1
|
Borah ST, Mondal A, Das B, Saha S, Das Sarma J, Gupta P. β-Cyclodextrin Encapsulated Platinum(II)-Based Nanoparticles: Photodynamic Therapy and Inhibition of the NF-κB Signaling Pathway in Glioblastoma. ACS APPLIED BIO MATERIALS 2025. [PMID: 40148119 DOI: 10.1021/acsabm.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This study explores cell death through photodynamic therapy (PDT) with β-cyclodextrin-encapsulated platinum(II)-based nanoparticles (Pt-NPs) and the effect on the NF-κB and stress pathways in glioblastoma. The encapsulation of the cyclometalated Pt(II) complex Pt(LL') within β-cyclodextrin (β-CD) enhances its biocompatibility, improves cellular penetration, and boosts emission, thereby increasing the effectiveness of PDT. Both Pt(LL') and Pt-NPs show minimal toxicity in the dark; however, Pt-NPs significantly increase toxicity toward glioblastoma Kr158 cells upon irradiation at 390 nm. The PDT-induced cell death is further validated through apoptosis assays and the modulation of some key survival pathways like NF-κB/p65, DJ-1, and ERp29. This is the first report of β-cyclodextrin-encapsulated platinum(II)-based nanoparticles designed to target glioblastoma cells through PDT, offering a promising strategy for enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Sakira Tabassum Borah
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Anushka Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Sanchari Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| |
Collapse
|
2
|
Caban M, Fronik P, Terenzi A, Federa A, Bormio Nunes JH, Pitek R, Kirchhofer D, Schueffl HH, Berger W, Keppler BK, Kowol CR, Heffeter P. A new fluorescent oxaliplatin(iv) complex with EGFR-inhibiting properties for the treatment of drug-resistant cancer cells. Inorg Chem Front 2025; 12:1538-1552. [PMID: 39801772 PMCID: PMC11715172 DOI: 10.1039/d4qi03025g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment. To enhance the tolerability of this combination, we designed a novel multi-action oxaliplatin-based platinum(iv) complex with an EGFR-inhibiting moiety (KP2749). KP2749 releases two independent cytotoxic agents upon reduction: oxaliplatin and the EGFR inhibitor KP2187, which was selected for its strong intrinsic fluorescence that became quenched upon complexation to metal ions. In particular, KP2749 demonstrated high stability and specific KP2187 release, with quenched fluorescent properties in its intact form, facilitating the investigation of its intracellular reduction. Notably, by exploiting its fluorescence, we demonstrated that intact KP2749 itself exhibited EGFR-inhibitory properties. Furthermore, subsequent experiments indicated that our complex was able to overcome resistance to oxaliplatin and EGFR inhibitors in vitro and in xenograft models in vivo. These effects were not only based on EGFR inhibition and DNA damage, but also improved cellular drug uptake. Finally, in silico docking analysis confirmed that the intact KP2749 complex had EGFR-binding properties, which were different from free KP2187. Consequently, these data suggested that the coordination of EGFR inhibitors to metal cores (like platinum) allow the fine-tuning of their EGFR-targeting properties. In conclusion, this study not only presents a new potential anticancer drug but also offers a novel fluorescent tool to study the intracellular drug release kinetics of platinum(iv) complexes.
Collapse
Affiliation(s)
- Monika Caban
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Philipp Fronik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze Ed. 17 90128 Palermo Italy
| | - Anja Federa
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Vienna Doctoral School in Chemistry, University of Vienna Waehringer Strasse 42 1090 Vienna Austria
| | - Julia H Bormio Nunes
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
| | - Rastislav Pitek
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Dominik Kirchhofer
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Hemma H Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| |
Collapse
|
3
|
Wulfmeier K, Cheng MHY, Cai Z, Terry SYA, Abbate V, Blower PJ, Zheng G, Reilly RM. Synthesis and Characterization of Thallium-Texaphyrin Nanoparticles and Their Assessment as Potential Delivery Systems for Auger Electron-Emitting 201Tl to Cancer Cells. Mol Pharm 2025; 22:242-254. [PMID: 39681352 PMCID: PMC11707725 DOI: 10.1021/acs.molpharmaceut.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Thallium-201 is an Auger electron-emitting radionuclide with significant potential for targeted molecular radiotherapy of cancer. It stands out among other Auger electron emitters by releasing approximately 37 Auger and Coster-Kronig electrons per decay, which is one of the highest numbers in its category. It has also a convenient half-life of 73 h, a stable daughter product, established production methods, and demonstrated high in vitro radiotoxicity. However, its full potential in targeted radiotherapy remains unexplored, primarily due to the lack of available efficient chelators for [201Tl]Tl+ or [201Tl]Tl3+. This study aims to assess texaphyrin for macrocycle chelation of [201Tl]Tl3+. Texaphyrins are known for effective binding of trivalent metals with similar ionic radii, such as indium and gadolinium. Optimization of [201Tl]Tl+ to [201Tl]Tl3+ oxidation and subsequent chelation with texaphyrin-lipid conjugate were assessed using thin-layer chromatography. The formation and stability of nonradioactive Tl-texaphyrin-lipid complexes were confirmed by UV-Vis spectroscopy and ultrahigh performance liquid chromatography-mass spectrometry. [201Tl]Tl/Tl-texaphyrin-lipid nanoparticles (nanotexaphyrins) were assembled by using a microfluidic system, and their morphology and stability were evaluated by using dynamic light scattering and transmission electron microscopy. The uptake of these nanotexaphyrins in lung cancer and ovarian cancer cells was evaluated using both radioactive and nonradioactive methods. The conversion of [201Tl]Tl+ to [201Tl]Tl3+ in 0.25 M HCl achieved an average yield of 91.8 ± 3.1%, while the highest radiolabeling yield of the texaphyrin-lipid with [201Tl]Tl3+ was 25.5 ± 4.5%. Tl-texaphyrin-lipid conjugates were stable at room temperature for at least 72 h. These conjugates were successfully assembled into homogeneous nanotexaphyrins with an average hydrodynamic diameter of 147.4 ± 1.4 nm. Throughout a 72 h period, no changes in size or polydispersity of the synthesized nanoparticles were observed. [201Tl]Tl-nanotexaphyrins were synthesized with an average radiochemical purity of 77.4 ± 10.3% and a yield of 5.1 ± 4.4%. The release of [201Tl]Tl+ from [201Tl]Tl-nanotexaphyrins in phosphate-buffered saline exhibited a time- and temperature-dependent pattern, with a faster release observed at 37 °C than at room temperature. Additionally, the uptake of Tl-nanotexaphyrins and [201Tl]Tl-nanotexaphyrins in cancer cells was similar to that of unbound Tl+ and [201Tl]Tl+. This is the first time that texaphyrins have been investigated as chelators for radiothallium. Although [201Tl]Tl-nanotexaphyrins were found to be thermodynamically and kinetically unstable, we successfully synthesized stable texaphyrin-lipid complexes with natTl3+. This opens up opportunities for further refinements in the nanotexaphyrin-lipid structure to enhance [201Tl]Tl3+ stability and prevent its reduction to a 1+ oxidation state. Future research should consider further modifications to the texaphyrin structure or using texaphyrins without the lipid component.
