1
|
Garcha J, Huang J, Martinez Pomier K, Melacini G. Amyloid-Driven Allostery. Biophys Chem 2024; 315:107320. [PMID: 39278064 DOI: 10.1016/j.bpc.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
The fields of allostery and amyloid-related pathologies, such as Parkinson's disease (PD), have been extensively explored individually, but less is known about how amyloids control allostery. Recent advancements have revealed that amyloids can drive allosteric effects in both intrinsically disordered proteins, such as alpha-synuclein (αS), and multi-domain signaling proteins, such as protein kinase A (PKA). Amyloid-driven allostery plays a central role in explaining the mechanisms of gain-of-pathological-function mutations in αS (e.g. E46K, which causes early PD onset) and loss-of-physiological-function mutations in PKA (e.g. A211D, which predisposes to tumors). This review highlights allosteric effects of disease-related mutations and how they can cause exposure of amyloidogenic regions, leading to amyloids that are either toxic or cause aberrant signaling. We also discuss multiple potential modulators of these allosteric effects, such as MgATP and kinase substrates, opening future opportunities to improve current pharmacological interventions against αS and PKA-related pathologies. Overall, we show that amyloid-driven allosteric models are useful to explain the mechanisms underlying disease-related mutations.
Collapse
Affiliation(s)
- Jaskiran Garcha
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
2
|
Ahlawat S, Mehra S, Gowda CM, Maji SK, Agarwal V. Solid-state NMR assignment of α-synuclein polymorph prepared from helical intermediate. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:193-200. [PMID: 38963588 PMCID: PMC11511750 DOI: 10.1007/s12104-024-10188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Synucleinopathies are neurodegenerative diseases characterized by the accumulation of α-synuclein protein aggregates in the neurons and glial cells. Both ex vivo and in vitro α-synuclein fibrils tend to show polymorphism. Polymorphism results in structure variations among fibrils originating from a single polypeptide/protein. The polymorphs usually have different biophysical, biochemical and pathogenic properties. The various pathologies of a single disease might be associated with distinct polymorphs. Similarly, in the case of different synucleinopathies, each condition might be associated with a different polymorph. Fibril formation is a nucleation-dependent process involving the formation of transient and heterogeneous intermediates from monomers. Polymorphs are believed to arise from heterogeneous oligomer populations because of distinct selection mechanisms in different conditions. To test this hypothesis, we isolated and incubated different intermediates during in vitro fibrillization of α-synuclein to form different polymorphs. Here, we report 13C and 15N chemical shifts and the secondary structure of fibrils prepared from the helical intermediate using solid-state nuclear magnetic spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500 046, India.
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Chandrakala M Gowda
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500 046, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500 046, India.
| |
Collapse
|
3
|
Sokratian A, Zhou Y, Tatli M, Burbidge KJ, Xu E, Viverette E, Donzelli S, Duda AM, Yuan Y, Li H, Strader S, Patel N, Shiell L, Malankhanova T, Chen O, Mazzulli JR, Perera L, Stahlberg H, Borgnia M, Bartesaghi A, Lashuel HA, West AB. Mouse α-synuclein fibrils are structurally and functionally distinct from human fibrils associated with Lewy body diseases. SCIENCE ADVANCES 2024; 10:eadq3539. [PMID: 39485845 DOI: 10.1126/sciadv.adq3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
The intricate process of α-synuclein aggregation and fibrillization holds pivotal roles in Parkinson's disease (PD) and multiple system atrophy (MSA). While mouse α-synuclein can fibrillize in vitro, whether these fibrils commonly used in research to induce this process or form can reproduce structures in the human brain remains unknown. Here, we report the first atomic structure of mouse α-synuclein fibrils, which was solved in parallel by two independent teams. The structure shows striking similarity to MSA-amplified and PD-associated E46K fibrils. However, mouse α-synuclein fibrils display altered packing arrangements, reduced hydrophobicity, and heightened fragmentation sensitivity and evoke only weak immunological responses. Furthermore, mouse α-synuclein fibrils exhibit exacerbated pathological spread in neurons and humanized α-synuclein mice. These findings provide critical insights into the structural underpinnings of α-synuclein pathogenicity and emphasize a need to reassess the role of mouse α-synuclein fibrils in the development of related diagnostic probes and therapeutic interventions.
Collapse
Affiliation(s)
- Arpine Sokratian
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Meltem Tatli
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Kevin J Burbidge
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Enquan Xu
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Elizabeth Viverette
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Addison M Duda
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Yuan Yuan
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Huizhong Li
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Samuel Strader
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Nirali Patel
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Lauren Shiell
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Tuyana Malankhanova
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Olivia Chen
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Joseph R Mazzulli
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lalith Perera
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Mario Borgnia
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Qatar Foundation ND BioSciences, Qatar Foundation Headquarters, PO Box 3400, Al Rayyan, Qatar
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
5
|
Huettemann P, Mahadevan P, Lempart J, Tse E, Dehury B, Edwards BFP, Southworth DR, Sahoo BR, Jakob U. Amyloid accelerator polyphosphate fits as the mystery density in α-synuclein fibrils. PLoS Biol 2024; 22:e3002650. [PMID: 39480879 PMCID: PMC11527176 DOI: 10.1371/journal.pbio.3002650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here, we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the 2 critical lysine residues K43 and K45 with alanine residues leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.
Collapse
Affiliation(s)
- Philipp Huettemann
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pavithra Mahadevan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Justine Lempart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Brian F. P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, Michigan, United States of America
| | - Daniel R. Southworth
- Institute for Neurodegenerative Diseases, University of California San Francisco, California, United States of America
| | - Bikash R. Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Robert H Edwards
- Department of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hilal A Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses, France
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stella M Papa
- Department of Neurology, School of Medicine, and Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Leonidas Stefanis
- First Department of Neurology, Eginitio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Amanda L Woerman
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, USA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Lorraine V Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Frey L, Ghosh D, Qureshi BM, Rhyner D, Guerrero-Ferreira R, Pokharna A, Kwiatkowski W, Serdiuk T, Picotti P, Riek R, Greenwald J. On the pH-dependence of α-synuclein amyloid polymorphism and the role of secondary nucleation in seed-based amyloid propagation. eLife 2024; 12:RP93562. [PMID: 39196271 PMCID: PMC11357353 DOI: 10.7554/elife.93562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
The aggregation of the protein α-synuclein is closely associated with several neurodegenerative disorders and as such the structures of the amyloid fibril aggregates have high scientific and medical significance. However, there are dozens of unique atomic-resolution structures of these aggregates, and such a highly polymorphic nature of the α-synuclein fibrils hampers efforts in disease-relevant in vitro studies on α-synuclein amyloid aggregation. In order to better understand the factors that affect polymorph selection, we studied the structures of α-synuclein fibrils in vitro as a function of pH and buffer using cryo-EM helical reconstruction. We find that in the physiological range of pH 5.8-7.4, a pH-dependent selection between Type 1, 2, and 3 polymorphs occurs. Our results indicate that even in the presence of seeds, the polymorph selection during aggregation is highly dependent on the buffer conditions, attributed to the non-polymorph-specific nature of secondary nucleation. We also uncovered two new polymorphs that occur at pH 7.0 in phosphate-buffered saline. The first is a monofilament Type 1 fibril that highly resembles the structure of the juvenile-onset synucleinopathy polymorph found in patient-derived material. The second is a new Type 5 polymorph that resembles a polymorph that has been recently reported in a study that used diseased tissues to seed aggregation. Taken together, our results highlight the shallow amyloid energy hypersurface that can be altered by subtle changes in the environment, including the pH which is shown to play a major role in polymorph selection and in many cases appears to be the determining factor in seeded aggregation. The results also suggest the possibility of producing disease-relevant structure in vitro.
Collapse
Affiliation(s)
- Lukas Frey
- Institute of Molecular Physical ScienceZürichSwitzerland
| | - Dhiman Ghosh
- Institute of Molecular Physical ScienceZürichSwitzerland
| | - Bilal M Qureshi
- Scientific Center for Optical and Electron MicroscopyZürichSwitzerland
| | - David Rhyner
- Institute of Molecular Physical ScienceZürichSwitzerland
| | | | | | | | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, ETH ZürichZurichSwitzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, ETH ZürichZurichSwitzerland
| | - Roland Riek
- Institute of Molecular Physical ScienceZürichSwitzerland
| | | |
Collapse
|
8
|
Reis PM, Holec SAM, Ezeiruaku C, Frost MP, Brown CK, Liu SL, Olson SH, Woerman AL. Structurally targeted mutagenesis identifies key residues supporting α -synuclein misfolding in multiple system atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602104. [PMID: 39026799 PMCID: PMC11257492 DOI: 10.1101/2024.07.04.602104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multiple system atrophy (MSA) and Parkinson's disease (PD) are caused by misfolded α -synuclein spreading throughout the central nervous system. While familial PD is linked to several point mutations in α -synuclein, there are no known mutations associated with MSA. Our previous work investigating differences in α -synuclein misfolding between the two disorders showed that the familial PD mutation E46K inhibits replication of MSA prions both in vitro and in vivo, providing key evidence to support the hypothesis that α -synuclein adopts unique strains in patients. Here, to further interrogate α -synuclein misfolding, we engineered a panel of cell lines harboring both PD-linked and novel mutations designed to identify key residues that facilitate α -synuclein misfolding in MSA. These data were paired with in silico analyses using Maestro software to predict the effect of each mutation on the ability of α -synuclein to misfold into one of the reported MSA cryo-electron microscopy conformations. In many cases, our modeling accurately identified mutations that facilitated or inhibited MSA replication. However, Maestro was occasionally unable to predict the effect of a mutation on MSA propagation in vitro, demonstrating the challenge of using computational tools to investigate intrinsically disordered proteins. Finally, we used our cellular models to determine the mechanism underlying the E46K-driven inhibition of MSA replication, finding that the E46/K80 salt bridge is necessary to support α -synuclein misfolding. Overall, our studies use a structure-based approach to investigate α -synuclein misfolding, resulting in the creation of a powerful panel of cell lines that can be used to interrogate MSA strain biology.
