1
|
MacKenzie ACE, Sams MP, Lin J, Batista CR, Lim M, Riarh CK, DeKoter RP. Negative regulation of activation-induced cytidine deaminase gene transcription in developing B cells by a PU.1-interacting intronic region. Mol Immunol 2024; 175:103-111. [PMID: 39332244 DOI: 10.1016/j.molimm.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Activation-induced cytidine deaminase (AID, encoded by Aicda) plays a key role in somatic hypermutation and class switch recombination in germinal center B cells. However, off-target effects of AID are implicated in human leukemia and lymphoma. A mouse model of precursor B cell acute lymphoblastic leukemia driven by deletion of the related transcription factors PU.1 and Spi-B revealed C->T transition mutations compatible with being induced by AID. Therefore, we hypothesized that PU.1 negatively regulates Aicda during B cell development. Aicda mRNA transcript levels were increased in leukemia cells and bone marrow pre-B cells lacking PU.1 and/or Spi-B, relative to wild type cells. Using chromatin immunoprecipitation, PU.1 was found to interact with a negative regulatory region (R2-1) within the first intron of Aicda. CRISPR-Cas9-induced mutagenesis of R2-1 in cultured pre-B cells resulted in upregulation of Aicda in response to lipopolysaccharide stimulation. Mutation of the PU.1 interaction site and neighboring sequences resulted in reduced repressive ability of R2-1 in transient transfection analysis followed by luciferase assays. These results show that a PU.1-interacting intronic region negatively regulates Aicda transcription in developing B cells.
Collapse
Affiliation(s)
- Allanna C E MacKenzie
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mia P Sams
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jane Lin
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Carolina Reyes Batista
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Michelle Lim
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Chanpreet K Riarh
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
2
|
Weischedel J, Higgins L, Rogers S, Gramalla-Schmitz A, Wyrzykowska P, Borgoni S, MacCarthy T, Chahwan R. Modular cytosine base editing promotes epigenomic and genomic modifications. Nucleic Acids Res 2024; 52:e8. [PMID: 37994786 PMCID: PMC10810192 DOI: 10.1093/nar/gkad1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Prokaryotic and eukaryotic adaptive immunity differ considerably. Yet, their fundamental mechanisms of gene editing via Cas9 and activation-induced deaminase (AID), respectively, can be conveniently complimentary. Cas9 is an RNA targeted dual nuclease expressed in several bacterial species. AID is a cytosine deaminase expressed in germinal centre B cells to mediate genomic antibody diversification. AID can also mediate epigenomic reprogramming via active DNA demethylation. It is known that sequence motifs, nucleic acid structures, and associated co-factors affect AID activity. But despite repeated attempts, deciphering AID's intrinsic catalytic activities and harnessing its targeted recruitment to DNA is still intractable. Even recent cytosine base editors are unable to fully recapitulate AID's genomic and epigenomic editing properties. Here, we describe the first instance of a modular AID-based editor that recapitulates the full spectrum of genomic and epigenomic editing activity. Our 'Swiss army knife' toolbox will help better understand AID biology per se as well as improve targeted genomic and epigenomic editing.
Collapse
Affiliation(s)
- Julian Weischedel
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Laurence Higgins
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Sally Rogers
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Anna Gramalla-Schmitz
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Paulina Wyrzykowska
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Simone Borgoni
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Thomas MacCarthy
- Department of Applied Mathematics & Statistics, Stony Brook University, NY 11794-3600, USA
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
3
|
Singh R, Chandley P, Rohatgi S. Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies. Immunohorizons 2023; 7:886-897. [PMID: 38149884 PMCID: PMC10759153 DOI: 10.4049/immunohorizons.2300102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
mAbs are highly indispensable tools for diagnostic, prophylactic, and therapeutic applications. The first technique, hybridoma technology, was based on fusion of B lymphocytes with myeloma cells, which resulted in generation of single mAbs against a specific Ag. Along with hybridoma technology, several novel and alternative methods have been developed to improve mAb generation, ranging from electrofusion to the discovery of completely novel technologies such as B cell immortalization; phage, yeast, bacterial, ribosome, and mammalian display systems; DNA/RNA encoded Abs; single B cell technology; transgenic animals; and artificial intelligence/machine learning. This commentary outlines the evolution, methodology, advantages, and limitations of various mAb production techniques. Furthermore, with the advent of next-generation Ab technologies such as single-chain variable fragments, nanobodies, bispecific Abs, Fc-engineered Abs, Ab biosimilars, Ab mimetics, and Ab-drug conjugates, the healthcare and pharmaceutical sectors have become resourceful to develop highly specific mAb treatments against various diseases such as cancer and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Rohit Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|
4
|
Mokhtary P, Pourhashem Z, Mehrizi AA, Sala C, Rappuoli R. Recent Progress in the Discovery and Development of Monoclonal Antibodies against Viral Infections. Biomedicines 2022; 10:biomedicines10081861. [PMID: 36009408 PMCID: PMC9405509 DOI: 10.3390/biomedicines10081861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs), the new revolutionary class of medications, are fast becoming tools against various diseases thanks to a unique structure and function that allow them to bind highly specific targets or receptors. These specialized proteins can be produced in large quantities via the hybridoma technique introduced in 1975 or by means of modern technologies. Additional methods have been developed to generate mAbs with new biological properties such as humanized, chimeric, or murine. The inclusion of mAbs in therapeutic regimens is a major medical advance and will hopefully lead to significant improvements in infectious disease management. Since the first therapeutic mAb, muromonab-CD3, was approved by the U.S. Food and Drug Administration (FDA) in 1986, the list of approved mAbs and their clinical indications and applications have been proliferating. New technologies have been developed to modify the structure of mAbs, thereby increasing efficacy and improving delivery routes. Gene delivery technologies, such as non-viral synthetic plasmid DNA and messenger RNA vectors (DMabs or mRNA-encoded mAbs), built to express tailored mAb genes, might help overcome some of the challenges of mAb therapy, including production restrictions, cold-chain storage, transportation requirements, and expensive manufacturing and distribution processes. This paper reviews some of the recent developments in mAb discovery against viral infections and illustrates how mAbs can help to combat viral diseases and outbreaks.