Collapse
Affiliation(s)
- Katarzyna
M. Wulfmeier
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, U.K.
| | - Miffy H. Y. Cheng
- Princess
Margaret Cancer Centre, University Health
Network, Toronto M5G 1L7, Canada
| | - Zhongli Cai
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 1A1, Canada
| | - Samantha Y. A. Terry
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, U.K.
| | - Vincenzo Abbate
- Institute
of Pharmaceutical Sciences, King’s
College London, London SE19NH, U.K.
| | - Philip J. Blower
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, U.K.
| | - Gang Zheng
- Princess
Margaret Cancer Centre, University Health
Network, Toronto M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada
| | - Raymond M. Reilly
- Princess
Margaret Cancer Centre, University Health
Network, Toronto M5G 1L7, Canada
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 1A1, Canada
- Department
of Medical Imaging, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
4
|
Marsh JW, Hacker L, Huang S, Boulet MHC, White JRG, Martin LAW, Yeomans MA, Han HH, Diez-Perez I, Musgrave RA, Hammond EM, Sedgwick AC. Fluorogenic platinum(IV) complexes as potential predictors for the design of hypoxia-activated platinum(IV) prodrugs. Dalton Trans 2024; 53:14811-14816. [PMID: 39169877 DOI: 10.1039/d4dt02173h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hypoxia (low-oxygen) is one of the most common characteristics of solid tumours. Exploiting tumour hypoxia to reductively activate Pt(IV) prodrugs has the potential to deliver toxic Pt(II) selectively and thus overcome the systemic toxicity issues of traditional Pt(II) therapies. However, our current understanding of the behaviour of Pt(IV) prodrugs in hypoxia is limited. Here, we evaluated and compared the aryl carbamate fluorogenic Pt(IV) complexes, CisNap and CarboNap, as well as the previously reported OxaliNap, as potential hypoxia-activated Pt(IV) (HAPt) prodrugs. Low intracellular oxygen concentrations (<0.1%) induced the greatest changes in the respective fluorescence emission channels. However, no correlation between reduction under hypoxic conditions and toxicity was observed, except in the case for CarboNap, which displayed significant hypoxia-dependent toxicity. Other aryl carbamate Pt(IV) derivatives (including non-fluorescent analogues) mirrored these observations, where carboplatin(IV) derivative CarboPhen displayed a hypoxia-selective cytotoxicity similar to that of CarboNap. These findings underscore the need to perform extensive structure activity relationship studies on the cytotoxicity of Pt(IV) complexes under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Jevon W Marsh
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Lina Hacker
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Shitong Huang
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Marie H C Boulet
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jhanelle R G White
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Louise A W Martin
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Megan A Yeomans
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Hai-Hao Han
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Ismael Diez-Perez
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Rebecca A Musgrave
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Ester M Hammond
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| |
Collapse
|
5
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Ferrari G, Lopez-Martinez I, Wanek T, Kuntner C, Montagner D. Recent Advances on Pt-Based Compounds for Theranostic Applications. Molecules 2024; 29:3453. [PMID: 39124859 PMCID: PMC11313463 DOI: 10.3390/molecules29153453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Since the discovery of cisplatin's antitumoral activity and its approval as an anticancer drug, significant efforts have been made to enhance its physiological stability and anticancer efficacy and to reduce its side effects. With the rapid development of targeted and personalized therapies, and the promising theranostic approach, platinum drugs have found new opportunities in more sophisticated systems. Theranostic agents combine diagnostic and therapeutic moieties in one scaffold, enabling simultaneous disease monitoring, therapy delivery, response tracking, and treatment efficacy evaluation. In these systems, the platinum core serves as the therapeutic agent, while the functionalized ligand provides diagnostic tools using various imaging techniques. This review aims to highlight the significant role of platinum-based complexes in theranostic applications, and, to the best of our knowledge, this is the first focused contribution on this type of platinum compounds. This review presents a brief introduction to the development of platinum chemotherapeutic drugs, their limitations, and resistance mechanisms. It then describes recent advancements in integrating platinum complexes with diagnostic agents for both tumor treatment and monitoring. The main body is organized into three categories based on imaging techniques: fluorescence, positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). Finally, this review outlines promising strategies and future perspectives in this evolving field.
Collapse
Affiliation(s)
- Giulia Ferrari
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Ines Lopez-Martinez
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Thomas Wanek
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Claudia Kuntner
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Diego Montagner
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
- Kathleen Londsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
7
|
Li J, Zhang Q, Yang H, Lu W, Fu Y, Xiong Y, Wang X, Lu T, Xin Y, Xie Z, Chen W, Wang G, Guo Y, Qi R. Sequential dual-locking strategy using photoactivated Pt(IV)-based metallo-nano prodrug for enhanced chemotherapy and photodynamic efficacy by triggering ferroptosis and macrophage polarization. Acta Pharm Sin B 2024; 14:3251-3265. [PMID: 39027238 PMCID: PMC11252391 DOI: 10.1016/j.apsb.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 07/20/2024] Open
Abstract
Selective activation of Pt(IV) prodrugs within tumors has emerged as a promising strategy in tumor treatment. Although progress has been made with photo- and ultrasound-activated Pt(IV) prodrugs, concerns remain over the non-specific activation of photosensitizers (PS) and the potential for phototoxicity and chemical toxicity. In this study, a sequential dual-locked Pt(IV) nano-prodrug that can be activated by both the acidic tumor microenvironment and light was developed. The Pt(IV) prodrug was prepared by conjugating PS-locked Pt(IV) to a polymeric core, which was then chelated with metallo iron to lock its photoactivity and form a metallo-nano prodrug. Under acidic tumor microenvironment conditions, the metallo-nano prodrug undergoes dissociation of iron, triggering a reduction process in oxaliplatin under light irradiation, resulting in the activation of both chemotherapy and photodynamic therapy (PDT). Additionally, the prodrug could induce metallo-triggered ferroptosis and polarization of tumor-associated macrophages (TAM), thereby enhancing tumor inhibition. The dual-lock strategy employed in a nanoparticle delivery system represents an expansion in the application of platinum-based anticancer drugs, making it a promising new direction in cancer treatment.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenli Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yulong Fu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingcai Xiong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuan Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanlin Xin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zejuan Xie
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichao Chen
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Huang S, Marsh JW, White JRG, Ha TQ, Twigger SA, Diez-Perez I, Sedgwick AC. A colorimetric approach for monitoring the reduction of platinum(iv) complexes in aqueous solution. NEW J CHEM 2024; 48:7548-7551. [PMID: 38689796 PMCID: PMC11057408 DOI: 10.1039/d4nj00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
We report the synthesis of 4-nitrophenyl (4-NP) functionalised Pt(iv) complexes as a colorimetric strategy for monitoring Pt(iv) reduction in aqueous solution. Treatment of each 4-NP functionalised Pt(iv) complex with the biological reductant sodium ascorbate led to a colour change from clear to yellow, which was attributed to the reduction of Pt(iv) to Pt(ii) and simultaneous release of 4-nitroaniline. Trends in reduction profiles and a photocatalysed reduction for each Pt(iv) complex were observed.