Collapse
Affiliation(s)
- Patricia M. Reis
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sara A. M. Holec
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Chimere Ezeiruaku
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Matthew P. Frost
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christine K. Brown
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Samantha L. Liu
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Steven H. Olson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Amanda L. Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
9
|
Kochen NN, Seaney D, Vasandani V, Murray M, Braun AR, Sachs JN. Post-translational modification sites are present in hydrophilic cavities of alpha-synuclein, tau, FUS, and TDP-43 fibrils: A molecular dynamics study. Proteins 2024; 92:854-864. [PMID: 38458997 PMCID: PMC11147710 DOI: 10.1002/prot.26679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Hydration plays a crucial role in the refolding of intrinsically disordered proteins into amyloid fibrils; however, the specific interactions between water and protein that may contribute to this process are still unknown. In our previous studies of alpha-synuclein (aSyn), we have shown that waters confined in fibril cavities are stabilizing features of this pathological fold; and that amino acids that hydrogen bond with these confined waters modulate primary and seeded aggregation. Here, we extend our aSyn molecular dynamics (MD) simulations with three new polymorphs and correlate MD trajectory information with known post-translational modifications (PTMs) and experimental data. We show that cavity residues are more evolutionarily conserved than non-cavity residues and are enriched with PTM sites. As expected, the confinement within hydrophilic cavities results in more stably hydrated amino acids. Interestingly, cavity PTM sites display the longest protein-water hydrogen bond lifetimes, three-fold greater than non-PTM cavity sites. Utilizing the deep mutational screen dataset by Newberry et al. and the Thioflavin T aggregation review by Pancoe et al. parsed using a fibril cavity/non-cavity definition, we show that hydrophobic changes to amino acids in cavities have a larger effect on fitness and aggregation rate than residues outside cavities, supporting our hypothesis that these sites are involved in the inhibition of aSyn toxic fibrillization. Finally, we expand our study to include analysis of fibril structures of tau, FUS, TDP-43, prion, and hnRNPA1; all of which contained hydrated cavities, with tau, FUS, and TDP-43 recapitulating our PTM results in aSyn fibril cavities.
Collapse
Affiliation(s)
- Noah Nathan Kochen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darren Seaney
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vivek Vasandani
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marguerite Murray
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Wallace HM, Yang H, Tan S, Pan HS, Yang R, Xu J, Jo H, Condello C, Polizzi NF, DeGrado WF. De novo design of peptides that bind specific conformers of α-synuclein. Chem Sci 2024; 15:8414-8421. [PMID: 38846390 PMCID: PMC11151861 DOI: 10.1039/d3sc06245g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/14/2024] [Indexed: 06/09/2024] Open
Abstract
Insoluble amyloids rich in cross-β fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloids in a conformationally specific manner are lacking. We introduce a novel computational method for de novo design of peptides that tile the surface of α-synuclein fibrils in a conformationally specific manner. Our method begins by identifying surfaces that are unique to the conformational strain of interest, which becomes a "target backbone" for the design of a peptide binder. Next, we interrogate structures in the PDB with high geometric complementarity to the target. Then, we identify secondary structural motifs that interact with this target backbone in a favorable, highly occurring geometry. This method produces monomeric helical motifs with a favorable geometry for interaction with the strands of the underlying amyloid. Each motif is then symmetrically replicated to form a monolayer that tiles the amyloid surface. Finally, amino acid sequences of the peptide binders are computed to provide a sequence with high geometric and physicochemical complementarity to the target amyloid. This method was applied to a conformational strain of α-synuclein fibrils, resulting in a peptide with high specificity for the target relative to other amyloids formed by α-synuclein, tau, or Aβ40. This designed peptide also markedly slowed the formation of α-synuclein amyloids. Overall, this method offers a new tool for examining conformational strains of amyloid proteins.
Collapse
Affiliation(s)
- Hailey M Wallace
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Hyunjun Yang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
- Institute for Neurodegenerative Diseases, University of California San Francisco CA 94143 USA
| | - Sophia Tan
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Henry S Pan
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Rose Yang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Junyi Xu
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, University of California San Francisco CA 94143 USA
- Department of Neurology, University of California San Francisco CA 94143 USA
| | - Nicholas F Polizzi
- Dana Farber Cancer Institute, Harvard Medical School Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
- Institute for Neurodegenerative Diseases, University of California San Francisco CA 94143 USA
| |
Collapse
|
13
|
Huettemann P, Mahadevan P, Lempart J, Tse E, Dehury B, Edwards BFP, Southworth DR, Sahoo BR, Jakob U. Amyloid Accelerator Polyphosphate Implicated as the Mystery Density in α-Synuclein Fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592011. [PMID: 38746133 PMCID: PMC11092616 DOI: 10.1101/2024.05.01.592011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the two critical lysine residues K43 and K45 leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.
Collapse
|
14
|
Chen S, Barritt JD, Cascella R, Bigi A, Cecchi C, Banchelli M, Gallo A, Jarvis JA, Chiti F, Dobson CM, Fusco G, De Simone A. Structure-Toxicity Relationship in Intermediate Fibrils from α-Synuclein Condensates. J Am Chem Soc 2024; 146:10537-10549. [PMID: 38567991 PMCID: PMC11027145 DOI: 10.1021/jacs.3c14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/18/2024]
Abstract
The aberrant aggregation of α-synuclein (αS) into amyloid fibrils is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease. Although the structural properties of mature amyloids of αS are currently understood, the nature of transient protofilaments and fibrils that appear during αS aggregation remains elusive. Using solid-state nuclear magnetic resonance (ssNMR), cryogenic electron microscopy (cryo-EM), and biophysical methods, we here characterized intermediate amyloid fibrils of αS forming during the aggregation from liquid-like spherical condensates to mature amyloids adopting the structure of pathologically observed aggregates. These transient amyloid intermediates, which induce significant levels of cytotoxicity when incubated with neuronal cells, were found to be stabilized by a small core in an antiparallel β-sheet conformation, with a disordered N-terminal region of the protein remaining available to mediate membrane binding. In contrast, mature amyloids that subsequently appear during the aggregation showed different structural and biological properties, including low levels of cytotoxicity, a rearranged structured core embedding also the N-terminal region, and a reduced propensity to interact with the membrane. The characterization of these two fibrillar forms of αS, and the use of antibodies and designed mutants, enabled us to clarify the role of critical structural elements endowing intermediate amyloid species with the ability to interact with membranes and induce cytotoxicity.
Collapse
Affiliation(s)
- Serene
W. Chen
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Joseph D. Barritt
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Roberta Cascella
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Alessandra Bigi
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Cristina Cecchi
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Martina Banchelli
- Institute
of Applied Physics “Nello Carrara” National Research
Council of Italy, Sesto Fiorentino, Florence 50019, Italy
| | - Angelo Gallo
- Department
of Chemistry, University of Turin, Turin 10124, Italy
| | - James A. Jarvis
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
- Randall
Centre for Cell and Molecular Biophysics and Centre for Biomolecular
Spectroscopy, King’s College London, London SE1 9RT, U.K.
| | - Fabrizio Chiti
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | | | - Giuliana Fusco
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Department
of Pharmacy, University of Naples, Naples 80131, Italy
| | - Alfonso De Simone
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
- Department
of Pharmacy, University of Naples, Naples 80131, Italy
| |
Collapse
|
15
|
Semenyuk PI. Alpha-synuclein phosphorylation induces amyloid conversion via enhanced electrostatic bridging: Insights from molecular modeling of the full-length protein. Biophys Chem 2024; 307:107196. [PMID: 38335809 DOI: 10.1016/j.bpc.2024.107196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Fibril formation from alpha-synuclein is a key point in Parkinson's disease, multiple system atrophy, and other synucleinopathies. The mechanism of the amyloid-like conversion followed by the formation of pre-fibrillar soluble oligomers and fibrils is not completely clear; furthermore, it is unclear how the Parkinson's disease-related point mutations located in the pre-NAC region enhance fibrillation. In the present paper, atomistic replica exchange molecular dynamics simulations of the full-length alpha-synuclein and its two mutants, A53T and E46K, elucidated amyloid conversion intermediates. Both mutants demonstrated an enhanced tendency for the conversion but in different manners; the main intermediate conformations populated in the WT alpha-synuclein conformational ensemble disappeared due to mutations, indicating a different conversion pathway. Analysis of the preferable beta-hairpin positions and intermediate conformations seems to reflect a tendency to form a particular amyloid fibril polymorph. A strong elevation of amyloid transformation level was shown also for Ser129-phosphorylated alpha-synuclein. Altered intermediate conformations, the most preferable beta-hairpin positions in the NAC region, and prevalent salt bridges propose the formation of so-called polymorph 2 or even a novel type of fibrils. A better understanding of the detailed mechanism of the amyloid conversion sheds light on the effect of Lewy body-related phosphorylation and might help in the development of new therapeutics for synucleinopathies.