Collapse
Affiliation(s)
- Pardis Mokhtary
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Department of Biochemistry and Molecular Biology, University of Siena, 53100 Siena, Italy
| | - Zeinab Pourhashem
- Student Research Committee, Pasteur Institute of Iran, Tehran 1316943551, Iran;
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Akram Abouei Mehrizi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| |
Collapse
|
5
|
Masuda H, Sawada A, Hashimoto SI, Tamai K, Lin KY, Harigai N, Kurosawa K, Ohta K, Seo H, Itou H. Fast-tracking antibody maturation using a B cell-based display system. MAbs 2022; 14:2122275. [PMID: 36202784 PMCID: PMC9542628 DOI: 10.1080/19420862.2022.2122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Affinity maturation, an essential component of antibody engineering, is crucial for developing therapeutic antibodies. Cell display system coupled with somatic hypermutation (SHM) initiated by activation-induced cytidine deaminase (AID) is a commonly used technique for affinity maturation. AID introduces targeted DNA lesions into hotspots of immunoglobulin (Ig) gene loci followed by erroneous DNA repair, leading to biased mutations in the complementary determining regions. However, systems that use an in vivo mimicking mechanism often require several rounds of selection to enrich clones possessing accumulated mutations. We previously described the human ADLib® system, which features autonomous, AID-mediated diversification in Ig gene loci of a chicken B cell line DT40 and streamlines human antibody generation and optimization in one integrated platform. In this study, we further engineered DT40 capable of receiving exogenous antibody genes and examined whether the antibody could be affinity matured. The Ig genes of three representative anti-hVEGF-A antibodies originating from the human ADLib® were introduced; the resulting human IgG1 antibodies had up to 76.4-fold improvement in binding affinities (sub-picomolar KD) within just one round of optimization, owing to efficient accumulation of functional mutations. Moreover, we successfully improved the affinity of a mouse hybridoma-derived anti-hCDCP1 antibody using the engineered DT40, and the observed mutations remained effective in the post-humanized antibody as exhibited by an 8.2-fold increase of in vitro cytotoxicity without compromised physical stability. These results demonstrated the versatility of the novel B cell-based affinity maturation system as an easy-to-use antibody optimization tool regardless of the species of origin.Abbreviations: ADLib®: Autonomously diversifying library, ADLib® KI-AMP: ADLib® knock-in affinity maturation platform, AID: activation-induced cytidine deaminase, CDRs: complementary-determining regions, DIVAC: diversification activator, ECD: extracellular domain, FACS: fluorescence-activated cell sorting, FCM: flow cytometry, HC: heavy chainIg: immunoglobulin, LC: light chain, NGS: next-generation sequencing, PBD: pyrrolobenzodiazepine, SHM: somatic hypermutation, SPR: surface plasmon resonance.
Collapse
Affiliation(s)
- Hitomi Masuda
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan,CONTACT Hitomi Masuda Research Laboratories, Chiome Bioscience Inc, Sumitomo-Fudosan Nishi-shinjuku bldg. No. 6, 3-12-1 Honmachi, Shibuya-ku, Tokyo151-0071, Japan
| | - Atsushi Sawada
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | | | - Kanako Tamai
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | - Ke-Yi Lin
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | - Naoto Harigai
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | - Kohei Kurosawa
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidetaka Seo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Itou
- Research Laboratories, Chiome Bioscience Inc, Tokyo, Japan,Hiroshi Itou Research Laboratories, Chiome Bioscience Inc, Sumitomo-Fudosan Nishi-shinjuku bldg. No. 6, 3-12-1, Honmachi, Shibuya-ku, Tokyo 151-0071 Japan
| |
Collapse
|
6
|
Yin Y, Quinlan BD, Ou T, Guo Y, He W, Farzan M. In vitro affinity maturation of broader and more-potent variants of the HIV-1-neutralizing antibody CAP256-VRC26.25. Proc Natl Acad Sci U S A 2021; 118:e2106203118. [PMID: 34261793 PMCID: PMC8307357 DOI: 10.1073/pnas.2106203118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Three variable 2 (V2) loops of HIV-1 envelope glycoprotein (Env) trimer converge at the Env apex to form the epitope of an important classes of HIV-1 broadly neutralizing antibodies (bNAbs). These V2-glycan/apex antibodies are exceptionally potent but less broad (∼60 to 75%) than many other bNAbs. Their CDRH3 regions are typically long, acidic, and tyrosine sulfated. Tyrosine sulfation complicates efforts to improve these antibodies through techniques such as phage or yeast display. To improve the breadth of CAP256-VRC26.25 (VRC26.25), a very potent apex antibody, we adapted and extended a B cell display approach. Specifically, we used CRISPR/Cas12a to introduce VRC26.25 heavy- and light-chain genes into their respective loci in a B cell line, ensuring that each cell expresses a single VRC26.25 variant. We then diversified these loci through activation-induced cytidine deaminase-mediated hypermutation and homology-directed repair using randomized CDRH3 sequences as templates. Iterative sorting with soluble Env trimers and further randomization selected VRC26.25 variants with successively improving affinities. Three mutations in the CDRH3 region largely accounted for this improved affinity, and VRC26.25 modified with these mutations exhibited greater breadth and potency than the original antibody. Our data describe a broader and more-potent form of VRC26.25 as well as an approach useful for improving the breadth and potency of antibodies with functionally important posttranslational modifications.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Brian D Quinlan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Tianling Ou
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Yan Guo
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Wenhui He
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
7
|
Luo R, Zhao Y, Fan Y, An L, Jiang T, Ma S, Hang H. High efficiency CHO cell display-based antibody maturation. Sci Rep 2020; 10:8102. [PMID: 32415149 PMCID: PMC7229201 DOI: 10.1038/s41598-020-65044-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Previously, we developed a CHO cell display-based antibody maturation procedure in which an antibody (or other protein) gene of interest was induced to mutate by activation-induced cytidine deaminase (AID) and then form a library by simply proliferating the CHO cells in culture. In this study, we further improved the efficiency of this maturation system by reengineering AID, and optimizing the nucleic acid sequence of the target antibody gene and AID gene as well as the protocol for AID gene transfection. These changes have increased both the mutation rate and the number of mutation type of antibody genes by more than 10 fold, and greatly improved the maturation efficiency of antibody/other proteins.