Collapse
Affiliation(s)
- Shitong Huang
- Chemistry Research Laboratory, University of Oxford Mansfield Road OX1 3TA UK
| | - Jevon W Marsh
- Chemistry Research Laboratory, University of Oxford Mansfield Road OX1 3TA UK
| | - Jhanelle R G White
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Tracy Q Ha
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Sophie A Twigger
- Department of Oncology, University of Oxford Old Road Campus Research Building Oxford OX3 7DQ UK
| | - Ismael Diez-Perez
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford Mansfield Road OX1 3TA UK
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
9
|
Guo C, Wang KKA, Nolan EM. Investigation of Siderophore-Platinum(IV) Conjugates Reveals Differing Antibacterial Activity and DNA Damage Depending on the Platinum Cargo. ACS Infect Dis 2024; 10:1250-1266. [PMID: 38436588 DOI: 10.1021/acsinfecdis.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The growing threat of bacterial infections coupled with the dwindling arsenal of effective antibiotics has heightened the urgency for innovative strategies to combat bacterial pathogens, particularly Gram-negative strains, which pose a significant challenge due to their outer membrane permeability barrier. In this study, we repurpose clinically approved anticancer agents as targeted antibacterials. We report two new siderophore-platinum(IV) conjugates, both of which consist of an oxaliplatin-based Pt(IV) prodrug (oxPt(IV)) conjugated to enterobactin (Ent), a triscatecholate siderophore employed by Enterobacteriaceae for iron acquisition. We demonstrate that l/d-Ent-oxPt(IV) (l/d-EOP) are selectively delivered into the Escherichia coli cytoplasm, achieving targeted antibacterial activity, causing filamentous morphology, and leading to enhanced Pt uptake by bacterial cells but reduced Pt uptake by human cells. d-EOP exhibits enhanced potency compared to oxaliplatin and l-EOP, primarily attributed to the intrinsic antibacterial activity of its non-native siderophore moiety. To further elucidate the antibacterial activity of Ent-Pt(IV) conjugates, we probed DNA damage caused by l/d-EOP and the previously reported cisplatin-based conjugates l/d-Ent-Pt(IV) (l/d-EP). A comparative analysis of these four conjugates reveals a correlation between antibacterial activity and the ability to induce DNA damage. This work expands the scope of Pt cargos targeted to the cytoplasm of Gram-negative bacteria via Ent conjugation, provides insight into the cellular consequences of Ent-Pt(IV) conjugates in E. coli, and furthers our understanding of the potential of Pt-based therapeutics for antibacterial applications.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kwo-Kwang A Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Chen M, Fu Y, Liu Y, Zhang B, Song X, Chen X, Zhu Z, Gao H, Yang J, Shi X. NIR-Light-Triggered Mild-Temperature Hyperthermia to Overcome the Cascade Cisplatin Resistance for Improved Resistant Tumor Therapy. Adv Healthc Mater 2024; 13:e2303667. [PMID: 38178648 DOI: 10.1002/adhm.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Currently, cisplatin resistance has been recognized as a multistep cascade process for its clinical chemotherapy failure. Hitherto, it remains challenging to develop a feasible and promising strategy to overcome the cascade drug resistance (CDR) issue for achieving fundamentally improved chemotherapeutic efficacy. Herein, a novel self-assembled nanoagent is proposed, which is constructed by Pt(IV) prodrug, cyanine dye (cypate), and gadolinium ion (Gd3+), for systematically conquering the cisplatin resistance by employing near-infrared (NIR) light activated mild-temperature hyperthermia in tumor targets. The proposed nanoagents exhibit high photostability, GSH/H+-responsive dissociation, preferable photothermal conversion, and enhanced cellular uptake performance. In particular, upon 785-nm NIR light irradiation, the generated mild temperature of ≈ 43 °C overtly improves the cell membrane permeability and drug uptake, accelerates the disruption of intracellular redox balance, and apparently enhances the formation of Pt-DNA adducts, thereby effectively overcoming the CDR issue and achieves highly improved therapeutic efficacy for cisplatin-resistant tumor ablation.
Collapse
Affiliation(s)
- Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yulei Fu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Baihe Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xinchun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhengjia Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Hang Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
11
|
Thiabaud GD, Schwalm M, Sen S, Barandov A, Simon J, Harvey P, Spanoudaki V, Müller P, Sessler JL, Jasanoff A. Texaphyrin-Based Calcium Sensor for Multimodal Imaging. ACS Sens 2023; 8:3855-3861. [PMID: 37812688 PMCID: PMC11000421 DOI: 10.1021/acssensors.3c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The ability to monitor intracellular calcium concentrations using fluorescent probes has led to important insights into biological signaling processes at the cellular level. An important challenge is to relate such measurements to broader patterns of signaling across fields of view that are inaccessible to optical techniques. To meet this need, we synthesized molecular probes that couple calcium-binding moieties to lanthanide texaphyrins, resulting in complexes endowed with a diverse complement of magnetic and photophysical properties. We show that the probes permit intracellular calcium levels to be assessed by fluorescence, photoacoustic, and magnetic resonance imaging modalities and that they are detectable by multimodal imaging in brain tissue. This work thus establishes a route for monitoring signaling processes over a range of spatial and temporal scales.
Collapse
Affiliation(s)
- Grégory D. Thiabaud
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Miriam Schwalm
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Sajal Sen
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Ali Barandov
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | | | | | - Virginia Spanoudaki
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Peter Müller
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Jonathan L. Sessler
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| | - Alan Jasanoff
- Dr. G. D. Thiabaud, Dr. M. Schwalm, Dr. S. Sen, Dr. A. Barandov, Dr. J. Simon, Dr. P. Harvey, Prof. A. Jasanoff, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA 02139 (USA), Dr. V. Ch. Spanoudaki, Preclinical Imaging & Testing Facility, Koch Institute at MIT, 77 Massachusetts Ave. Rm. 76-188, Cambridge, MA 02139, (USA); Dr. Peter Müller, Department of Chemistry X-ray Diffraction Facility, 77 Massachusetts Ave. Rm 2-325, Cambridge, MA 02139 (USA); Prof. J. L. Sessler, Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224 (USA)
| |
Collapse
|
12
|
Liu G, Zhang Y, Yao H, Deng Z, Chen S, Wang Y, Peng W, Sun G, Tse MK, Chen X, Yue J, Peng YK, Wang L, Zhu G. An ultrasound-activatable platinum prodrug for sono-sensitized chemotherapy. SCIENCE ADVANCES 2023; 9:eadg5964. [PMID: 37343091 DOI: 10.1126/sciadv.adg5964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Despite the great success achieved by photoactivated chemotherapy, eradicating deep tumors using external sources with high tissue penetration depth remains a challenge. Here, we present cyaninplatin, a paradigm of Pt(IV) anticancer prodrug that can be activated by ultrasound in a precise and spatiotemporally controllable manner. Upon sono-activation, mitochondria-accumulated cyaninplatin exhibits strengthened mitochondrial DNA damage and cell killing efficiency, and the prodrug overcomes drug resistance as a consequence of combined effects from released Pt(II) chemotherapeutics, the depletion of intracellular reductants, and the burst of reactive oxygen species, which gives rise to a therapeutic approach, namely sono-sensitized chemotherapy (SSCT). Guided by high-resolution ultrasound, optical, and photoacoustic imaging modalities, cyaninplatin realizes the overall theranostics of tumors in vivo with superior efficacy and biosafety. This work highlights the practical utility of ultrasound to precisely activate Pt(IV) anticancer prodrugs for the eradication of deep tumor lesions and broadens the biomedical uses of Pt coordination complexes.