Collapse
Affiliation(s)
- Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Leninskie gory 1/40, Russia.
| |
Collapse
|
16
|
Kaur N, Singh R, Das AP, Agarwal SM, Dhingra N, Kaur T. Identification of Bile Acid-Derived Chemical Chaperone(s) Targeting E46K-Mutated Alpha-Synuclein Protein to Treat Parkinson's Disease: Molecular Modelling, Docking, ADME, and Simulation Studies. Appl Biochem Biotechnol 2024; 196:2086-2109. [PMID: 37466885 DOI: 10.1007/s12010-023-04625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Aggregated α-synuclein (α-syn) present inside small cytoplasmic inclusions in the substantia nigra region marks the major pathological hallmark of Parkinson's disease (PD) and makes it an attractive target for the drug development process. Certain small-molecule chaperones (such as DCA, UDCA, TUDCA) presented the ability to prevent misfolding and aggregation of α-syn as well as to disentangle mature α-syn amyloid fibrils. However, due to toxicity constraints, these small molecules could not be translated into clinical settings. Computational biology methods and bioinformatics approaches allow virtual screening of a large number of molecules, with reduced side effects and better efficacy. In the present study, a library of 10,928 derivatives was generated using DCA, UDCA, and TUDCA bile acid scaffolds and analysed for their binding affinity, pharmacokinetic properties, and drug likeliness profile, to come up with promising compounds with reduced toxicity and better chaperone ability. Molecular docking revealed that with respect to their free binding energy, C1-C25 have the lowest binding energy and bind significantly to recombinantly assembled E46K α-syn fibrils (PDB ID-6UFR). In silico ADME predictions revealed that all these compounds had minimal toxic effects and had good absorption as well as solubility characteristics. Simulation studies further showed that the imidazole ring-based TUDCA derivatives interacted better with the protein in comparison to the others. The proposed study has identified potent chemical chaperones (C2 and C3) as effective therapeutic agents for Parkinson's disease, and further in vitro and in vivo testing will be undertaken to substantiate their potential as novel drugs.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Rimaljot Singh
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Agneesh P Das
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, 201301, India
| | - Subhash M Agarwal
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida, 201301, India
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Dhavale DD, Barclay AM, Borcik CG, Basore K, Berthold DA, Gordon IR, Liu J, Milchberg MH, O'Shea JY, Rau MJ, Smith Z, Sen S, Summers B, Smith J, Warmuth OA, Perrin RJ, Perlmutter JS, Chen Q, Fitzpatrick JAJ, Schwieters CD, Tajkhorshid E, Rienstra CM, Kotzbauer PT. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. Nat Commun 2024; 15:2750. [PMID: 38553463 PMCID: PMC10980826 DOI: 10.1038/s41467-024-46832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.
Collapse
Affiliation(s)
- Dhruva D Dhavale
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander M Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Collin G Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katherine Basore
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah A Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Isabelle R Gordon
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jialu Liu
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Moses H Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jennifer Y O'Shea
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zachary Smith
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Soumyo Sen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brock Summers
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Owen A Warmuth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard J Perrin
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chad M Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Paul T Kotzbauer
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
Onishi N, Mazzaferro N, Kunstelj Š, Alvarado DA, Muller AM, Vázquez FX. Flanking Domains Modulate α-Synuclein Monomer Structure: A Molecular Dynamics Domain Deletion Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586267. [PMID: 38586052 PMCID: PMC10996548 DOI: 10.1101/2024.03.23.586267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aggregates of misfolded α-synuclein proteins (asyn) are key markers of Parkinson's disease. Asyn proteins have three domains: an N-terminal domain, a hydrophobic NAC core implicated in aggregation, and a proline-rich C-terminal domain. Proteins with truncated C-terminal domains are known to be prone to aggregation and suggest that studying domain-domain interactions in asyn monomers could help elucidate the role of the flanking domains in modulating protein structure. To this end, we used Gaussian accelerated molecular dynamics (GAMD) to simulate wild-type (WT), N-terminal truncated (DN), C-terminal truncated (ΔC), and isolated NAC domain variants (isoNAC). Using clustering and contact analysis, we found that N- and C-terminal domains interact via electrostatic interactions, while the NAC and N-terminal domains interact through hydrophobic contacts. Our work also suggests that the C-terminal domain does not interact directly with the NAC domain but instead interacts with the N-terminal domain. Removal of the N-terminal domain led to increased contacts between NAC and C-terminal domains and the formation of interdomain β-sheets. Removal of either flanking domain also resulted in increased compactness of every domain. We also found that the contacts between flanking domains results in an electrostatic potential (ESP) that could possibly lead to favorable interactions with anionic lipid membranes. Removal of the C-terminal domain disrupts the ESP in a way that is likely to over-stabilize protein-membrane interactions. All of this suggests that one of the roles of the flanking domains may be to modulate the protein structure in a way that helps maintain elongation, hide hydrophobic residue from the solvent, and maintain an ESP that aids favorable interactions with the membrane.
Collapse
Affiliation(s)
- Noriyo Onishi
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| | | | - Špela Kunstelj
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| | - Daisy A. Alvarado
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| | - Anna M. Muller
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| | - Frank X. Vázquez
- Department of Chemistry, St. John’s University, Queens, NY 11439, USA
| |
Collapse
|
19
|
Lu J, Ge P, Sawaya MR, Hughes MP, Boyer DR, Cao Q, Abskharon R, Cascio D, Tayeb-Fligelman E, Eisenberg DS. Cryo-EM structures of the D290V mutant of the hnRNPA2 low-complexity domain suggests how D290V affects phase separation and aggregation. J Biol Chem 2024; 300:105531. [PMID: 38072051 PMCID: PMC10844680 DOI: 10.1016/j.jbc.2023.105531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain. We find that the mutant form of hnRNPA2 differs from the WT fibrils in four ways. In contrast to the WT fibrils, the PY-nuclear localization signals in the fibril cores of all three mutant polymorphs are less accessible to chaperones. Also, the mutant fibrils are more stable than WT fibrils as judged by phase separation, thermal stability, and energetic calculations. Similar to other pathogenic amyloids, the mutant fibrils are polymorphic. Thus, these structures offer evidence to explain how a D-to-V missense mutation diverts the assembly of reversible, functional amyloid-like fibrils into the assembly of pathogenic amyloid, and may shed light on analogous conversions occurring in other ribonucleoproteins that lead to neurological diseases such as amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Peng Ge
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael R Sawaya
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David R Boyer
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Duilio Cascio
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Einav Tayeb-Fligelman
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - David S Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA.