Collapse
Affiliation(s)
- Ruiqi Luo
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingjun Fan
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Jiang
- University of Chinese Academy of Sciences, Beijing, 100039, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Epeldegui M, Hussain SK. The Role of Microbial Translocation and Immune Activation in AIDS-Associated Non-Hodgkin Lymphoma Pathogenesis: What Have We Learned? Crit Rev Immunol 2020; 40:41-51. [PMID: 32421978 PMCID: PMC7241309 DOI: 10.1615/critrevimmunol.2020033319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency virus (HIV) infection is associated with greatly increased risk for development of non-Hodgkin lymphoma (NHL). Nearly all acquired immunodeficiency syndrome (AIDS)-associated NHL (AIDS-NHL) is of B-cell origin. Two major mechanisms are believed to contribute to the genesis of AIDS-NHL: (1) loss of immunoregulation of Epstein-Barr virus (EBV)+ B cells, resulting from impaired T-cell function late in the course of HIV disease and (2) chronic B-cell activation, leading to DNA-modifying events that contribute to oncogene mutations/ translocations. HIV infection has long been known to be associated with chronic inflammation and polyclonal B-cell activation, and more recently, microbial translocation. Microbial translocation is bacterial product leakage from gut lumen into the peripheral circulation, resulting in high levels of lipopolysaccharide (LPS) in the peripheral circulation, leading to chronic immune activation and inflammation. We review recent literature linking microbial translocation to lymphom-agenesis. This includes epidemiological studies of biomarkers of microbial translocation with risk of AIDS-NHL and emerging data on the mechanisms by which microbial translocation may lead to AIDS-NHL development.
Collapse
Affiliation(s)
- Marta Epeldegui
- Department of Obstetrics and Gynecology, UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles
| | - Shehnaz K. Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles
| |
Collapse
|
9
|
Chen H, Liu S, Padula S, Lesman D, Griswold K, Lin A, Zhao T, Marshall JL, Chen F. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nat Biotechnol 2019; 38:165-168. [PMID: 31844291 DOI: 10.1038/s41587-019-0331-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 10/28/2019] [Indexed: 11/10/2022]
Abstract
Here we describe TRACE (T7 polymerase-driven continuous editing), a method that enables continuous, targeted mutagenesis in human cells using a cytidine deaminase fused to T7 RNA polymerase. TRACE induces high rates of mutagenesis over multiple cell generations in genes under the control of a T7 promoter integrated in the genome. We used TRACE in a MEK1 inhibitor-resistance screen, and identified functionally correlated mutations.
Collapse
Affiliation(s)
- Haiqi Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sophia Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Biophysics Program, Harvard University, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel Padula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Lesman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kettner Griswold
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Charles Stark Draper Laboratory, Cambridge, MA, USA
| | - Allen Lin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tongtong Zhao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Leeman-Neill RJ, Lim J, Basu U. The Common Key to Class-Switch Recombination and Somatic Hypermutation: Discovery of AID and Its Role in Antibody Gene Diversification. THE JOURNAL OF IMMUNOLOGY 2019; 201:2527-2529. [PMID: 30348657 DOI: 10.4049/jimmunol.1801246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Junghyun Lim
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| |
Collapse
|
11
|
Devilder MC, Moyon M, Gautreau-Rolland L, Navet B, Perroteau J, Delbos F, Gesnel MC, Breathnach R, Saulquin X. Ex vivo evolution of human antibodies by CRISPR-X: from a naive B cell repertoire to affinity matured antibodies. BMC Biotechnol 2019; 19:14. [PMID: 30777060 PMCID: PMC6378725 DOI: 10.1186/s12896-019-0504-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Marie-Claire Devilder
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France
| | - Melinda Moyon
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Laetitia Gautreau-Rolland
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Benjamin Navet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Jeanne Perroteau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Florent Delbos
- HLA Laboratory, EFS Centre Pays de la Loire, Nantes, France
| | - Marie-Claude Gesnel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France
| | - Richard Breathnach
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| | - Xavier Saulquin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
12
|
Nguyen AW, Le KC, Maynard JA. Identification of high affinity HER2 binding antibodies using CHO Fab surface display. Protein Eng Des Sel 2019; 31:91-101. [PMID: 29566240 DOI: 10.1093/protein/gzy004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/02/2018] [Indexed: 12/27/2022] Open
Abstract
Discovery of monoclonal antibodies is most commonly performed using phage or yeast display but mammalian cells are used for production because of the complex antibody structure, including the multiple disulfide bonds and glycosylation, required for function. As this transition between host organisms is often accompanied by impaired binding, folding or expression, development pipelines include laborious plate-based screening or engineering strategies to adapt an antibody to mammalian expression. To circumvent these problems, we developed a plasmid-based Fab screening platform on Chinese hamster ovary (CHO) cells which allows for antibody selection in the production host and in the presence of the same post-translational modifications as the manufactured product. A hu4D5 variant with low affinity for the human epidermal growth factor receptor (HER2) growth factor receptor was mutagenized and this library of ~10(6) unique clones was screened to identify variants with up to 400-fold enhanced HER2 binding. After two rounds of fluorescence activated cell sorting (FACS), four unique clones exhibited improved antigen binding when expressed on the CHO surface or as purified human IgG. Three of the four clones contained free cysteines in third complementarity determining region of the antibody heavy chain, which did not impair expression or cause aggregation. The improved clones had similar yields and stabilities as hu4D5 and similar sub-nanomolar affinities as measured by equilibrium binding to target cells. The limited size of mammalian libraries restricts the utility of this approach for naïve antibody library screening, but it is a powerful approach for antibody affinity maturation or specificity enhancement and is readily generalizable to engineering other surface receptors, including T-cell receptors and chimeric antigen receptors.