Collapse
Affiliation(s)
- Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Shu Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Wang Peng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Guohan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, UK
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, P.R. China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, P.R. China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P.R. China
| |
Collapse
|
13
|
Brito B, Ruggiero MR, Price TW, da Costa Silva M, Genicio N, Wilson AJ, Tyurina O, Rosecker V, Eykyn TR, Bañobre-López M, Stasiuk GJ, Gallo J. Redox double-switch cancer theranostics through Pt(IV) functionalised manganese dioxide nanostructures. NANOSCALE 2023. [PMID: 37325846 DOI: 10.1039/d3nr00076a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Manganese dioxide (MnO2)-based nanostructures have emerged as promising tumour microenvironment (TME) responsive platforms. Herein, we used a one-pot reaction to prepare MnO2 nanostructures with Pt(IV) prodrugs as redox- (and thus TME-) responsive theranostics for cancer therapy, in which the Pt(IV) complexes act as prodrugs of cisplatin (Pt(II)), a clinical chemotherapeutic drug. The cytotoxicity of these MnO2-Pt(IV) probes was evaluated in two and three dimensional (2D and 3D) A549 cell models and found to be as effective as active drug cisplatin in 3D models. Moreover, MnO2-Pt(IV) nanoparticles exhibited strong off/ON magnetic resonance (MR) contrast in response to reducing agents, with the longitudinal relaxivity (r1) increasing 136-fold upon treatment with ascorbic acid. This off/ON MR switch was also observed in (2D and 3D) cells in vitro. In vivo MRI experiments revealed that the nanostructures induce a strong and long-lasting T1 signal enhancement upon intratumoral injection in A549 tumour-bearing mice. These results show the potential of MnO2-Pt(IV) NPs as redox responsive MR theranostics for cancer therapy.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, HU6 7RX Hull, UK
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Maria Rosaria Ruggiero
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Milene da Costa Silva
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Núria Genicio
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Annah J Wilson
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Olga Tyurina
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Veronika Rosecker
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Thomas R Eykyn
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
14
|
Sánchez-Camacho J, Infante-Tadeo S, Carrasco AC, Scoditti S, Martínez Á, Barroso-Bujans F, Sicilia E, Pizarro AM, Salassa L. Flavin-Conjugated Pt(IV) Anticancer Agents. Inorg Chem 2023; 62:5644-5651. [PMID: 36990656 DOI: 10.1021/acs.inorgchem.3c00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In situ activation of Pt(IV) to Pt(II) species is a promising strategy to control the anticancer activity and overcome the off-target toxicity linked to classic platinum chemotherapeutic agents. Herein, we present the design and synthesis of two new asymmetric Pt(IV) derivatives of cisplatin and oxaliplatin (1·TARF and 2·TARF, respectively) bearing a covalently bonded 2',3',4',5'-tetraacetylriboflavin moiety (TARF). 1H and 195Pt NMR spectroscopy shows that 1·TARF and 2·TARF can be effectively activated into toxic Pt(II) species, when incubated with nicotinamide adenine dinucleotide, sodium ascorbate, and glutathione in the dark and under light irradiation. Density functional theory studies of the dark Pt(IV)-to-Pt(II) conversion of 2·TARF indicate that the process involves first hydride transfer from the donor to the flavin moiety of the complex, followed by electron transfer to the Pt(IV) center. When administered to MDA-MB-231 breast cancer cells preincubated with nontoxic amounts of ascorbate, 2·TARF displays enhanced toxicity (between 1 and 2 orders of magnitude), suggesting that the generation of oxaliplatin can selectively be triggered by redox activation. Such an effect is not observed when 2 and TARF are coadministered under the same conditions, demonstrating that covalent binding of the flavin to the Pt complex is pivotal.
Collapse
Affiliation(s)
- Juan Sánchez-Camacho
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
| | | | - Ana C Carrasco
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
| | - Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Álvaro Martínez
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
| | - Fabienne Barroso-Bujans
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
- Centro de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, Donostia 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Ana M Pizarro
- IMDEA Nanociencia, Faraday 9, Madrid 28049, Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA, Madrid 28049, Spain
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia 20018, Spain
| |
Collapse
|
15
|
Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy. Nat Commun 2023; 14:746. [PMID: 36765091 PMCID: PMC9918738 DOI: 10.1038/s41467-023-36334-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
A substantial proportion of cancer patients do not benefit from platinum-based chemotherapy (CT) due to the emergence of drug resistance. Here, we apply elemental imaging to the mapping of CT biodistribution after therapy in residual colorectal cancer and achieve a comprehensive analysis of the genetic program induced by oxaliplatin-based CT in the tumor microenvironment. We show that oxaliplatin is largely retained by cancer-associated fibroblasts (CAFs) long time after the treatment ceased. We determine that CT accumulation in CAFs intensifies TGF-beta activity, leading to the production of multiple factors enhancing cancer aggressiveness. We establish periostin as a stromal marker of chemotherapeutic activity intrinsically upregulated in consensus molecular subtype 4 (CMS4) tumors and highly expressed before and/or after treatment in patients unresponsive to therapy. Collectively, our study underscores the ability of CT-retaining CAFs to support cancer progression and resistance to treatment.
Collapse
|
16
|
Han HH, Wang HM, Jangili P, Li M, Wu L, Zang Y, Sedgwick AC, Li J, He XP, James TD, Kim JS. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem Soc Rev 2023; 52:879-920. [PMID: 36637396 DOI: 10.1039/d2cs00673a] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Yi Zang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Lingang laboratory, Shanghai 201203, China
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jia Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
López-Hernández JE, Contel M. Promising heterometallic compounds as anticancer agents: Recent studies in vivo. Curr Opin Chem Biol 2023; 72:102250. [PMID: 36566618 PMCID: PMC10880551 DOI: 10.1016/j.cbpa.2022.102250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Over the past decade, interest on multitarget anticancer drugs -including heterometallic compounds-has increased considerably. Heterometallic species display improved efficacy and physicochemical properties compared to the individual metallic fragments for a variety of metal pair combinations. By 2018, several compounds had emerged as promising candidates against cisplatin resistant cancers. Here, we summarize research contributions to this topic over the past four years (July 2018-July 2022). In particular, we highlight five articles reporting on the in vivo activity and preliminary mechanisms of action for five groups of compounds. From this selection, we further feature two families of compounds based on Pt(IV)-Gd(III) and Ti(IV)-Au(I) metal combinations, given their potential for clinical translation.
Collapse
Affiliation(s)
- Javier E López-Hernández
- Department of Chemistry, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; Biochemistry, The Graduate Center, The City University of New York, 365 5th Avenue, New York, 11006, USA
| | - Maria Contel
- Department of Chemistry, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA; Biochemistry, The Graduate Center, The City University of New York, 365 5th Avenue, New York, 11006, USA; Chemistry, The Graduate Center, The City University of New York, 365 5th Avenue, New York, 11006, USA; Biology PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, 11006, USA.
| |
Collapse
|
18
|
Cao X, Li R, Wang H, Guo C, Wang S, Chen X, Zhao R. Novel indole–chalcone platinum(IV) complexes as tubulin polymerization inhibitors to overcome oxaliplatin resistance in colorectal cancer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Jimenez-Macias J, Lee YC, Miller E, Finkelberg T, Zdioruk M, Berger G, Farquhar C, Nowicki M, Cho CF, Fedeles B, Loas A, Pentelute B, Lawler SE. A Pt(IV)-conjugated brain penetrant macrocyclic peptide shows pre-clinical efficacy in glioblastoma. J Control Release 2022; 352:623-636. [PMID: 36349615 PMCID: PMC9881056 DOI: 10.1016/j.jconrel.2022.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary malignant brain tumor, with a median survival of approximately 15 months. Treatment is limited by the blood-brain barrier (BBB) which restricts the passage of most drugs to the brain. We previously reported the design and synthesis of a BBB-penetrant macrocyclic cell-penetrating peptide conjugate (M13) covalently linked at the axial position of a Pt(IV) cisplatin prodrug. Here we show the Pt(IV)-M13 conjugate releases active cisplatin upon intracellular reduction and effects potent in vitro GBM cell killing. Pt(IV)-M13 significantly increased platinum uptake in an in vitro BBB spheroid model and intravenous administration of Pt(IV)-M13 in GBM tumor-bearing mice led to higher platinum levels in brain tissue and intratumorally compared with cisplatin. Pt(IV)-M13 administration was tolerated in naïve nude mice at higher dosage regimes than cisplatin and significantly extended survival above controls in a murine GBM xenograft model (median survival 33 days for Pt(IV)-M13 vs 24 days for Pt(IV) prodrug, 22.5 days for cisplatin and 22 days for control). Increased numbers of γH2AX nuclear foci, biomarkers of DNA damage, were observed in tumors of Pt(IV)-M13-treated mice, consistent with elevated platinum levels. The present work provides the first demonstration that systemic injection of a Pt(IV) complex conjugated to a brain-penetrant macrocyclic peptide can lead to increased platinum levels in the brain and extend survival in mouse GBM models, supporting further development of this approach and the utility of brain-penetrating macrocyclic peptide conjugates for delivering non-BBB penetrant drugs to the central nervous system.