| |
Collapse
|
20
|
Tarutani A, Hasegawa M. Ultrastructures of α-Synuclein Filaments in Synucleinopathy Brains and Experimental Models. J Mov Disord 2024; 17:15-29. [PMID: 37990381 PMCID: PMC10846975 DOI: 10.14802/jmd.23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023] Open
Abstract
Intracellular α-synuclein (α-syn) inclusions are a neuropathological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA), both of which are termed synucleinopathies. LBD is defined by Lewy bodies and Lewy neurites in neurons, while MSA displays glial cytoplasmic inclusions in oligodendrocytes. Pathological α-syn adopts an ordered filamentous structure with a 5-10 nm filament diameter, and this conformational change has been suggested to be involved in the disease onset and progression. Synucleinopathies also exhibit characteristic ultrastructural and biochemical properties of α-syn filaments, and α-syn strains with distinct conformations have been identified. Numerous experimental studies have supported the idea that pathological α-syn self-amplifies and spreads throughout the brain, during which processes the conformation of α-syn filaments may drive the disease specificity. In this review, we summarize the ultrastructural features and heterogeneity of α-syn filaments in the brains of patients with synucleinopathy and in experimental models of seeded α-syn aggregation.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
21
|
Huang J, Ahmed R, Akimoto M, Martinez Pomier K, Melacini G. Early-Onset Parkinson Mutation Remodels Monomer-Fibril Interactions to Allosterically Amplify Synuclein's Amyloid Cascade. JACS AU 2023; 3:3485-3493. [PMID: 38155658 PMCID: PMC10751762 DOI: 10.1021/jacsau.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Alpha synuclein (αS) aggregates are the main component of Lewy bodies (LBs) associated with Parkinson's disease (PD). A longstanding question about αS and PD pertains to the autosomal dominant E46K αS mutant, which leads to the early onset of PD and LB dementias. The E46K mutation not only promotes αS aggregation but also stabilizes αS monomers in "closed" conformers, which are compact and aggregation-incompetent. Hence, the mechanism of action of the E46K mutation is currently unclear. Here, we show that αS monomers harboring the E46K mutation exhibit more extensive interactions with fibrils compared to those of WT. Such monomer-fibril interactions are sufficient to allosterically drive transitions of αS monomers from closed to open conformations, enabling αS aggregation. We also show that E46K promotes head-to-tail monomer-monomer interactions in early self-association events. This multipronged mechanism provides a new framework to explain how the E46K mutation and possibly other αS variants trigger early-onset PD.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rashik Ahmed
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
22
|
Liu R, Dong X, Seroski DT, Soto Morales B, Wong KM, Robang AS, Melgar L, Angelini TE, Paravastu AK, Hall CK, Hudalla GA. Side-Chain Chemistry Governs Hierarchical Order of Charge-Complementary β-sheet Peptide Coassemblies. Angew Chem Int Ed Engl 2023; 62:e202314531. [PMID: 37931093 PMCID: PMC10841972 DOI: 10.1002/anie.202314531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Self-assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side-chain chemistry affects the hierarchical co-assembly of a family of charge-complementary β-sheet-forming peptide pairs known as CATCH(X+/Y-) at physiologic pH and ionic strength in water. In a concentration-dependent manner, the CATCH(6K+) (Ac-KQKFKFKFKQK-Am) and CATCH(6D-) (Ac-DQDFDFDFDQD-Am) pair formed either β-sheet-rich microspheres or β-sheet-rich gels with a micron-scale plate-like morphology, which were not observed with other CATCH(X+/Y-) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N- and C-terminal amino acids in CATCH(6K+) and CATCH(6D-) to Qs, increased observed co-assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)-green fluorescent protein fusions could be incorporated into the β-sheet plates and microspheres formed by the CATCH(6K+/6D-) pair, demonstrating the potential to endow functionality.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Xin Dong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Dillon T Seroski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Bethsymarie Soto Morales
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Kong M Wong
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Lucas Melgar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| |
Collapse
|
23
|
Mishra S. Emerging Trends in Cryo-EM-based Structural Studies of Neuropathological Amyloids. J Mol Biol 2023; 435:168361. [PMID: 37949311 DOI: 10.1016/j.jmb.2023.168361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Tauopathies, synucleinopathies, Aβ amyloidosis, TDP-43 proteinopathies, and prion diseases- these neurodegenerative diseases have in common the formation of amyloid filaments rich in cross-β sheets. Cryo-electron microscopy now permits the visualization of amyloid assemblies at atomic resolution, ushering a wide range of structural studies on several of these poorly understood amyloidogenic proteins. Amyloids are polymorphic with minor modulations in reaction environment affecting the overall architecture of their assembly, making amyloids an extremely challenging venture for structure-based therapeutic intervention. In 2017, the first cryo-EM structure of tau filaments from an Alzheimer's disease-affected brain established that in vitro assemblies might not necessarily reflect the native amyloid fold. Since then, brain-derived amyloid structures for several proteins across many neurodegenerative diseases have uncovered the disease-relevant amyloid folds. It has now been shown for tauopathies, synucleinopathies and TDP-43 proteinopathies, that distinct amyloid folds of the same protein might be related to different diseases. Salient features of each of these brain-derived folds are discussed in detail. It was also recently observed that seeded aggregation does not necessarily replicate the brain-derived structural fold. Owing to high throughput structure determination, some of these native amyloid folds have also been successfully replicated in vitro. In vitro replication of disease-relevant filaments will aid development of imaging ligands and defibrillating drugs. Towards this direction, recent high-resolution structures of tau filaments with positron emission tomography tracers and a defibrillating drug are also discussed. This review summarizes and celebrates the recent advancements in structural understanding of neuropathological amyloid filaments using cryo-EM.
Collapse
Affiliation(s)
- Suman Mishra
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bengaluru 560 012, Karnataka, India.
| |
Collapse
|
24
|
Huang Q, Yang P, Liu Y, Ding J, Lu M, Hu G. The interplay between α-Synuclein and NLRP3 inflammasome in Parkinson's disease. Biomed Pharmacother 2023; 168:115735. [PMID: 37852103 DOI: 10.1016/j.biopha.2023.115735] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023] Open
Abstract
α-Synuclein is a member of a protein of synucleins, which is a presynaptic neuron protein. It is usually highly expressed in the brain and participates in the formation and transmission of nerve synapses. It has been reported that abnormal aggregation of α-Syn can induce the activation of NLRP3 inflammasome in microglia, increase the production of IL-1β, and aggravate neuroinflammation. Therefore, it is recognized as one of the important factors leading to neuroinflammation in Parkinson's disease. In this paper, we aimed to explore the influence of post-translational modification of α-Syn on its pathological aggregation and summarize various pathways that activate NLRP3 triggered by α-Syn and targeted therapeutic strategies, which provided new insights for further exploring the origin and targeted therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Qianhui Huang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pei Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianhua Ding
- Department of Pharmacology, Nanjing Medical University, Jiangsu 211166, China
| | - Ming Lu
- Department of Pharmacology, Nanjing Medical University, Jiangsu 211166, China.
| | - Gang Hu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacology, Nanjing Medical University, Jiangsu 211166, China.
| |
Collapse
|
25
|
Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biophys Chem 2023; 303:107122. [PMID: 37839353 DOI: 10.1016/j.bpc.2023.107122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder with the hallmark of abnormal aggregates of alpha-synuclein (α-syn) in Lewy bodies (LBs) and Lewy neurites (LNs). Currently, pathogenic α-syn and mitochondrial dysfunction have been considered as prominent roles that give impetus to the PD onset. This review describes the α-syn pathology and mitochondrial alterations in PD, and focuses on how α-syn interacts with multiple aspects of mitochondrial homeostasis in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China; Heilongjiang Nursing College, Haerbin 150000, PR China.
| |
Collapse
|
26
|
Maurer M, Lazaridis T. Transmembrane β-Barrel Models of α-Synuclein Oligomers. J Chem Inf Model 2023; 63:7171-7179. [PMID: 37963823 DOI: 10.1021/acs.jcim.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The aggregation of α-synuclein is implicated in a number of neurodegenerative diseases, such as Parkinson's and Multiple System Atrophy, but the role of these aggregates in disease development is not clear. One possible mechanism of cytotoxicity is the disturbance or permeabilization of cell membranes by certain types of oligomers. However, no high-resolution structure of such membrane-embedded complexes has ever been determined. Here we construct and evaluate putative transmembrane β-barrels formed by this protein. Examination of the α-synuclein sequence reveals two regions that could form membrane-embedded β-hairpins: 64-92 (the NAC), and 35-56, which harbors many familial Parkinson's mutations. The stability of β-barrels formed by these hairpins is examined first in implicit membrane pores and then by multimicrosecond all-atom simulations. We find that a NAC region barrel remains stably inserted and hydrated for at least 10 μs. A 35-56 barrel remains stably inserted in the membrane but dehydrates and collapses if all His50 are neutral or if His50 is replaced by Q. If half of the His50 are doubly protonated, the barrel takes an oval shape but remains hydrated for at least 10 μs. Possible implications of these findings for α-synuclein pathology are discussed.
Collapse
Affiliation(s)
- Manuela Maurer
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| |
Collapse
|
27
|
Wallace HM, Yang H, Tan S, Pan HS, Yang R, Xu J, Jo H, Condello C, Polizzi NF, DeGrado WF. De novo Design of Peptides that Bind Specific Conformers of α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567090. [PMID: 38014268 PMCID: PMC10680688 DOI: 10.1101/2023.11.14.567090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Insoluble amyloids rich in cross-β fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloid in a conformationally specific manner are lacking. We introduce a novel computational method for de novo design of peptides that tile the surface of α-synuclein fibrils in a conformationally specific manner. Our method begins by identifying surfaces that are unique to the conformational strain of interest, which becomes a "target backbone" for the design of a peptide binder. Next, we interrogate structures in the PDB database with high geometric complementarity to the target. Then, we identify secondary structural motifs that interact with this target backbone in a favorable, highly occurring geometry. This method produces monomeric helical motifs with a favorable geometry for interaction with the strands of the underlying amyloid. Each motif is then symmetrically replicated to form a monolayer that tiles the amyloid surface. Finally, amino acid sequences of the peptide binders are computed to provide a sequence with high geometric and physicochemical complementarity to the target amyloid. This method was applied to a conformational strain of α-synuclein fibrils, resulting in a peptide with high specificity for the target relative to other amyloids formed by α-synuclein, tau, or Aβ40. This designed peptide also markedly slowed the formation of α-synuclein amyloids. Overall, this method offers a new tool for examining conformational strains of amyloid proteins.