Collapse
Affiliation(s)
- Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin C Le
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Enhancers Improve the AID-Induced Hypermutation in Episomal Vector for Antibody Affinity Maturation in Mammalian Cell Display. Antibodies (Basel) 2018; 7:antib7040042. [PMID: 31544892 PMCID: PMC6698961 DOI: 10.3390/antib7040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/03/2022] Open
Abstract
The induction of somatic hypermutation (SHM) in various cell lines by activation-induced cytidine deaminase (AID) has been used in protein-directed selection, especially in antibody affinity maturation. Several antibody affinity maturation systems based on mammalian cells have been developed in recent years, i.e., 293T, H1299, Raji and CHO cells. However, the efficiency of in vitro AID-induced hypermutation is low, restricting the application of such systems. In this study, we examined the role of Ig and Ek enhancers in enhancing SHM in the episomal vector pCEP4 that expresses an anti-high mobility group box 1 (HMGB1) full-length antibody. The plasmid containing the two enhancers exhibited two-fold improvement of mutation rate over pCEP4 in an AID expression H1299 cell line (H1299-AID). With the engineered episomal vector, we improved the affinity of this antibody in H1299-AID cells by 20-fold.
Collapse
|
14
|
Transient AID expression for in situ mutagenesis with improved cellular fitness. Sci Rep 2018; 8:9413. [PMID: 29925928 PMCID: PMC6010430 DOI: 10.1038/s41598-018-27717-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Activation induced cytidine deaminase (AID) in germinal center B cells introduces somatic DNA mutations in transcribed immunoglobulin genes to increase antibody diversity. Ectopic expression of AID coupled with selection has been successfully employed to develop proteins with desirable properties. However, this process is laborious and time consuming because many rounds of selection are typically required to isolate the target proteins. AID expression can also adversely affect cell viability due to off target mutagenesis. Here we compared stable and transient expression of AID mutants with different catalytic activities to determine conditions for maximum accumulation of mutations with minimal toxicity. We find that transient (3–5 days) expression of an AID upmutant in the presence of selection pressure could induce a high rate of mutagenesis in reporter genes without affecting cells growth and expansion. Our findings may help improve protein evolution by ectopic expression of AID and other enzymes that can induce DNA mutations.
Collapse
|
15
|
Haakenson JK, Huang R, Smider VV. Diversity in the Cow Ultralong CDR H3 Antibody Repertoire. Front Immunol 2018; 9:1262. [PMID: 29915599 PMCID: PMC5994613 DOI: 10.3389/fimmu.2018.01262] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/18/2018] [Indexed: 01/26/2023] Open
Abstract
Typical antibodies found in humans and mice usually have short CDR H3s and generally flat binding surfaces. However, cows possess a subset of antibodies with ultralong CDR H3s that can range up to 70 amino acids and form a unique “stalk and knob” structure, with the knob protruding far out of the antibody surface, where it has the potential to bind antigens with concave epitopes. Activation-induced cytidine deaminase (AID) has a proven role in diversifying antibody repertoires in humoral immunity, and it has been found to induce somatic hypermutation in bovine immunoglobulin genes both before and after contact with antigen. Due to limited use of variable and diversity genes in the V(D)J recombination events that produce ultralong CDR H3 antibodies in cows, the diversity in the bovine ultralong antibody repertoire has been proposed to rely on AID-induced mutations targeted to the IGHD8-2 gene that encodes the entire knob region. In this review, we discuss the genetics, structures, and diversity of bovine ultralong antibodies, as well as the role of AID in creating a diverse antibody repertoire.
Collapse
Affiliation(s)
- Jeremy K Haakenson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Ruiqi Huang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Vaughn V Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
16
|
Caldwell RB, Braselmann H, Heuer S, Schötz U, Zitzelsberger H. Gain-of-function analysis of cis-acting diversification elements in DT40 cells. Immunol Cell Biol 2018; 96:948-957. [PMID: 29665088 DOI: 10.1111/imcb.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
Abstract
Activation-induced cytidine deaminase (AID) is required for the immunoglobulin diversification processes of somatic hypermutation, gene conversion and class-switch recombination. The targeting of AID's deamination activity is thought to be a combination of cis- and trans-acting elements, but has not been fully elucidated. Deletion analysis of putative proximal cis-regulatory motifs, while helpful, fails to identify additive versus cumulative effects, redundancy, and may create new motifs where none previously existed. In contrast, gain-of-function analysis can be more insightful with fewer of the same drawbacks and the output is a positive result. Here, we show five defined DNA regions of the avian Igλ locus that are sufficient to confer events of hypermutation to a target gene. In our analysis, the essential cis-targeting elements fully reconstituted diversification of a transgene under heterologous promotion in the avian B-cell line DT40. Furthermore, to the best of our knowledge two of the five regions we report on here have not previously been described as individually having an influence on somatic hypermutation.