Collapse
Affiliation(s)
- J.L. Jimenez-Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y.-C. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - E. Miller
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - T. Finkelberg
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - M. Zdioruk
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - G. Berger
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - C.E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M.O. Nowicki
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - C.-F. Cho
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA,Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - B.I. Fedeles
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - B.L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA,Correspondence to: B.L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. (B.L. Pentelute)
| | - S. E. Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA,Correspondence to: S.E. Lawler, Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI 02903, USA. (S.E. Lawler)
| |
Collapse
|
20
|
Gadre S, Manikandan M, Duari P, Chhatar S, Sharma A, Khatri S, Kode J, Barkume M, Kasinathan NK, Nagare M, Patkar M, Ingle A, Kumar M, Kolthur‐Seetharam U, Patra M. A Rationally Designed Bimetallic Platinum (II)‐Ferrocene Antitumor Agent Induces Non‐Apoptotic Cell Death and Exerts
in Vivo
Efficacy. Chemistry 2022; 28:e202201259. [PMID: 35638709 DOI: 10.1002/chem.202201259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - M. Manikandan
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Prakash Duari
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Sushant Chhatar
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Astha Sharma
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Subhash Khatri
- Molecular Physiology Laboratory Department of Biological Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Jyoti Kode
- Tumor Immunology & Immunotherapy Group (Kode lab) Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
- Homi Bhabha National Institute BARC Training School Complex Anushaktinagar Mumbai Maharashtra 400094 India
| | - Madan Barkume
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Nirmal Kumar Kasinathan
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Manasi Nagare
- Tumor Immunology & Immunotherapy Group (Kode lab) Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Meena Patkar
- Tumor Immunology & Immunotherapy Group (Kode lab) Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Arvind Ingle
- Homi Bhabha National Institute BARC Training School Complex Anushaktinagar Mumbai Maharashtra 400094 India
- Laboratory Animal Facility ACTREC Tata Memorial Centre, Kharghar Navi Mumbai 410210 India
| | - Mukesh Kumar
- Homi Bhabha National Institute BARC Training School Complex Anushaktinagar Mumbai Maharashtra 400094 India
- Protein Crystallography Section Radiation Biology & Health Sciences Division Bhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Ullas Kolthur‐Seetharam
- Molecular Physiology Laboratory Department of Biological Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Mumbai Maharashtra 400005 India
| |
Collapse
|
21
|
Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022; 51:6177-6209. [PMID: 35792133 DOI: 10.1039/d2cs00275b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA. .,InnovoTEX, Inc. 3800 N. Lamar Blvd, Austin, Texas 78756, USA.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China.,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
22
|
Spector DV, Pavlov KG, Akasov RA, Vaneev AN, Erofeev AS, Gorelkin PV, Nikitina VN, Lopatukhina EV, Semkina AS, Vlasova KY, Skvortsov DA, Roznyatovsky VA, Ul'yanovskiy NV, Pikovskoi II, Sypalov SA, Garanina AS, Vodopyanov SS, Abakumov MA, Volodina YL, Markova AA, Petrova AS, Mazur DM, Sakharov DA, Zyk NV, Beloglazkina EK, Majouga AG, Krasnovskaya OO. Pt(IV) Prodrugs with Non-Steroidal Anti-inflammatory Drugs in the Axial Position. J Med Chem 2022; 65:8227-8244. [PMID: 35675651 DOI: 10.1021/acs.jmedchem.1c02136] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs 5-10 were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug 7 was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures. Pt2+ species were detected at different depths of MCF-7 spheroids after incubation with Pt(IV) prodrugs using a Pt-coated carbon nanoelectrode. Cisplatin accumulation in vivo in the murine mammary EMT6 tumor tissue of BALB/c mice after Pt(IV) prodrug injection was proved electrochemically as well. The drug tolerance study on BALB/c mice showed good tolerance of 7 in doses up to 8 mg/kg.
Collapse
Affiliation(s)
- Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Kirill G Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.,Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Elena V Lopatukhina
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Dmitrii A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vitaly A Roznyatovsky
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Nikolay V Ul'yanovskiy
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Ilya I Pikovskoi
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Sergey A Sypalov
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Anastasiia S Garanina
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Stepan S Vodopyanov
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Yulia L Volodina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe highway 23, Moscow 115478, Russia
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia.,A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilova 28, Moscow 119991, Russia
| | - Albina S Petrova
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, Moscow 117198, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Marshal Novikov str. 23, Moscow 123098, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
23
|
Challenges and opportunities in the development of metal-based anticancer theranostic agents. Biosci Rep 2022; 42:231168. [PMID: 35420649 PMCID: PMC9109461 DOI: 10.1042/bsr20212160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Around 10 million fatalities were recorded worldwide in 2020 due to cancer and statistical projections estimate the number to increase by 60% in 2040. With such a substantial rise in the global cancer burden, the disease will continue to impose a huge socio-economic burden on society. Currently, the most widely used clinical treatment modality is cytotoxic chemotherapy using platinum drugs which is used to treat variety of cancers. Despite its clinical success, critical challenges like resistance, off-target side effects and cancer variability often reduce its overall therapeutic efficiency. These challenges require faster diagnosis, simultaneous therapy and a more personalized approach toward cancer management. To this end, small-molecule ‘theranostic’ agents have presented a viable solution combining diagnosis and therapy into a single platform. In this review, we present a summary of recent efforts in the design and optimization of metal-based small-molecule ‘theranostic’ anticancer agents. Importantly, we highlight the advantages of a theranostic candidate over the purely therapeutic or diagnostic agent in terms of evaluation of its biological properties.
Collapse
|
24
|
Profile of Jonathan L. Sessler. Proc Natl Acad Sci U S A 2022; 119:e2201482119. [PMID: 35238648 PMCID: PMC8915972 DOI: 10.1073/pnas.2201482119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Chau CV, Sen S, Sedgwick AC, Gale PA, Pantos GD, Kim SK, Park JS, Tomat E, Arambula JF, Gorden AE, Furuta H. Solving world problems with pyrrole: 65th birthday tribute to Prof. Jonathan L. Sessler. Chem 2022. [DOI: 10.1016/j.chempr.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Ma L, Li L, Zhu G. Platinum-containing heterometallic complexes in cancer therapy: advances and perspectives. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00205a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based anticancer drugs are among the most widely used antineoplastics in clinical settings. Their therapeutic applications and outcomes are, however, greatly hampered by drug resistance, systemic toxicity, and the lack...
