limited by many factors, including the genotypic redundancy of the trait, mutation rate, and temporal variability of environment. I review the circumstances in which predictions differ for global vs local adaptation and discuss where progress can be made in testing hypotheses using data from natural populations and lab experiments. As the field of comparative population genomics expands in scope, differences in architecture among traits and species will provide insights into how evolution works, and such differences must be interpreted in light of which kind of selection has been operating.
Collapse
Affiliation(s)
- Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
28
|
Thompson KA, Peichel CL, Rennison DJ, McGee MD, Albert AYK, Vines TH, Greenwood AK, Wark AR, Brandvain Y, Schumer M, Schluter D. Analysis of ancestry heterozygosity suggests that hybrid incompatibilities in threespine stickleback are environment dependent. PLoS Biol 2022; 20:e3001469. [PMID: 35007278 PMCID: PMC8746713 DOI: 10.1371/journal.pbio.3001469] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are "intrinsic," meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse-albeit indirect-signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.
Collapse
Affiliation(s)
- Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| | - Catherine L. Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diana J. Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Matthew D. McGee
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Timothy H. Vines
- DataSeer Research Data Services, Vancouver, British Columbia, Canada
| | | | - Abigail R. Wark
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Maryland, United States of America
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
29
|
Gompert Z, Feder JL, Nosil P. Natural selection drives genome-wide evolution via chance genetic associations. Mol Ecol 2021; 31:467-481. [PMID: 34704650 DOI: 10.1111/mec.16247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Understanding selection's impact on the genome is a major theme in biology. Functionally neutral genetic regions can be affected indirectly by natural selection, via their statistical association with genes under direct selection. The genomic extent of such indirect selection, particularly across loci not physically linked to those under direct selection, remains poorly understood, as does the time scale at which indirect selection occurs. Here, we use field experiments and genomic data in stick insects, deer mice and stickleback fish to show that widespread statistical associations with genes known to affect fitness cause many genetic loci across the genome to be impacted indirectly by selection. This includes regions physically distant from those directly under selection. Then, focusing on the stick insect system, we show that statistical associations between SNPs and other unknown, causal variants result in additional indirect selection in general and specifically within genomic regions of physically linked loci. This widespread indirect selection necessarily makes aspects of evolution more predictable. Thus, natural selection combines with chance genetic associations to affect genome-wide evolution across linked and unlinked loci and even in modest-sized populations. This process has implications for the application of evolutionary principles in basic and applied science.
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, Utah, USA.,Ecology Center, Utah State University, Logan, Utah, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
30
|
Connallon T, Hodgins KA. Allen Orr and the genetics of adaptation. Evolution 2021; 75:2624-2640. [PMID: 34606622 DOI: 10.1111/evo.14372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023]
Abstract
Over most of the 20th century, evolutionary biologists predominantly subscribed to a strong form of "micro-mutationism," in which adaptive phenotypic divergence arises from allele frequency changes at many loci, each with a small effect on the phenotype. To be sure, there were well-known examples of large-effect alleles contributing to adaptation, yet such cases were generally regarded as atypical and unrepresentative of evolutionary change in general. In 1998, Allen Orr published a landmark theoretical paper in Evolution, which showed that both small- and large-effect mutations are likely to contribute to "adaptive walks" of a population to an optimum. Coupled with a growing set of empirical examples of large-effect alleles contributing to divergence (e.g., from QTL studies), Orr's paper provided a mathematical formalism that converted many evolutionary biologists from micro-mutationism to a more pluralistic perspective on the genetic basis of evolutionary change. We revisit the theoretical insights emerging from Orr's paper within the historical context leading up to 1998, and track the influence of this paper on the field of evolutionary biology through an examination of its citations over the last two decades and an analysis of the extensive body of theoretical and empirical research that Orr's pioneering paper inspired.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Abstract
The repeated adaptation of oceanic threespine sticklebacks to fresh water has made it a premier organism to study parallel evolution. These small fish have multiple distinct ecotypes that display a wide range of diverse phenotypic traits. Ecotypes are easily crossed in the laboratory, and families are large and develop quickly enough for quantitative trait locus analyses, positioning the threespine stickleback as a versatile model organism to address a wide range of biological questions. Extensive genomic resources, including linkage maps, a high-quality reference genome, and developmental genetics tools have led to insights into the genomic basis of adaptation and the identification of genomic changes controlling traits in vertebrates. Recently, threespine sticklebacks have been used as a model system to identify the genomic basis of highly complex traits, such as behavior and host-microbiome and host-parasite interactions. We review the latest findings and new avenues of research that have led the threespine stickleback to be considered a supermodel of evolutionary genomics.
Collapse
Affiliation(s)
- Kerry Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Michael A Bell
- University of California Museum of Paleontology, Berkeley, California 94720, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
32
|
Roberts Kingman GA, Vyas DN, Jones FC, Brady SD, Chen HI, Reid K, Milhaven M, Bertino TS, Aguirre WE, Heins DC, von Hippel FA, Park PJ, Kirch M, Absher DM, Myers RM, Di Palma F, Bell MA, Kingsley DM, Veeramah KR. Predicting future from past: The genomic basis of recurrent and rapid stickleback evolution. SCIENCE ADVANCES 2021; 7:7/25/eabg5285. [PMID: 34144992 PMCID: PMC8213234 DOI: 10.1126/sciadv.abg5285] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/05/2021] [Indexed: 05/30/2023]
Abstract
Similar forms often evolve repeatedly in nature, raising long-standing questions about the underlying mechanisms. Here, we use repeated evolution in stickleback to identify a large set of genomic loci that change recurrently during colonization of freshwater habitats by marine fish. The same loci used repeatedly in extant populations also show rapid allele frequency changes when new freshwater populations are experimentally established from marine ancestors. Marked genotypic and phenotypic changes arise within 5 years, facilitated by standing genetic variation and linkage between adaptive regions. Both the speed and location of changes can be predicted using empirical observations of recurrence in natural populations or fundamental genomic features like allelic age, recombination rates, density of divergent loci, and overlap with mapped traits. A composite model trained on these stickleback features can also predict the location of key evolutionary loci in Darwin's finches, suggesting that similar features are important for evolution across diverse taxa.
Collapse
Affiliation(s)
- Garrett A Roberts Kingman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Deven N Vyas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring, Tübingen, Germany
| | - Shannon D Brady
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Kerry Reid
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Mark Milhaven
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Thomas S Bertino
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| | - Windsor E Aguirre
- Department of Biological Sciences, DePaul University, Chicago, IL 60614-3207, USA
| | - David C Heins
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
| | - Peter J Park
- Department of Biology, Farmingdale State College, Farmingdale, NY 11735-1021, USA
| | - Melanie Kirch
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring, Tübingen, Germany
| | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Federica Di Palma
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA.
| |
Collapse
|
33
|
Profile of Dolph Schluter. Proc Natl Acad Sci U S A 2021; 118:2025630118. [PMID: 33431698 DOI: 10.1073/pnas.2025630118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Profile of David M. Kingsley. Proc Natl Acad Sci U S A 2021; 118:2025633118. [PMID: 33431699 DOI: 10.1073/pnas.2025633118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|