Collapse
|
28
|
Schulz CM, Pfitzer A, Hoyer W. Fibril core regions in engineered α-synuclein dimer are crucial for blocking of fibril elongation. BBA ADVANCES 2023; 4:100110. [PMID: 38053641 PMCID: PMC10694066 DOI: 10.1016/j.bbadva.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Synucleinopathies like Parkinson's disease are neurodegenerative diseases which are associated with the deposition of fibrillar aggregates of the endogenous protein α-synuclein (α-syn). The inhibition of the elongation of α-syn fibrils is of great scientific interest and an option in the design of therapeutic strategies. Previously, we developed a disulfide-containing mutant of α-syn, called CC48, which inhibits fibril elongation by blocking of fibril ends. Surprisingly, wildtype (WT) α-syn molecules supported the blocked state, and a fusion of CC48 with WT α-syn, denoted WT-CC48, exhibited increased inhibitory potential. Here, we studied which regions of WT-CC48 are responsible for the strong inhibitory effect. To this end, we investigated a set of truncated versions of WT-CC48 by kinetic elongation assays, density gradient centrifugation, and atomic force microscopy. We show that in both the WT and the CC48 part of the fusion construct the hairpin region (residue 32-60) and NAC region (61-95), but not N- and C-terminal regions, are required for strong inhibition of fibril elongation. The required regions correspond to the segments forming the β-sheet core of α-syn fibrils. As α-syn fibrils typically consist of two protofilaments, the dimeric construct WT-CC48 provides the critical regions sufficient to cover the full β-sheetcore interface exposed at the fibril end, which can explain its high inhibitory efficiency. We suggest a mechanistic model of CC48-mediated inhibition of fibril elongation in which CC48 and WT α-syn cooperatively form an oligomer-like cap at the amyloid fibril end.
Collapse
Affiliation(s)
- Celina M. Schulz
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anne Pfitzer
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
29
|
Li D, Liu C. Molecular rules governing the structural polymorphism of amyloid fibrils in neurodegenerative diseases. Structure 2023; 31:1335-1347. [PMID: 37657437 DOI: 10.1016/j.str.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Amyloid fibrils are hallmarks of various neurodegenerative diseases. The structural polymorphism of amyloid fibrils holds significant pathological importance in diseases. This review aims to provide an in-depth overview on the complexity of amyloid fibrils' structural polymorphism and its implications in disease pathogenesis. We firstly decipher the molecular rules governing the structural polymorphism of amyloid fibrils. We then discuss pivotal factors that contribute to the assortment of fibril structural polymorphs, including post-translational modifications (PTMs), disease mutations, and interacting molecules, and elucidate the structural basis of how these determinants influence amyloid fibril polymorphism. Furthermore, we underscore the need for a comprehensive understanding of the relationship between diverse fibril polymorphs and pathological activities, as well as their potential roles in therapeutic applications.
Collapse
Affiliation(s)
- Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
30
|
Chlebowicz J, Russ W, Chen D, Vega A, Vernino S, White CL, Rizo J, Joachimiak LA, Diamond MI. Saturation mutagenesis of α-synuclein reveals monomer fold that modulates aggregation. SCIENCE ADVANCES 2023; 9:eadh3457. [PMID: 37889966 PMCID: PMC10610913 DOI: 10.1126/sciadv.adh3457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
α-Synuclein (aSyn) aggregation underlies neurodegenerative synucleinopathies. aSyn seeds are proposed to replicate and propagate neuronal pathology like prions. Seeding of aSyn can be recapitulated in cellular systems of aSyn aggregation; however, the mechanism of aSyn seeding and its regulation are not well understood. We developed an mEos-based aSyn seeding assay and performed saturation mutagenesis to identify with single-residue resolution positive and negative regulators of aSyn aggregation. We not only found the core regions that govern aSyn aggregation but also identified mutants outside of the core that enhance aggregation. We identified local structure within the N terminus of aSyn that hinders the fibrillization propensity of its aggregation-prone core. Based on the screen, we designed a minimal aSyn fragment that shows a ~4-fold enhancement in seeding activity and enabled discrimination of synucleinopathies. Our study expands the basic knowledge of aSyn aggregation and advances the design of cellular systems of aSyn aggregation to diagnose synucleinopathies based on protein conformation.
Collapse
Affiliation(s)
- Julita Chlebowicz
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Russ
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Evozyne Inc., Chicago, IL, USA
| | - Dailu Chen
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony Vega
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven Vernino
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles L. White
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukasz A. Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc I. Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Wang G, Zhu L, Wu X, Qian Z. Influence of Protonation on the Norepinephrine Inhibiting α-Synuclein 71-82 Oligomerization. J Phys Chem B 2023; 127:7848-7857. [PMID: 37683121 DOI: 10.1021/acs.jpcb.3c03270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) is closely linked to the massive presence of Lewy vesicles and Lewy axons in the cytoplasm of neurons, mainly consisting of α-synuclein (αS). Norepinephrine (NE), whose secretion can be increased by exercise, has been demonstrated to prevent the fibrillation of αS and to break down the mature αS fibrils. In this work, we focus on the influence of protonation on the inhibitory ability of NE by using amyloid core fragment αS71-82 as a template. All-atom replica-exchange molecular dynamics simulations (accumulating to 33.6 μs) in explicit water were performed to explore the inhibitory effect of protonated and nonprotonated NE on αS oligomerization. Our results show that NE/NE+ can lead to a significant decrease in β-sheet content with increasing temperature, while isolated αS maintains relatively higher β-sheet conformations until 363 K, implying that both NE and NE+ can lower the critical temperature required for αS fibril decomposition. NE and NE+ also lead to the formation of less compact αS oligomers by preventing the backbone hydrogen bonds and the side-chain packing. The protonation would affect the binding affinity, interaction modes, and binding intensity of NE with αS. Interesting, NE and NE+ have a distinct binding free energy in the electrostatic and solvation terms, which mostly counter each other and produce a weak binding intensity with αS. Our work contributes to a better understanding of the inhibitory mechanism of NE and NE+ on αS oligomerization relevant to PD pathogenesis, which may provide clues for the design of antiamyloid medicine.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
- Shang Xing School, 6 Shangli Road, Shenzhen 518100, Guangdong, China
| | - Xiaoxiao Wu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| |
Collapse
|
32
|
Scheres SHW, Ryskeldi-Falcon B, Goedert M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 2023; 621:701-710. [PMID: 37758888 DOI: 10.1038/s41586-023-06437-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/14/2023] [Indexed: 09/29/2023]
Abstract
Abnormal assembly of tau, α-synuclein, TDP-43 and amyloid-β proteins into amyloid filaments defines most human neurodegenerative diseases. Genetics provides a direct link between filament formation and the causes of disease. Developments in cryo-electron microscopy (cryo-EM) have made it possible to determine the atomic structures of amyloids from postmortem human brains. Here we review the structures of brain-derived amyloid filaments that have been determined so far and discuss their impact on research into neurodegeneration. Whereas a given protein can adopt many different filament structures, specific amyloid folds define distinct diseases. Amyloid structures thus provide a description of neuropathology at the atomic level and a basis for studying disease. Future research should focus on model systems that replicate the structures observed in disease to better understand the molecular mechanisms of disease and develop improved diagnostics and therapies.
Collapse
Affiliation(s)
- Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
33
|
Wojewska MJ, Otero-Jimenez M, Guijarro-Nuez J, Alegre-Abarrategui J. Beyond Strains: Molecular Diversity in Alpha-Synuclein at the Center of Disease Heterogeneity. Int J Mol Sci 2023; 24:13199. [PMID: 37686005 PMCID: PMC10487421 DOI: 10.3390/ijms241713199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Alpha-synucleinopathies (α-synucleinopathies) such as Parkinson's disease (PD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are all characterized by aggregates of alpha-synuclein (α-syn), but display heterogeneous clinical and pathological phenotypes. The mechanism underlying this heterogeneity is thought to be due to diversity in the α-syn strains present across the diseases. α-syn obtained from the post-mortem brain of patients who lived with these conditions is heterogenous, and displays a different protease sensitivity, ultrastructure, cytotoxicity, and seeding potential. The primary aim of this review is to summarize previous studies investigating these concepts, which not only reflect the idea of different syn strains being present, but demonstrate that each property explains a small part of a much larger puzzle. Strains of α-syn appear at the center of the correlation between α-syn properties and the disease phenotype, likely influenced by external factors. There are considerable similarities in the properties of disease-specific α-syn strains, but MSA seems to consistently display more aggressive traits. Elucidating the molecular underpinnings of heterogeneity amongst α-synucleinopathies holds promise for future clinical translation, allowing for the development of personalized medicine approaches tackling the root cause of each α-synucleinopathy.