Collapse
|
27
|
Zhou W, Sarma T, Yang L, Lei C, Sessler JL. Controlled assembly of a bicyclic porphyrinoid and its 3-dimensional boron difluoride arrays. Chem Sci 2022; 13:7276-7282. [PMID: 35799810 PMCID: PMC9214847 DOI: 10.1039/d2sc01635d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
A fully conjugated cryptand-like bicyclic porphyrinoid ligand 4, incorporating three carbazole linkages and four dipyrrin moieties, was prepared via the acid-catalysed condensation of an extended 2,2′-bipyrrole analogue containing a central carbazole moiety and 3,4-diethyl-2,5-diformylpyrrole in 79% isolated yield. This new cryptand-like system acts as an effective ligand and allows for complexation of BF2 (boron difluoride) subunits. Three BODIPY arrays, containing two, three, and four BF2 subunits, namely 4·2BF2, 4·3BF2 and 4·4BF2, could thus be isolated from the reaction of 4 with BF3·Et2O in the presence of triethylamine at 110 °C, albeit in relatively low yield. As prepared, bicycle 4 is characterized by a rigid C2 symmetric structure as inferred from VT NMR spectroscopic analyses. In contrast, the three BODIPY-like arrays produced as the result of BF2 complexation are conformationally flexible and unsymmetric in nature as deduced from similar analyses. All four products, namely 4, 4·2BF2, 4·3BF2 and 4·4BF2, were characterized by means of single crystal X-ray diffraction analyses. Tetramer 4·4BF2 gives rise to a higher extinction coefficient (by 2.5 times) relative to the bis- and tris-BODIPY arrays 4·2BF2 and 4·3BF2. This was taken as evidence for stronger excitonic coupling in the case of 4·4BF2. All three BODIPY-like arrays proved nearly non-fluorescent, as expected given their conformationally mobile nature. The efficiency of reactive oxygen species (ROS) generation was also determined for the new BODIPY arrays of this study. A cryptand-like bicyclic porphyrinoid was obtained in preference over the monocyclic porphyrinoid by controlling the reaction stoichiometry and condensation conditions. The cryptand-like species supports formation of multiple 3D BODIPY-like arrays.![]()
Collapse
Affiliation(s)
- Weinan Zhou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tridib Sarma
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Liu Yang
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, USA
| |
Collapse
|
28
|
Cheng MHY, Overchuk M, Rajora MA, Lou JWH, Chen Y, Pomper MG, Chen J, Zheng G. Targeted Theranostic 111In/Lu-Nanotexaphyrin for SPECT Imaging and Photodynamic Therapy. Mol Pharm 2021; 19:1803-1813. [PMID: 34965727 DOI: 10.1021/acs.molpharmaceut.1c00819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theranostic nanoparticles aim to integrate diagnostic imaging and therapy to facilitate image-guided treatment protocols. Herein, we present a theranostic nanotexaphyrin for prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and focal photodynamic therapy (PDT) accomplished through the chelation of metal isotopes (In, Lu). To realize nanotexaphyrin's theranostic properties, we developed a rapid and robust 111In/Lu-nanotexaphyrin radiolabeling method using a microfluidic system that achieved a high radiochemical yield (>90%). The optimized metalated nanotexaphyrin displayed excellent chemical, photo, and colloidal stabilities, potent singlet oxygen generation, and favorable plasma circulation half-life in vivo (t1/2 = 6.6 h). Biodistribution, including tumor accumulation, was characterized by NIR fluorescence, SPECT/CT imaging, and γ counting. Inclusion of the PSMA-targeting ligand enabled the preferential accumulation of 111In/Lu-nanotexaphyrin in PSMA-positive (PSMA+) prostate tumors (3.0 ± 0.3%ID/g) at 48 h with tumor vs prostate in a 2.7:1 ratio. In combination with light irradiation, the PSMA-targeting nanotexaphyrin showed a potent PDT effect and successfully inhibited PSMA+ tumor growth in a subcutaneous xenograft model. To the best of our knowledge, this study is the first demonstration of the inherent metal chelation-driven theranostic capabilities of texaphyrin nanoparticles, which, in combination with PSMA targeting, enabled prostate cancer imaging and therapy.
Collapse
Affiliation(s)
- Miffy H Y Cheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Marta Overchuk
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Maneesha A Rajora
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Jenny W H Lou
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Ying Chen
- Johns Hopkins Medical School, 1550 Orleans Street, 492 CRB II, Baltimore, Maryland 21287, United States
| | - Martin G Pomper
- Johns Hopkins Medical School, 1550 Orleans Street, 492 CRB II, Baltimore, Maryland 21287, United States
| | - Juen Chen
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
29
|
Chen S, Ng KY, Zhou Q, Yao H, Deng Z, Tse MK, Zhu G. The influence of different carbonate ligands on the hydrolytic stability and reduction of platinum(IV) prodrugs. Dalton Trans 2021; 51:885-897. [PMID: 34927657 DOI: 10.1039/d1dt03959h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pt(IV) complexes bearing axial carbonate linkages have drawn much attention recently. A synthetic method behind this allows the hydroxyl group of bioactive ligands to be attached to the available hydroxyl group of Pt(IV) complexes, and the rapid release of free drugs is achieved after the reduction of carbonate-linked Pt(IV) complexes. Further understanding on the properties of Pt(IV) carbonates such as hydrolytic stability and reduction profiles, however, is hindered by limited research. Herein, six mono-carbonated Pt(IV) complexes in which the carbonate axial ligands possess various electron-withdrawing powers were synthesized, and the corresponding mono-carboxylated analogues were also prepared as references to highlight the different properties. The influence of the coordination environment towards the hydrolysis and reduction rate of Pt(IV) carbonates and carboxylates was explored. The mono-carbonated Pt(IV) complexes are both less stable and reduced faster than the corresponding mono-carboxylated ones. Moreover, the hydrolysis and reduction profiles are dependent not only on the electron-withdrawing ability of the carbonates but also on the nature of the opposite axial ligands. Besides, the exploration of the hydrolytic pathway for Pt(IV) carbonates suggests that the process proceeds by an attack of OH- on the carbonyl carbon, followed by elimination, which is different from that of Pt(IV) carboxylates. This study provides some information on the influence of axial carbonate ligands with different electron-withdrawing abilities on the properties of the Pt(IV) center, which may inspire new thoughts on the design of "multi-action" Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Ka-Yan Ng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
| | - Qiyuan Zhou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China. .,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
30
|
Adams CJ, Meade TJ. Towards Imaging Pt Chemoresistance Using Gd(III)-Pt(II) Theranostic MR Contrast Agents. ChemMedChem 2021; 16:3663-3671. [PMID: 34355523 PMCID: PMC8678168 DOI: 10.1002/cmdc.202100389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Cisplatin and related Pt(II) chemotherapeutics are indispensable tools for the treatment of various solid tumors. Despite their widespread clinical use in approximately 50 % of chemotherapy regimens, they are hindered by issues with off-target toxicity and chemoresistance, both innate and acquired. To date, there is no effective way to predict the outcome of Pt(II) chemotherapy because the genes associated with resistance are not completely known or understood. Instead, patients undergo weeks to months of potentially harmful therapy before knowing if it is effective. Here we report two Gd(III)-Pt(II) theranostic MR contrast agents that contain cisplatin and carboplatin-based moieties respectively. We used these agents to demonstrate that accumulation differences in Pt(II) sensitive and resistant cells, a dominant factor in chemoresistance, can be imaged by MR. Both theranostic agents bind to DNA, are cytotoxic, and enhance the intracellular T1 -weighted MR contrast of multiple cell lines. Most importantly, the cisplatin-based agent accumulates less in Pt(II) resistant cells in vitro and in vivo, resulting in decreased MR contrast enhancement compared to the parent Pt(II) sensitive cell line. This straightforward method to image a key factor of Pt(II) resistance using MRI is an important first step towards the ultimate goals of predicting response to Pt(II) chemotherapy and monitoring for the onset of chemoresistance - a critical unmet need in medicine that could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Casey J. Adams
- Department of Chemistry, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (USA)
| | - Thomas J. Meade
- Department of Chemistry, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (USA)
| |
Collapse
|
31
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Xu Z, Wang Z, Deng Z, Zhu G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021; 11:8706-8737. [PMID: 34522208 PMCID: PMC8419031 DOI: 10.7150/thno.57004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Smart theranostics are dynamic platforms that integrate multiple functions, including at least imaging, therapy, and responsiveness, in a single agent. This review showcases a variety of responsive theranostic agents developed specifically for magnetic resonance imaging (MRI), due to the privileged position this non-invasive, non-ionising imaging modality continues to hold within the clinical imaging field. Different MRI smart theranostic designs have been devised in the search for more efficient cancer therapy, and improved diagnostic efficiency, through the increase of the local concentration of therapeutic effectors and MRI signal intensity in pathological tissues. This review explores novel small-molecule and nanosized MRI theranostic agents for cancer that exhibit responsiveness to endogenous (change in pH, redox environment, or enzymes) or exogenous (temperature, ultrasound, or light) stimuli. The challenges and obstacles in the design and in vivo application of responsive theranostics are also discussed to guide future research in this interdisciplinary field towards more controllable, efficient, and diagnostically relevant smart theranostics agents.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| |
Collapse
|
34
|
Yao K, Karunanithy G, Howarth A, Holdship P, Thompson AL, Christensen KE, Baldwin AJ, Faulkner S, Farrer NJ. Cell-permeable lanthanide-platinum(IV) anti-cancer prodrugs. Dalton Trans 2021; 50:8761-8767. [PMID: 34080595 PMCID: PMC8237448 DOI: 10.1039/d1dt01688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Platinum compounds are a vital part of our anti-cancer arsenal, and determining the location and speciation of platinum compounds is crucial. We have synthesised a lanthanide complex bearing a salicylic group (Ln = Gd, Eu) which demonstrates excellent cellular accumulation and minimal cytotoxicity. Derivatisation enabled access to bimetallic lanthanide-platinum(ii) and lanthanide-platinum(iv) complexes. Luminescence from the europium-platinum(iv) system was quenched, and reduction to platinum(ii) with ascorbic acid resulted in a "switch-on" luminescence enhancement. We used diffusion-based 1H NMR spectroscopic methods to quantify cellular accumulation. The gadolinium-platinum(ii) and gadolinium-platinum(iv) complexes demonstrated appreciable cytotoxicity. A longer delay following incubation before cytotoxicity was observed for the gadolinium-platinum(iv) compared to the gadolinium-platinum(ii) complex. Functionalisation with octanoate ligands resulted in enhanced cellular accumulation and an even greater latency in cytotoxicity.