Collapse
Affiliation(s)
- Randolph B Caldwell
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Herbert Braselmann
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Steffen Heuer
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Ulrike Schötz
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital Gießen and Marburg, Marburg, 35043, Germany
| | - Horst Zitzelsberger
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany.,Helmholtz Center Munich, Clinical Cooperation Group 'Personalized Radiotherapy of Head and Neck Cancer', Neuherberg, 85764, Germany.,Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universitaet, University Hospital Munich, Munich, 81377, Germany
| |
Collapse
|
17
|
Tan Q, Ku W, Zhang C, Heyilimu P, Tian Y, Ke Y, Lu Z. Mutation analysis of the EBV-lymphoblastoid cell line cautions their use as antigen-presenting cells. Immunol Cell Biol 2018; 96:204-211. [PMID: 29363169 DOI: 10.1111/imcb.1030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Lymphoblastoid cell lines (LCLs) have been widely used as professional antigen-presenting cells (APCs). However, neoantigen-loaded LCLs could induce nonspecific T-cell response, which could be due to expression of both Epstein-Barr virus (EBV) antigens and nonsynonymous mutations arising in LCLs. Since the number of passages could influence mutational characteristics of LCLs, and moreover extensive proliferation of LCLs in vitro is necessary to activate T cells for immunotherapy, we comprehensively profiled mutational characteristics by comparing eight sets of B cells and matched high-passage LCLs using whole-exome sequencing in order to assess the effect of nonsynonymous mutations arising in LCLs on nonspecific T-cell response. We found 315 nongermline mutations (approximately 40mut/subject) randomly distributed across all chromosomes including 18 mutations in immunoglobulin V and J genes in eight LCLs, of which 137 candidate neoantigens (approximately 17mut/subject) were identified. The underlying mutational processes linked to EBV-transformed LCLs could be attributed to activation induced cytidine deaminase gene expression which contributes to cytosine mutation clusters in LCLs through cytosine deamination. Pathways significantly enriched by nonsilent mutations of each LCL were totally different among all LCLs. In conclusion, high-passage LCLs may not be suitable to serve as APCs due to random nonsilent mutations, particularly for presentation of neoantigens of low immunogenicity, although further experimental proofs are needed.
Collapse
Affiliation(s)
- Qin Tan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenjing Ku
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Palashati Heyilimu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuan Tian
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
18
|
Choudhary M, Tamrakar A, Singh AK, Jain M, Jaiswal A, Kodgire P. AID Biology: A pathological and clinical perspective. Int Rev Immunol 2017; 37:37-56. [PMID: 28933967 DOI: 10.1080/08830185.2017.1369980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation-induced cytidine deaminase (AID), primarily expressed in activated mature B lymphocytes in germinal centers, is the key factor in adaptive immune response against foreign antigens. AID is responsible for producing high-affinity and high-specificity antibodies against an infectious agent, through the physiological DNA alteration processes of antibody genes by somatic hypermutation (SHM) and class-switch recombination (CSR) and functions by deaminating deoxycytidines (dC) to deoxyuridines (dU), thereby introducing point mutations and double-stranded chromosomal breaks (DSBs). The beneficial physiological role of AID in antibody diversification is outweighed by its detrimental role in the genesis of several chronic immune diseases, under non-physiological conditions. This review offers a comprehensive and better understanding of AID biology and its pathological aspects, as well as addresses the challenges involved in AID-related cancer therapeutics, based on various recent advances and evidence available in the literature till date. In this article, we discuss ways through which our interpretation of AID biology may reflect upon novel clinical insights, which could be successfully translated into designing clinical trials and improving patient prognosis and disease management.
Collapse
Affiliation(s)
- Meenal Choudhary
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Anubhav Tamrakar
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Amit Kumar Singh
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Monika Jain
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Ankit Jaiswal
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Prashant Kodgire
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| |
Collapse
|
19
|
Chandra V, Bortnick A, Murre C. AID targeting: old mysteries and new challenges. Trends Immunol 2015; 36:527-35. [PMID: 26254147 DOI: 10.1016/j.it.2015.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023]
Abstract
Activation-induced cytidine deaminase (AID) mediates cytosine deamination and underlies two central processes in antibody diversification: somatic hypermutation and class-switch recombination. AID deamination is not exclusive to immunoglobulin loci; it can instigate DNA lesions in non-immunoglobulin genes and thus stringent checks are in place to constrain and restrict its activity. Recent findings have provided new insights into the mechanisms that target AID activity to specific genomic regions, revealing an involvement for noncoding RNAs associated with polymerase pausing and with enhancer transcription as well as genomic architecture. We review these findings and integrate them into a model for multilevel regulation of AID expression and targeting in immunoglobulin and non-immunoglobulin loci. Within this framework we discuss gaps in understanding, and outline important areas of further research.
Collapse
Affiliation(s)
- Vivek Chandra
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | - Alexandra Bortnick
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | - Cornelis Murre
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA.
| |
Collapse
|
20
|
Chen C, Li N, Zhao Y, Hang H. Coupling recombinase-mediated cassette exchange with somatic hypermutation for antibody affinity maturation in CHO cells. Biotechnol Bioeng 2015; 113:39-51. [PMID: 26235363 DOI: 10.1002/bit.25541] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/07/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
Heterologous expression of activation-induced cytidine deaminase (AID) can induce somatic hypermutation (SHM) for genes of interest in various cells, and several research groups (including ours) have successfully improved antibody affinity in mammalian or chicken cells using AID-induced SHM. These affinity maturation systems are time-consuming and inefficient. In this study, we developed an antibody affinity maturation platform in Chinese hamster ovary (CHO) cells by coupling recombinase-mediated cassette exchange (RMCE) with SHM. Stable CHO cell clones containing a single copy puromycin resistance gene (PuroR) expression cassette flanked by recombination target sequences (FRT and loxP) being able to highly express a gene of interest placed in the cassette were developed. The PuroR gene was replaced with an antibody gene by RMCE, and the antibody was displayed on the cell surface. Cells displaying antibodies on their membrane were transfected with the AID gene, and mutations of the antibody gene were accumulated by AID-mediated hypermutation during cell proliferation followed by flow cytometric cell sorting for cells bearing antibody mutants with improved affinity. Affinity improvements were detected after only one round of cell sorting and proliferation, mutant clones with 15-fold affinity improvement were isolated within five rounds of maturation (within 2 months). CHO cells are fast growing, stress-resistant and produce antibody with glycosylations suitable for therapy. Our antibody-evolution platform based on CHO cells makes antibody-affinity maturation more efficient and is especially convenient for therapeutic antibody affinity improvement.