Collapse
|
34
|
Huang D, Guo C. E46K Mutation of α-Synuclein Preorganizes the Intramolecular Interactions Crucial for Aggregation. J Chem Inf Model 2023; 63:4803-4813. [PMID: 37489886 DOI: 10.1021/acs.jcim.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Aggregation of α-synuclein is central to the pathogenesis of Parkinson's disease. The most toxic familial mutation E46K accelerates the aggregation process by an unknown mechanism. Herein, we provide a clue by investigating the influence of E46K on monomeric α-synuclein and its relation to aggregation with molecular dynamics simulations. The E46K mutation suppresses β-sheet structures in the N-terminus while promoting those at the key fibrillization region named NACore. Even though WT and E46K monomers share conserved intramolecular interactions with fibrils, E46K abolishes intramolecular contacts within the N-terminus which are present in the WT monomer but absent in fibrils. Network analysis identifies residues 36-53 as the interaction core of the WT monomer. Upon mutation, residues 36-46 are expelled to water due to aggravated electrostatic repulsion in the 43KTKK46 segment. Instead, NACore (residues 68-78) becomes the interaction hub and connects preceding residues 47-56 and the C-terminus. Consequently, residues 47-95 which belong to the fibril core form more compact β-sheets. Overall, the interaction network of E46K is more like fibrils than WT, stabilizing the fibril-like conformations. Our work provides mechanistic insights into the faster aggregation of the E46K mutant. It implies a close link between monomeric conformations and fibrils, which would spur the development of therapeutic strategies.
Collapse
Affiliation(s)
- Defa Huang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
35
|
Martinez Morales M, van der Walle CF, Derrick JP. Modulation of the Fibrillation Kinetics and Morphology of a Therapeutic Peptide by Cucurbit[7]uril. Mol Pharm 2023. [PMID: 37327060 DOI: 10.1021/acs.molpharmaceut.3c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibrillation is a challenge commonly encountered in the formulation and development of therapeutic peptides. Cucurbit[7]urils (CB[7]), a group of water soluble macrocycles, have been reported to suppress fibrillation in insulin and human calcitonin through association with Phe and Tyr residues which drive fibril formation. Here, we report the effect of CB[7] on the fibrillation behavior of the HIV fusion inhibitor enfuvirtide (ENF) that contains N-terminal Tyr and C-terminal Phe residues. Thioflavin T fluorescence, CD spectroscopy, and transmission electron microscopy were used to monitor fibrillation behavior. Fibrillation onset showed a strong pH dependency, with pH 6.5 identified as the condition most suitable to monitor the effects of CB[7]. Binding of CB[7] to wild-type ENF was measured by isothermal titration calorimetry and was consistent with a single site (Ka = 2.4 × 105 M-1). A weaker interaction (Ka = 2.8 × 103 M-1) was observed for an ENF mutant with the C-terminal Phe substituted for Ala (ENFm), suggesting that Phe was the specific site for CB[7] recognition. The onset of ENF fibrillation onset was delayed, rather than fully suppressed, in the presence of CB[7]. The ENFm mutant showed a greater delay in fibrillation onset but with no observable effect on fibrillation kinetics in the presence of CB[7]. Interestingly, ENF/CB[7] and ENFm fibrils exhibited comparable morphologies, differing from those observed for ENF alone. The results indicate that CB[7] is capable of modulating fibrillation onset and the resulting ENF fibrils by specifically binding to the C-terminal Phe residue. The work reinforces the potential of CB[7] as an inhibitor of fibrillation and highlights its role in determining fibril morphologies.
Collapse
Affiliation(s)
- Marcello Martinez Morales
- Dosage Form Design & Development, AstraZeneca, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, U.K
| | | | - Jeremy P Derrick
- School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
36
|
Zhou Y, Yao Y, Yang Z, Tang Y, Wei G. Naphthoquinone-dopamine hybrids disrupt α-synuclein fibrils by their intramolecular synergistic interactions with fibrils and display a better effect on fibril disruption. Phys Chem Chem Phys 2023; 25:14471-14483. [PMID: 37190853 DOI: 10.1039/d3cp00340j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
α-Synuclein (αSyn) is an intrinsically disordered protein and its abnormal aggregation into amyloid fibrils is the main hallmark of Parkinson's disease (PD). The disruption of preformed αSyn fibrils using small molecules is considered as a potential strategy for PD treatment. Recent experiments have reported that naphthoquinone-dopamine hybrids (NQDA), synthesized by naphthoquinone (NQ) and dopamine (DA) molecules, can significantly disrupt αSyn fibrils and cross the blood-brain barrier. To unravel the fibril-disruptive mechanisms at the atomic level, we performed microsecond molecular dynamics simulations of αSyn fibrils in the absence and presence of NQDA, NQ, DA, or NQ+DA molecules. Our simulations showed that NQDA reduces the β-sheet content, disrupts K45-E57 and E46-K80 salt-bridges, weakens the inter-protofibril interaction, and thus destabilizes the αSyn fibril structure. NQDA has the ability to form cation-π and H-bonding interactions with K45/K80, and form π-π stacking interactions with Y39/F94. Those interactions between NQDA and αSyn fibrils play a crucial role in disaggregating αSyn fibrils. Moreover, we found that NQDA has a better fibril destabilization effect than that of NQ, DA, and NQ+DA molecules. This is attributed to the synergistic fibril-binding effect between NQ and DA groups in NQDA molecules. The DA group can form strong π-π stacking interactions with aromatic residues Y39/F94 of the αSyn fibril, while the DA molecule cannot. In addition, NQDA can form stronger cation-π interactions with residues K45/K80 than those of both NQ and DA molecules. Our results provide the molecular mechanism underlying the disaggregation of the αSyn fibril by NQDA and its better performance in fibril disruption than NQ, DA, and NQ+DA molecules, which offers new clues for the screening and development of promising drug candidates to treat PD.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
37
|
Yang Y, Garringer HJ, Shi Y, Lövestam S, Peak-Chew S, Zhang X, Kotecha A, Bacioglu M, Koto A, Takao M, Spillantini MG, Ghetti B, Vidal R, Murzin AG, Scheres SHW, Goedert M. New SNCA mutation and structures of α-synuclein filaments from juvenile-onset synucleinopathy. Acta Neuropathol 2023; 145:561-572. [PMID: 36847833 PMCID: PMC10119069 DOI: 10.1007/s00401-023-02550-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
A 21-nucleotide duplication in one allele of SNCA was identified in a previously described disease with abundant α-synuclein inclusions that we now call juvenile-onset synucleinopathy (JOS). This mutation translates into the insertion of MAAAEKT after residue 22 of α-synuclein, resulting in a protein of 147 amino acids. Both wild-type and mutant proteins were present in sarkosyl-insoluble material that was extracted from frontal cortex of the individual with JOS and examined by electron cryo-microscopy. The structures of JOS filaments, comprising either a single protofilament, or a pair of protofilaments, revealed a new α-synuclein fold that differs from the folds of Lewy body diseases and multiple system atrophy (MSA). The JOS fold consists of a compact core, the sequence of which (residues 36-100 of wild-type α-synuclein) is unaffected by the mutation, and two disconnected density islands (A and B) of mixed sequences. There is a non-proteinaceous cofactor bound between the core and island A. The JOS fold resembles the common substructure of MSA Type I and Type II dimeric filaments, with its core segment approximating the C-terminal body of MSA protofilaments B and its islands mimicking the N-terminal arm of MSA protofilaments A. The partial similarity of JOS and MSA folds extends to the locations of their cofactor-binding sites. In vitro assembly of recombinant wild-type α-synuclein, its insertion mutant and their mixture yielded structures that were distinct from those of JOS filaments. Our findings provide insight into a possible mechanism of JOS fibrillation in which mutant α-synuclein of 147 amino acids forms a nucleus with the JOS fold, around which wild-type and mutant proteins assemble during elongation.