Collapse
Affiliation(s)
- Kezi Yao
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Gogulan Karunanithy
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Alison Howarth
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Philip Holdship
- Department of Earth Sciences, University of Oxford, OX1 3AN, UK
| | - Amber L Thompson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | | | - Andrew J Baldwin
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Stephen Faulkner
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Nicola J Farrer
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| |
Collapse
|
35
|
Deng Z, Li C, Chen S, Zhou Q, Xu Z, Wang Z, Yao H, Hirao H, Zhu G. An intramolecular photoswitch can significantly promote photoactivation of Pt(iv) prodrugs. Chem Sci 2021; 12:6536-6542. [PMID: 34040729 PMCID: PMC8139284 DOI: 10.1039/d0sc06839j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
Selective activation of prodrugs at diseased tissue through bioorthogonal catalysis represents an attractive strategy for precision cancer treatment. Achieving efficient prodrug photoactivation in cancer cells, however, remains challenging. Herein, we report two Pt(iv) complexes, designated as rhodaplatins {rhodaplatin 1, [Pt(CBDCA-O,O)(NH3)2(RhB)OH]; rhodaplatin 2, [Pt(DACH)ox(RhB)(OH)], where CBDCA is cyclobutane-1,1-dicarboxylate, RhB is rhodamine B, DACH is (1R,2R)-1,2-diaminocyclohexane, and ox is oxalate}, that bear an internal photoswitch to realize efficient accumulation, significant co-localization, and subsequent effective photoactivation in cancer cells. Compared with the conventional platform of external photocatalyst plus substrate, rhodaplatins presented up to 4.8 104-fold increased photoconversion efficiency in converting inert Pt(iv) prodrugs to active Pt(ii) species under physiological conditions, due to the increased proximity and covalent bond between the photoswitch and Pt(iv) substrate. As a result, rhodaplatins displayed increased photocytotoxicity compared with a mixture of RhB and conventional Pt(iv) compound in cancer cells including Pt-resistant ones. Intriguingly, rhodaplatin 2 efficiently accumulated in the mitochondria and induced apoptosis without causing genomic DNA damage to overcome drug resistance. This work presents a new approach to develop highly effective prodrugs containing intramolecular photoswitches for potential medical applications.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Cai Li
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Shu Chen
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Qiyuan Zhou
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Zoufeng Xu
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University Shenzhen P. R. China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Hajime Hirao
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
36
|
Xu Z, Tang WK, Zhou Q, Chen S, Siu CK, Zhu G. On the hydrolytic stability of unsymmetric platinum(iv) anticancer prodrugs containing axial halogens. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00208b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hydrolytic stability of Pt(iv) complexes is determined by all the six ligands that coordinate to the Pt(iv) center. By appropriately choosing all the ligands during the design of Pt(iv) prodrugs, the stability of Pt(iv) prodrugs can be improved.
Collapse
Affiliation(s)
- Zoufeng Xu
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
- City University of Hong Kong Shenzhen Research Institute
| | - Wai Kit Tang
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
| | - Qiyuan Zhou
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
- City University of Hong Kong Shenzhen Research Institute
| | - Shu Chen
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
- City University of Hong Kong Shenzhen Research Institute
| | - Chi-Kit Siu
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry
- City University of Hong Kong
- Hong Kong SAR 999077
- People's Republic of China
- City University of Hong Kong Shenzhen Research Institute
| |
Collapse
|
37
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
38
|
Ueno M, Tomita T, Arakawa H, Kakuta T, Yamagishi TA, Terakawa J, Daikoku T, Horike SI, Si S, Kurayoshi K, Ito C, Kasahara A, Tadokoro Y, Kobayashi M, Fukuwatari T, Tamai I, Hirao A, Ogoshi T. Pillar[6]arene acts as a biosensor for quantitative detection of a vitamin metabolite in crude biological samples. Commun Chem 2020; 3:183. [PMID: 36703437 PMCID: PMC9814258 DOI: 10.1038/s42004-020-00430-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
Metabolic syndrome is associated with obesity, hypertension, and dyslipidemia, and increased cardiovascular risk. Therefore, quick and accurate measurements of specific metabolites are critical for diagnosis; however, detection methods are limited. Here we describe the synthesis of pillar[n]arenes to target 1-methylnicotinamide (1-MNA), which is one metabolite of vitamin B3 (nicotinamide) produced by the cancer-associated nicotinamide N-methyltransferase (NNMT). We found that water-soluble pillar[5]arene (P5A) forms host-guest complexes with both 1-MNA and nicotinamide, and water-soluble pillar[6]arene (P6A) selectively binds to 1-MNA at the micromolar level. P6A can be used as a "turn-off sensor" by photoinduced electron transfer (detection limit is 4.38 × 10-6 M). In our cell-free reaction, P6A is used to quantitatively monitor the activity of NNMT. Moreover, studies using NNMT-deficient mice reveal that P6A exclusively binds to 1-MNA in crude urinary samples. Our findings demonstrate that P6A can be used as a biosensor to quantify 1-MNA in crude biological samples.