Collapse
Affiliation(s)
- Chuan Chen
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Scherer F, Navarrete MA, Bertinetti-Lapatki C, Boehm J, Schmitt-Graeff A, Veelken H. Isotype-switched follicular lymphoma displays dissociation between activation-induced cytidine deaminase expression and somatic hypermutation. Leuk Lymphoma 2015; 57:151-60. [PMID: 25860234 DOI: 10.3109/10428194.2015.1037758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In B-cells, activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. AID introduces mutations in immunoglobulin variable regions (IGV) during B-cell receptor affinity maturation, but may also introduce aberrant mutations into non-immunoglobulin genes, most commonly BCL6. Follicular lymphoma (FL) B-cells constitutively express AID and undergo CSR, SHM and aberrant SHM. We have studied AID expression, the presence of SHM mutations, CSR, and aberrant SHM in BCL6 in a cohort of 75 FL patients. Whereas IgM-expressing (non-switched) FL were characterized by an expected positive correlation between AID and IGV and BCL6 mutations, isotype-switched FL showed dissociation between AID expression and aberrant SHM, and inverse correlation between SHM and AID expression. Our results unveil two manifest biological subgroups of FL and indicate that the specific dissociation between AID and SHM after isotype switch may correlate with the clinical outcome of this heterogeneous disease.
Collapse
Affiliation(s)
- Florian Scherer
- a Department of Hematology and Oncology , University Medical Center Freiburg , Germany
| | - Marcelo A Navarrete
- b Department of Hematology , Leiden University Medical Center , The Netherlands.,c School of Medicine, University of Magallanes , Punta Arenas , Chile
| | | | - Joachim Boehm
- d Department of Pathology , RWTH University Hospital , Aachen , Germany
| | | | - Hendrik Veelken
- b Department of Hematology , Leiden University Medical Center , The Netherlands
| |
Collapse
|
22
|
Mammalian cell display technology coupling with AID induced SHM in vitro: an ideal approach to the production of therapeutic antibodies. Int Immunopharmacol 2014; 23:380-6. [PMID: 25281392 DOI: 10.1016/j.intimp.2014.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 11/21/2022]
Abstract
Traditional antibody production technology within non-mammalian cell expression systems has shown many unsatisfactory properties for the development of therapeutic antibodies. Nevertheless, mammalian cell display technology reaps the benefits of producing full-length all human antibodies. Together with the developed cytidine deaminase induced in vitro somatic hypermutation technology, mammalian cell display technology provides the opportunity to produce high affinity antibodies that might be ideal for therapeutic application. This review was concentrated on the development of the mammalian cell display technology as well as the activation-induced cytidine deaminase induced in vitro somatic hypermutation technology and their applications for the production of therapeutic antibodies.
Collapse
|
23
|
Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics 2014; 6:427-43. [DOI: 10.2217/epi.14.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA mutations and genomic recombinations are the origin of oncogenesis, yet parts of developmental programs as well as immunity are intimately linked to, or even depend on, such DNA damages. Therefore, the balance between deleterious DNA damages and organismal survival utilizing DNA editing (modification and repair) is in continuous flux. The cytosine deaminases AID/APOBEC are a DNA editing family and actively participate in various biological processes. In conjunction with altered DNA repair, the mutagenic potential of the family allows for APOBEC3 proteins to restrict viral infection and transposons propagation, while AID can induce somatic hypermutation and class switch recombination in antibody genes. On the other hand, the synergy between effective DNA repair and the nonmutagenic potential of the DNA deaminases can induce local DNA demethylation to support epigenetic cellular identity. Here, we review the current state of knowledge on the mechanisms of action of the AID/APOBEC family in immunity and epigenetics.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Svend K Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| |
Collapse
|
24
|
Vaidyanathan B, Yen WF, Pucella JN, Chaudhuri J. AIDing Chromatin and Transcription-Coupled Orchestration of Immunoglobulin Class-Switch Recombination. Front Immunol 2014; 5:120. [PMID: 24734031 PMCID: PMC3975107 DOI: 10.3389/fimmu.2014.00120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 12/29/2022] Open
Abstract
Secondary diversification of the antibody repertoire upon antigenic challenge, in the form of immunoglobulin heavy chain (IgH) class-switch recombination (CSR) endows mature, naïve B cells in peripheral lymphoid organs with a limitless ability to mount an optimal humoral immune response, thus expediting pathogen elimination. CSR replaces the default constant (CH) region exons (Cμ) of IgH with any of the downstream CH exons (Cγ, Cε, or Cα), thereby altering effector functions of the antibody molecule. This process depends on, and is orchestrated by, activation-induced deaminase (AID), a DNA cytidine deaminase that acts on single-stranded DNA exposed during transcription of switch (S) region sequences at the IgH locus. DNA lesions thus generated are processed by components of several general DNA repair pathways to drive CSR. Given that AID can instigate DNA lesions and genomic instability, stringent checks are imposed that constrain and restrict its mutagenic potential. In this review, we will discuss how AID expression and substrate specificity and activity is rigorously enforced at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and how the DNA-damage response is choreographed with precision to permit targeted activity while limiting bystander catastrophe.