Collapse
Affiliation(s)
- Yang Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Shi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sew Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Xianjun Zhang
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Mehtap Bacioglu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Atsuo Koto
- Yomiuri-Land Keiyu Hospital, Tokyo, Japan
| | - Masaki Takao
- Department of Clinical Laboratory and Internal Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
38
|
Roterman I, Stapor K, Konieczny L. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines 2023; 11:biomedicines11051324. [PMID: 37238996 DOI: 10.3390/biomedicines11051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The structural transformation producing amyloids is a phenomenon that sheds new light on the protein folding problem. The analysis of the polymorphic structures of the α-synuclein amyloid available in the PDB database allows analysis of the amyloid-oriented structural transformation itself, but also the protein folding process as such. The polymorphic amyloid structures of α-synuclein analyzed employing the hydrophobicity distribution (fuzzy oil drop model) reveal a differentiation with a dominant distribution consistent with the micelle-like system (hydrophobic core with polar shell). This type of ordering of the hydrophobicity distribution covers the entire spectrum from the example with all three structural units (single chain, proto-fibril, super-fibril) exhibiting micelle-like form, through gradually emerging examples of local disorder, to structures with an extremely different structuring pattern. The water environment directing protein structures towards the generation of ribbon micelle-like structures (concentration of hydrophobic residues in the center of the molecule forming a hydrophobic core with the exposure of polar residues on the surface) also plays a role in the amyloid forms of α-synuclein. The polymorphic forms of α-synuclein reveal local structural differentiation with a common tendency to accept the micelle-like structuralization in certain common fragments of the polypeptide chain of this protein.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Medyczna 7, 30-688 Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Leszek Konieczny
- Medical Biochemistry, Jagiellonian University-Medical College, Kopernika 7, 31-034 Krakow, Poland
| |
Collapse
|
39
|
Yoon J, Lee M, Park Y, Lee K, Shin S. In silico investigation of the structural stability as the origin of the pathogenicity of α-synuclein protofibrils. J Biomol Struct Dyn 2023; 41:14103-14115. [PMID: 37036430 DOI: 10.1080/07391102.2023.2199077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 04/11/2023]
Abstract
α-Synuclein is a presynaptic neuronal protein. The fibril form of α-synuclein is a major constituent of the intraneuronal inclusion called Lewy body, a characteristic hallmark of Parkinson's disease. Recent ssNMR and cryo-EM experiments of wild-type α-synuclein fibrils have shown polymorphism and observed two major polymorphs, rod and twister. To associate the cytotoxicity of α-synuclein fibrils with their structural features, it is essential to understand the origins of their structural stability. In this study, we performed molecular dynamics simulations of the two major polymorphs of wild-type α-synuclein fibrils. The predominance of specific fibril polymorphs was rationalized in terms of relative structural stability in aqueous environments, which was attributed to the cooperative contributions of various stabilizing features. The results of the simulations indicated that highly stable structures in aqueous environments could be maintained by the cooperation of compact sidechain packing in the hydrophobic core, backbone geometry of the maximal β-sheet content wrapping the hydrophobic core, and solvent-exposed sidechains with large fluctuations maximizing the solvation entropy. The paired structure of the two protofilaments provides additional stability, especially at the interface region, by forming steric zipper interactions and hiding the hydrophobic residues from exposure to water. The sidechain interaction analyses and pulling simulations showed that the rod polymorph has stronger sidechain interactions and exhibits higher dissociation energy than the twister polymorph. It is expected that our study will provide a basis for understanding the pathogenic behaviors of diverse amyloid strains in terms of their structural properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jeseong Yoon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - MinJun Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yunsu Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kyunghee Lee
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Seokmin Shin
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Sun C, Zhou K, DePaola P, Shin WS, Hillyer T, Sawaya MR, Zhu R, Peng C, Zhou ZH, Jiang L. Cryo-EM structure of amyloid fibril formed by α-synuclein hereditary A53E mutation reveals a distinct protofilament interface. J Biol Chem 2023; 299:104566. [PMID: 36871760 PMCID: PMC10124909 DOI: 10.1016/j.jbc.2023.104566] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023] Open
Abstract
Synucleinopathies like Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA), have the same pathologic feature of misfolded α-synuclein protein (α-syn) accumulation in the brain. PD patients who carry α-syn hereditary mutations tend to have earlier onset and more severe clinical symptoms than sporadic PD patients. Therefore, revealing the effect of hereditary mutations to the α-syn fibril structure can help us understand these synucleinopathies' structural basis. Here, we present a 3.38 Å cryo-electron microscopy structure of α-synuclein fibrils containing the hereditary A53E mutation. The A53E fibril is symmetrically composed of two protofilaments, similar to other fibril structures of WT and mutant α-synuclein. The new structure is distinct from all other synuclein fibrils, not only at the interface between proto-filaments, but also between residues packed within the same proto-filament. A53E has the smallest interface with the least buried surface area among all α-syn fibrils, consisting of only two contacting residues. Within the same protofilament, A53E reveals distinct residue re-arrangement and structural variation at a cavity near its fibril core. Moreover, the A53E fibrils exhibit slower fibril formation and lower stability compared to WT and other mutants like A53T and H50Q, while also demonstrate strong cellular seeding in α-synuclein biosensor cells and primary neurons. In summary, our study aims to highlight structural differences - both within and between the protofilaments of A53E fibrils - and interpret fibril formation and cellular seeding of α-synuclein pathology in disease, which could further our understanding of the structure-activity relationship of α-synuclein mutants.
Collapse
Affiliation(s)
- Chuanqi Sun
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, California Nano Systems Institute, UCLA, Los Angeles, CA, USA
| | - Peter DePaola
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, CA, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Michael R Sawaya
- Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, UCLA, Los Angeles, CA, USA
| | - Ruowei Zhu
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Chao Peng
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, California Nano Systems Institute, UCLA, Los Angeles, CA, USA
| | - Lin Jiang
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Razzokov J, Fazliev S, Makhkamov M, Marimuthu P, Baev A, Kurganov E. Effect of Electric Field on α-Synuclein Fibrils: Revealed by Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:ijms24076312. [PMID: 37047286 PMCID: PMC10094641 DOI: 10.3390/ijms24076312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The self-association of amylogenic proteins to the fibril form is considered a pivotal factor in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). PD causes unintended or uncontrollable movements in its common symptoms. α-synuclein is the major cause of PD development and thus has been the main target of numerous studies to suppress and sequester its expression or effectively degrade it. Nonetheless, to date, there are no efficient and proven ways to prevent pathological protein aggregation. Recent investigations proposed applying an external electric field to interrupt the fibrils. This method is a non-invasive approach that has a certain benefit over others. We performed molecular dynamics (MD) simulations by applying an electric field on highly toxic fibrils of α-synuclein to gain a molecular-level insight into fibril disruption mechanisms. The results revealed that the applied external electric field induces substantial changes in the conformation of the α-synuclein fibrils. Furthermore, we show the threshold value for electric field strength required to completely disrupt the α-synuclein fibrils by opening the hydrophobic core of the fibril. Thus, our findings might serve as a valuable foundation to better understand molecular-level mechanisms of the α-synuclein fibrils disaggregation process under an applied external electric field.
Collapse
Affiliation(s)
- Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- R&D Center, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
- Correspondence: ; Tel.: +998-90-116-23-20
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
- Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Mukhriddin Makhkamov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan
| | - Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL–Pharmacy) and Structural Bioinformatics Laboratory (SBL–Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Artyom Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan
- Department of Biophysics, Biological Faculty, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
| | - Erkin Kurganov
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
42
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Mullapudi V, Vaquer-Alicea J, Bommareddy V, Vega AR, Ryder BD, White CL, Diamond MI, Joachimiak LA. Network of hotspot interactions cluster tau amyloid folds. Nat Commun 2023; 14:895. [PMID: 36797278 PMCID: PMC9935906 DOI: 10.1038/s41467-023-36572-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Cryogenic electron microscopy has revealed unprecedented molecular insight into the conformations of β-sheet-rich protein amyloids linked to neurodegenerative diseases. It remains unknown how a protein can adopt a diversity of folds and form multiple distinct fibrillar structures. Here we develop an in silico alanine scan method to estimate the relative energetic contribution of each amino acid in an amyloid assembly. We apply our method to twenty-seven ex vivo and in vitro fibril structural polymorphs of the microtubule-associated protein tau. We uncover networks of energetically important interactions involving amyloid-forming motifs that stabilize the different fibril folds. We evaluate our predictions in cellular and in vitro aggregation assays. Using a machine learning approach, we classify the structures based on residue energetics to identify distinguishing and unifying features. Our energetic profiling suggests that minimal sequence elements control the stability of tau fibrils, allowing future design of protein sequences that fold into unique structures.
Collapse
Affiliation(s)
- Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vaibhav Bommareddy
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anthony R Vega
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bryan D Ryder
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charles L White
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
44
|
Murray KA, Hu CJ, Pan H, Lu J, Abskharon R, Bowler JT, Rosenberg GM, Williams CK, Elezi G, Balbirnie M, Faull KF, Vinters HV, Seidler PM, Eisenberg DS. Small molecules disaggregate alpha-synuclein and prevent seeding from patient brain-derived fibrils. Proc Natl Acad Sci U S A 2023; 120:e2217835120. [PMID: 36757890 PMCID: PMC9963379 DOI: 10.1073/pnas.2217835120] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
The amyloid aggregation of alpha-synuclein within the brain is associated with the pathogenesis of Parkinson's disease (PD) and other related synucleinopathies, including multiple system atrophy (MSA). Alpha-synuclein aggregates are a major therapeutic target for treatment of these diseases. We identify two small molecules capable of disassembling preformed alpha-synuclein fibrils. The compounds, termed CNS-11 and CNS-11g, disaggregate recombinant alpha-synuclein fibrils in vitro, prevent the intracellular seeded aggregation of alpha-synuclein fibrils, and mitigate alpha-synuclein fibril cytotoxicity in neuronal cells. Furthermore, we demonstrate that both compounds disassemble fibrils extracted from MSA patient brains and prevent their intracellular seeding. They also reduce in vivo alpha-synuclein aggregates in C. elegans. Both compounds also penetrate brain tissue in mice. A molecular dynamics-based computational model suggests the compounds may exert their disaggregating effects on the N terminus of the fibril core. These compounds appear to be promising therapeutic leads for targeting alpha-synuclein for the treatment of synucleinopathies.