Collapse
Affiliation(s)
- Masaya Ueno
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Takuya Tomita
- grid.9707.90000 0001 2308 3329Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Hiroshi Arakawa
- grid.9707.90000 0001 2308 3329Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Takahiro Kakuta
- grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Tada-aki Yamagishi
- grid.9707.90000 0001 2308 3329Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Jumpei Terakawa
- grid.9707.90000 0001 2308 3329Institute for Experimental Animals, Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, 920-8641 Japan
| | - Takiko Daikoku
- grid.9707.90000 0001 2308 3329Institute for Experimental Animals, Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, 920-8641 Japan
| | - Shin-ichi Horike
- grid.9707.90000 0001 2308 3329Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, 920-8641 Japan
| | - Sha Si
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Kenta Kurayoshi
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Chiaki Ito
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Atsuko Kasahara
- grid.9707.90000 0001 2308 3329Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Yuko Tadokoro
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Masahiko Kobayashi
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Tsutomu Fukuwatari
- grid.412698.00000 0001 1500 8310Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 Japan
| | - Ikumi Tamai
- grid.9707.90000 0001 2308 3329Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Atsushi Hirao
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Kyoto University, Kyoto, 615-8510 Japan
| |
Collapse
|
39
|
Karmakar S, Kostrhunova H, Ctvrtlikova T, Novohradsky V, Gibson D, Brabec V. Platinum(IV)-Estramustine Multiaction Prodrugs Are Effective Antiproliferative Agents against Prostate Cancer Cells. J Med Chem 2020; 63:13861-13877. [PMID: 33175515 DOI: 10.1021/acs.jmedchem.0c01400] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we describe the synthesis, characterization, and biological properties of Pt(IV) derivatives of cisplatin with estramustine at the first axial position, which is known to disrupt the microtubule assembly and act as an androgen antagonist, and varying the second axial position using an innocent ligand (acetate or hydroxyl) to prepare dual-action and triple-action prodrugs with known inhibitors of histone deacetylase, cyclooxygenase, and pyruvate dehydrogenase kinase. We demonstrate superior antiproliferative activity at submicromolar concentrations of the prodrugs against a panel of cancer cell lines, particularly against prostate cancer cell lines. The results obtained in this study exemplify the complex mode of action of "multiaction" Pt(IV) prodrugs. Interestingly, changing the second axial ligand in the Pt-estramustine complex has a significant effect on the mode of action, suggesting that all three components of the Pt(IV) prodrugs (platinum moiety and axial ligands) contribute to the killing of cells and not just one dominant component.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Tereza Ctvrtlikova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| |
Collapse
|
40
|
Ren Y, Sedgwick AC, Chen J, Thiabaud G, Chau CV, An J, Arambula JF, He XP, Kim JS, Sessler JL, Liu C. Manganese(II) Texaphyrin: A Paramagnetic Photoacoustic Contrast Agent Activated by Near-IR Light. J Am Chem Soc 2020; 142:16156-16160. [PMID: 32914968 DOI: 10.1021/jacs.0c04387] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NIR absorptivity of the metallotexaphyrin derivatives MMn, MGd, and MLu for photoacoustic (PA)-based imaging is explored in this study. All three complexes demonstrated excellent photostabilities; however, MMn provided the greatest PA signal intensities in both doubly distilled water and RAW 264.7 cells. In vivo experiments using a prostate tumor mouse model were performed. MMn displayed no adverse toxicity to major organs as inferred from hematoxylin and eosin (H&E) staining and cell blood count testing. MMn also allowed for PA-based imaging of tumors with excellent in vivo stability to provide 3D tumor diagnostic information. Based on the present findings and previous magnetic resonance imaging (MRI) studies, we believe MMn may have a role to play either as a stand-alone PA contrast agent or as a single molecule dual modal (PA and MR) imaging agent for tumor diagnosis.
Collapse
Affiliation(s)
- Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Jingqin Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Gregory Thiabaud
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
- OncoTEX, Inc., Austin, Texas 78701, United States
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
41
|
Sen S, Perrin MW, Sedgwick AC, Dunsky EY, Lynch VM, He XP, Sessler JL, Arambula JF. Toward multifunctional anticancer therapeutics: post-synthetic carbonate functionalisation of asymmetric Au(i) bis-N-heterocyclic carbenes. Chem Commun (Camb) 2020; 56:7877-7880. [PMID: 32520019 PMCID: PMC7368814 DOI: 10.1039/d0cc03339a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A post-synthetic strategy is reported that allows for functionalisation of Au(i)-bis NHCs via carbonate formation. The scope of this methodology was explored using both aromatic and aliphatic alcohols. As a demonstration of potential utility, the fluorescent Au(i)-bis NHC conjugate 5 was prepared; it was found to have enhanced stability when formulated with bovine serum albumin, localise within the mitochondria of A549 cells and do so without compromising the high cytotoxicity seen for the parent Au(i)-bis NHC system.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Drawing inspiration from nature today remains a time-honored means of discovering the therapies of tomorrow. Porphyrins, the so-called "pigments of life" have played a key role in this effort due to their diverse and unique properties. They have seen use in a number of medically relevant applications, including the development of so-called drug conjugates wherein functionalization with other entities is used to improve efficacy while minimizing dose limiting side effects. In this Perspective, we highlight opportunities associated with newer, completely synthetic analogs of porphyrins, commonly referred to as porphyrinoids, as the basis for preparing drug conjugates. Many of the resulting systems show improved medicinal or site-localizing properties. As befits a Perspective of this type, our efforts to develop cancer-targeting, platinum-containing conjugates based on texaphyrins (a class of so-called "expanded porphyrins") will receive particular emphasis; however, the promise inherent in this readily generalizable approach will also be illustrated briefly using two other common porphyrin analogs, namely the corroles (a "contracted porphyrin") and porphycene (an "isomeric porphyrin").
Collapse
|
43
|
Wang Y, Ogasahara K, Tomihama D, Mysliborski R, Ishida M, Hong Y, Notsuka Y, Yamaoka Y, Murayama T, Muranaka A, Uchiyama M, Mori S, Yasutake Y, Fukatsu S, Kim D, Furuta H. Near‐Infrared‐III‐Absorbing and ‐Emitting Dyes: Energy‐Gap Engineering of Expanded Porphyrinoids via Metallation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yue Wang
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Koki Ogasahara
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Daisuke Tomihama
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Radomir Mysliborski
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Yongseok Hong
- Department of Chemistry and Spectroscopy for Functional π-Electronic Systems Yonsei University Seoul 03722 Korea
| | - Yusuke Notsuka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Yoshihisa Yamaoka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Tomotaka Murayama
- Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo 113-0033 Japan
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN Saitama 351-0198 Japan
| | - Shigeki Mori
- Advanced Research Support Center Ehime University Matsuyama 790-8577 Japan
| | - Yuhsuke Yasutake
- Graduate School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Susumu Fukatsu
- Graduate School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Dongho Kim
- Department of Chemistry and Spectroscopy for Functional π-Electronic Systems Yonsei University Seoul 03722 Korea
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
44
|
Wang Y, Ogasahara K, Tomihama D, Mysliborski R, Ishida M, Hong Y, Notsuka Y, Yamaoka Y, Murayama T, Muranaka A, Uchiyama M, Mori S, Yasutake Y, Fukatsu S, Kim D, Furuta H. Near-Infrared-III-Absorbing and -Emitting Dyes: Energy-Gap Engineering of Expanded Porphyrinoids via Metallation. Angew Chem Int Ed Engl 2020; 59:16161-16166. [PMID: 32469135 DOI: 10.1002/anie.202006026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/07/2022]
Abstract
The synthesis of organometallic complexes of modified 26π-conjugated hexaphyrins with absorption and emission capabilities in the third near-infrared region (NIR-III) is described. Symmetry alteration of the frontier molecular orbitals (MOs) of bis-PdII and bis-PtII complexes of hexaphyrin via N-confusion modification led to substantial metal dπ -pπ interactions. This MO mixing, in turn, resulted in a significantly narrower HOMO-LUMO energy gap. A remarkable long-wavelength shift of the lowest S0 →S1 absorption beyond 1700 nm was achieved with the bis-PtII complex, t-Pt2 -3. The emergence of photoacoustic (PA) signals maximized at 1700 nm makes t-Pt2 -3 potentially useful as a NIR-III PA contrast agent. The rigid bis-PdII complexes, t-Pd2 -3 and c-Pd2 -3, are rare examples of NIR emitters beyond 1500 nm. The current study provides new insight into the design of stable, expanded porphyrinic dyes possessing NIR-III-emissive and photoacoustic-response capabilities.
Collapse
Affiliation(s)
- Yue Wang
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Koki Ogasahara
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daisuke Tomihama
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Radomir Mysliborski
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yongseok Hong
- Department of Chemistry and Spectroscopy for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Yusuke Notsuka
- Graduate School of Advanced Health Sciences, Saga University, Saga, 840-8502, Japan
| | - Yoshihisa Yamaoka
- Graduate School of Advanced Health Sciences, Saga University, Saga, 840-8502, Japan
| | - Tomotaka Murayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, Saitama, 351-0198, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuhsuke Yasutake
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Susumu Fukatsu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Dongho Kim
- Department of Chemistry and Spectroscopy for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|