Collapse
Affiliation(s)
- Bharat Vaidyanathan
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Wei-Feng Yen
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Joseph N Pucella
- Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Jayanta Chaudhuri
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| |
Collapse
|
25
|
Abstract
ABSTRACT
Advanced molecular biology techniques developed during the past few decades have allowed the industry to exploit and commercialize the natural defense mechanisms that antibodies provide. This review discusses the latest advances in antibody-engineering technologies to enhance clinical efficacy and outcomes. For the constant regions, the choice of the antibody class and isotype has to be made carefully to suit the therapeutic applications. Engineering of the Fc region, either by direct targeted mutagenesis or by modifying the nature of its
N
-glycan, has played an important role in recent years in increasing half-life or controlling effector functions. The variable regions of the antibody are responsible for binding affinity and exquisite specificity to the target molecule, which together with the Fc determine the drug's efficacy and influence the drug dose required to obtain the desired effectiveness. A key requirement during antibody development is therefore to affinity mature the variable regions when necessary, so that they bind the therapeutic target with sufficiently high affinity to guarantee effective occupancy over prolonged periods. If the antibody was obtained from a non-human source, such as rodents, a humanization process has to be applied to minimize immunogenicity while maintaining the desired binding affinity and selectivity. Finally, we discuss the next next-generation antibodies, such as antibody-drug conjugates, bispecific antibodies, and immunocytokines, which are being developed to meet future challenges.
Collapse
|
26
|
Deng Y, Du Y, Zhang Q, Han X, Cao G. Human cytidine deaminases facilitate hepatitis B virus evolution and link inflammation and hepatocellular carcinoma. Cancer Lett 2013; 343:161-71. [PMID: 24120759 DOI: 10.1016/j.canlet.2013.09.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
During hepatitis B virus (HBV)-induced hepatocarcinogenesis, chronic inflammation facilitates the evolution of hepatocellular carcinoma (HCC)-promoting HBV mutants. Cytidine deaminases, whose expression is stimulated by inflammatory cytokines and/or chemokines, play an important role in bridging inflammation and HCC. Through G-to-A hypermutation, cytidine deaminases inhibit HBV replication and facilitate the generation of HCC-promoting HBV mutants including C-terminal-truncated HBx. Cytidine deaminases also promote cancer-related somatic mutations including TP53 mutations. Their editing efficiency is counteracted by uracil-DNA glycosylase. Understanding the effects of cytidine deaminases in HBV-induced hepatocarcinogenesis and HCC progression will aid in developing efficient prophylactic and therapeutic strategies against HCC in HBV-infected population.
Collapse
Affiliation(s)
- Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yan Du
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Qi Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
27
|
Horlick RA, Macomber JL, Bowers PM, Neben TY, Tomlinson GL, Krapf IP, Dalton JL, Verdino P, King DJ. Simultaneous surface display and secretion of proteins from mammalian cells facilitate efficient in vitro selection and maturation of antibodies. J Biol Chem 2013; 288:19861-9. [PMID: 23689374 DOI: 10.1074/jbc.m113.452482] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A mammalian expression system has been developed that permits simultaneous cell surface display and secretion of the same protein through alternate splicing of pre-mRNA. This enables a flexible system for in vitro protein evolution in mammalian cells where the displayed protein phenotype remains linked to genotype, but with the advantage of soluble protein also being produced without the requirement for any further recloning to allow a wide range of assays, including biophysical and cell-based functional assays, to be used during the selection process. This system has been used for the simultaneous surface presentation and secretion of IgG during antibody discovery and maturation. Presentation and secretion of monomeric Fab can also be achieved to minimize avidity effects. Manipulation of the splice donor site sequence enables control of the relative amounts of cell surface and secreted antibody. Multi-domain proteins may be presented and secreted in different formats to enable flexibility in experimental design, and secreted proteins may be produced with epitope tags to facilitate high-throughput testing. This system is particularly useful in the context of in situ mutagenesis, as in the case of in vitro somatic hypermutation.
Collapse
|
28
|
Rocha PP, Skok JA. The origin of recurrent translocations in recombining lymphocytes: a balance between break frequency and nuclear proximity. Curr Opin Cell Biol 2013; 25:365-71. [PMID: 23478218 DOI: 10.1016/j.ceb.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/13/2013] [Accepted: 02/16/2013] [Indexed: 02/05/2023]
Abstract
Translocations occur through the aberrant joining of large stretches of non-contiguous chromosomal regions. The substrates for these illegitimate rearrangements can arise as a result of damage incurred during normal cellular processes, such as transcription and replication, or through the action of genotoxic agents. In lymphocytes many translocations bear signs of having originated from abnormalities introduced during programmed recombination. Although recombination is tightly controlled at different levels, mistakes can occur leading to cytogenetic anomalies that include deletions, insertions, amplifications and translocations, which are an underlying cause of leukemias and lymphomas. In this review we focus on recent studies that provide insight into the origins of translocations that arise during the two lymphocyte specific programmed recombination events: V(D)J and class switch recombination (CSR).
Collapse
Affiliation(s)
- Pedro P Rocha
- Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA
| | | |
Collapse
|
29
|
Kano C, Wang JY. High levels of AID cause strand bias of mutations at A versus T in Burkitt's lymphoma cells. Mol Immunol 2013; 54:397-402. [PMID: 23399385 DOI: 10.1016/j.molimm.2013.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 11/25/2022]
Abstract
Ig gene somatic hypermutation in the germinal center (GC) B cells occurs at C and G at roughly the same frequency. In contrast, there is a 2-fold increase of mutations at A relative to T on the non-transcribed strand of the V genes but it is unclear what triggers such strand bias. Using an efficient mutagenesis system that recapitulates characteristic features of Ig gene hypermutation in the GC B cells, we found that low levels of AID induced similar frequency of mutations at A and T. However, high levels of AID specifically increased mutations at A, but not T, leading to strand bias. These results explain why strand bias of A:T mutations is observed only in the highly mutated V genes but not in the less mutated switch region or the BCL-6 gene. High levels of AID also increased the proportion of transversions at G relative to transversions at C. Our results identify a clue to the strand bias of A:T mutations and provide an in vitro model to elucidate this unsolved mystery in the hypermutation field.
Collapse
Affiliation(s)
- Chie Kano
- Laboratory for Immune Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | | |
Collapse
|
30
|
Bowers PM, Neben TY, Tomlinson GL, Dalton JL, Altobell L, Zhang X, Macomber JL, Wu BF, Toobian RM, McConnell AD, Verdino P, Chau B, Horlick RA, King DJ. Humanization of antibodies using heavy chain complementarity-determining region 3 grafting coupled with in vitro somatic hypermutation. J Biol Chem 2013; 288:7688-7696. [PMID: 23355464 DOI: 10.1074/jbc.m112.445502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods.