Collapse
Affiliation(s)
- Kevin A. Murray
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Carolyn J. Hu
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Hope Pan
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Jeannette T. Bowler
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Gregory M. Rosenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Christopher K. Williams
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Gazmend Elezi
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Melinda Balbirnie
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| |
Collapse
|
45
|
Song N, Song Y, Hu B, Liu X, Yu X, Zhou H, Long J, Yu Z. Persistent Endoplasmic Reticulum Stress Stimulated by Peptide Assemblies for Sensitizing Cancer Chemotherapy. Adv Healthc Mater 2023; 12:e2202039. [PMID: 36353887 DOI: 10.1002/adhm.202202039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Pharmacological targeting of endoplasmic reticulum (ER) stress represents one of important methods for disease therapy, which, however, is significantly suppressed by the ER homeostatic processe. Herein, a proof-of-concept strategy is reported for persistent stimulation of ER stress via preventing ER stress adaptation by utilizing multifunctional peptide assemblies. The strategy is established via creation of peptide assemblies with ER-targeting and chaperone glucose-regulated protein 78 (GRP78)-inhibiting functions. The peptides assemblies form well-defined nanofibers that are retrieved by ER organelles in human cervical cancer cell. The underlying mechanism studies unravel that the ER-accumulated peptide assemblies simultaneously stimulate ER stress and inhibit GRP78 refolding activity and thereby promoting endogenous protein aggregation. Combining the internalized peptide assemblies with the induced protein aggregates leads to the persistent stimulation of ER stress. The persistent ER stress induced by the peptide assemblies bestows their application in sensitizing cancer chemotherapy. Both in vitro and in vivo results confirm the enhanced cytotoxicity of drug toyocamycin against HeLa cells by peptide assemblies, thus efficiently inhibiting in vivo tumor growth. The strategy reported here discloses the fundamental keys for efficient promotion of ER stress, thus providing the guidance for development of ER-targeting-assisted cancer chemotherapy in the future.
Collapse
Affiliation(s)
- Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanqiu Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Binbin Hu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiunan Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
46
|
Watson MD, Lee JC. Genetically Encoded Aryl Alkyne for Raman Spectral Imaging of Intracellular α-Synuclein Fibrils. J Mol Biol 2023; 435:167716. [PMID: 35792158 PMCID: PMC9805477 DOI: 10.1016/j.jmb.2022.167716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023]
Abstract
α-Synuclein (α-syn) is an intrinsically disordered protein involved in a group of diseases collectively termed synucleinopathies, characterized by the aggregation of α-syn to form insoluble, β-sheet-rich amyloid fibrils. Amyloid fibrils are thought to contribute to disease progression through cell-to-cell transmission, templating and propagating intracellular amyloid formation. Raman spectral imaging offers a direct characterization of protein secondary structure via the amide-I backbone vibration; however, specific detection of α-syn conformational changes against the background of other cellular components presents a challenge. Here, we demonstrate the ability to unambiguously identify cellularly internalized α-syn fibrils by coupling Raman spectral imaging with the use of a genetically encoded aryl alkyne, 4-ethynyl-l-phenylalanine (FCC), through amber codon suppression. The alkyne stretch (CC) of FCC provides a spectrally unique molecular vibration without interference from native biomolecules. Cellular uptake of FCC-α-syn fibrils formed in vitro was visualized in cultured human SH-SY5Y neuroblastoma cells by Raman spectral imaging. Fibrils appear as discrete cytosolic clusters of varying sizes, found often at the cellular periphery. Raman spectra of internalized fibrils exhibit frequency shifts and spectral narrowing relative to in vitro fibrils, highlighting the environmental sensitivity of the alkyne vibration. Interestingly, spectral analysis reveals variations in lipid and protein recruitment to these aggregates, and in some cases, secondary structural changes in the fibrils are observed. This work sets the groundwork for future Raman spectroscopic investigations using a similar approach of an evolved aminoacyl-tRNA synthetase/tRNA pair to incorporate FCC into endogenous amyloidogenic proteins to monitor their aggregation in cells.
Collapse
Affiliation(s)
- Matthew D Watson
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
47
|
Dhavale DD, Barclay AM, Borcik CG, Basore K, Gordon IR, Liu J, Milchberg MH, O’shea J, Rau MJ, Smith Z, Sen S, Summers B, Smith J, Warmuth OA, Chen Q, Fitzpatrick JAJ, Schwieters CD, Tajkhorshid E, Rienstra CM, Kotzbauer PT. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523303. [PMID: 36711931 PMCID: PMC9882085 DOI: 10.1101/2023.01.09.523303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. We developed and validated a novel method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and used solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise two protofilaments with pseudo-21 helical screw symmetry, very low twist and an interface formed by antiparallel beta strands of residues 85-93. The fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural landscape of LBD Asyn fibrils and inform further studies of disease mechanisms, imaging agents and therapeutics targeting Asyn.
Collapse
Affiliation(s)
- Dhruva D. Dhavale
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander M. Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine Basore
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Isabelle R. Gordon
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jialu Liu
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Moses H. Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer O’shea
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J. Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zachary Smith
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Soumyo Sen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brock Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Owen A. Warmuth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - James A. J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chad M. Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul T. Kotzbauer
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
48
|
Estaun-Panzano J, Arotcarena ML, Bezard E. Monitoring α-synuclein aggregation. Neurobiol Dis 2023; 176:105966. [PMID: 36527982 PMCID: PMC9875312 DOI: 10.1016/j.nbd.2022.105966] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and subsequent aggregation of alpha-synuclein (α-syn) that accumulates in cytoplasmic inclusions bodies in the cells of affected brain regions. Since the seminal report of likely-aggregated α-syn presence within the Lewy bodies by Spillantini et al. in 1997, the keyword "synuclein aggregation" has appeared in over 6000 papers (Source: PubMed October 2022). Studying, observing, describing, and quantifying α-syn aggregation is therefore of paramount importance, whether it happens in tubo, in vitro, in post-mortem samples, or in vivo. The past few years have witnessed tremendous progress in understanding aggregation mechanisms and identifying various polymorphs. In this context of growing complexity, it is of utmost importance to understand what tools we possess, what exact information they provide, and in what context they may be applied. Nonetheless, it is also crucial to rationalize the relevance of the information and the limitations of these methods for gauging the final result. In this review, we present the main techniques that have shaped the current views about α-syn structure and dynamics, with particular emphasis on the recent breakthroughs that may change our understanding of synucleinopathies.
Collapse
Affiliation(s)
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, United Kingdom.
| |
Collapse
|
49
|
Cerdá-Bernad D, Costa L, Serra AT, Bronze MR, Valero-Cases E, Pérez-Llamas F, Candela ME, Arnao MB, Barberán FT, Villalba RG, García-Conesa MT, Frutos MJ. Saffron against Neuro-Cognitive Disorders: An Overview of Its Main Bioactive Compounds, Their Metabolic Fate and Potential Mechanisms of Neurological Protection. Nutrients 2022; 14:5368. [PMID: 36558528 PMCID: PMC9781906 DOI: 10.3390/nu14245368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saffron (Crocus sativus L.) is a spice used worldwide as a colouring and flavouring agent. Saffron is also a source of multiple bioactive constituents with potential health benefits. Notably, saffron displays consistent beneficial effects against a range of human neurological disorders (depression, anxiety, sleeping alterations). However, the specific compounds and biological mechanisms by which this protection may be achieved have not yet been elucidated. In this review, we have gathered the most updated evidence of the neurological benefits of saffron, as well as the current knowledge on the main saffron constituents, their bioavailability and the potential biological routes and postulated mechanisms by which the beneficial protective effect may occur. Our aim was to provide an overview of the neuroprotective effects attributed to this product and its main bioactive compounds and to highlight the main research gaps that need to be further pursued to achieve full evidence and understanding of the benefits of saffron. Overall, improved clinical trials and adequately designed pre-clinical studies are needed to support the evidence of saffron and of its main bioactive components (e.g., crocin, crocetin) as a therapeutic product to combat neurological disorders.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | - Leonor Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- iMED, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | | | - María Emilia Candela
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Francisco Tomás Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Rocío García Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - María-José Frutos
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
50
|
Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J Mol Biol 2022; 434:167859. [PMID: 36270580 PMCID: PMC9922159 DOI: 10.1016/j.jmb.2022.167859] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.
Collapse
Affiliation(s)
- Samantha X Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|