Collapse
Affiliation(s)
| | | | | | | | | | - Xue Zhang
- Anaptysbio Inc., San Diego, California 92131
| | | | - Betty F Wu
- Anaptysbio Inc., San Diego, California 92131
| | | | | | | | - Betty Chau
- Anaptysbio Inc., San Diego, California 92131
| | | | | |
Collapse
|
31
|
Schroeder K, Herrmann M, Winkler TH. The role of somatic hypermutation in the generation of pathogenic antibodies in SLE. Autoimmunity 2013. [DOI: 10.3109/08916934.2012.748751] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Jaszczur M, Bertram JG, Pham P, Scharff MD, Goodman MF. AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci 2012. [PMID: 23178850 DOI: 10.1007/s00018-012-1212-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C → U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell "mutators". Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides "surrogate" insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss.
Collapse
Affiliation(s)
- Malgorzata Jaszczur
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | | | | | |
Collapse
|
33
|
The biochemistry of activation-induced deaminase and its physiological functions. Semin Immunol 2012; 24:255-63. [DOI: 10.1016/j.smim.2012.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/18/2012] [Indexed: 01/26/2023]
|
34
|
Abstract
Activation induced deaminase (AID) is globally targeted to immunoglobulin loci, preferentially focused to switch (S) regions and variable (V) regions, and prone to attack hotspot motifs. Nevertheless, AID deamination is not exclusive to Ig loci and the rules regulating AID targeting remain unclear. Transcription is critically required for class switch recombination and somatic hypermutation. Here, I consider the unique features associated with S region transcription leading to RNA polymerase II pausing, that in turn promote the introduction of activating chromatin remodeling, histone modifications and recruitment of AID to targeted S regions. These findings allow for a better understanding of the interplay between transcription, AID targeting and mistargeting to Ig and non-Ig loci.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S. Wolcott, Chicago, IL 60612-7344, USA.
| |
Collapse
|
35
|
Pérez-Durán P, Belver L, de Yébenes VG, Delgado P, Pisano DG, Ramiro AR. UNG shapes the specificity of AID-induced somatic hypermutation. ACTA ACUST UNITED AC 2012; 209:1379-89. [PMID: 22665573 PMCID: PMC3405504 DOI: 10.1084/jem.20112253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNG activity repairs activation-induced deaminase-generated U:G mismatches via error-prone or error-free repair, depending on the sequence context of the deaminated cytosine. Secondary diversification of antibodies through somatic hypermutation (SHM) and class switch recombination (CSR) is a critical component of the immune response. Activation-induced deaminase (AID) initiates both processes by deaminating cytosine residues in immunoglobulin genes. The resulting U:G mismatch can be processed by alternative pathways to give rise to a mutation (SHM) or a DNA double-strand break (CSR). Central to this processing is the activity of uracil-N-glycosylase (UNG), an enzyme normally involved in error-free base excision repair. We used next generation sequencing to analyze the contribution of UNG to the resolution of AID-induced lesions. Loss- and gain-of-function experiments showed that UNG activity can promote both error-prone and high fidelity repair of U:G lesions. Unexpectedly, the balance between these alternative outcomes was influenced by the sequence context of the deaminated cytosine, with individual hotspots exhibiting higher susceptibility to UNG-triggered error-free or error-prone resolution. These results reveal UNG as a new molecular layer that shapes the specificity of AID-induced mutations and may provide new insights into the role of AID in cancer development.
Collapse
Affiliation(s)
- Pablo Pérez-Durán
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Parsa JY, Ramachandran S, Zaheen A, Nepal RM, Kapelnikov A, Belcheva A, Berru M, Ronai D, Martin A. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis. PLoS Genet 2012; 8:e1002518. [PMID: 22346767 PMCID: PMC3276561 DOI: 10.1371/journal.pgen.1002518] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022] Open
Abstract
Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates—which we found to be unique to actively transcribed genes—as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID. Creating an effective antibody-mediated immune response relies on processes that create antibodies of high affinity and of different functions in order to clear pathogens. Activation-induced cytidine deaminase (AID) is an essential B cell–specific factor that is known to initiate these processes by deaminating dC on single-stranded DNA of actively transcribed genes. AID has also been implicated in deaminating dC at non-antibody genes, resulting in the disregulation of genes that may lead to B cell–related cancers. Until now, it has remained unknown what the source, structure, and distribution of the single-stranded DNA is that AID acts upon. By using a novel assay that allows direct detection of single-stranded DNA within intact cell nuclei, we observed patches of single-stranded DNA that are strongly correlated to the preferred activity of AID. Furthermore, we find that the activity of AID and single-stranded DNA patch formation can be enhanced by negative supercoiling of the DNA, which is a typical consequence of transcription. These findings allow us to better understand how AID is recruited to and mutates antibody genes as well as other genes implicated in cancers of B cell origin.
Collapse
Affiliation(s)
- Jahan-Yar Parsa
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Ahmad Zaheen
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rajeev M. Nepal
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Anat Kapelnikov
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Maribel Berru
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Diana Ronai
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
37
|
Haferkamp I, Schmitz-Esser S. The plant mitochondrial carrier family: functional and evolutionary aspects. FRONTIERS IN PLANT SCIENCE 2012; 3:2. [PMID: 22639632 PMCID: PMC3355725 DOI: 10.3389/fpls.2012.00002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/03/2012] [Indexed: 05/19/2023]
Abstract
Mitochondria play a key role in respiration and energy production and are involved in multiple eukaryotic but also in several plant specific metabolic pathways. Solute carriers in the inner mitochondrial membrane connect the internal metabolism with that of the surrounding cell. Because of their common basic structure, these transport proteins affiliate to the mitochondrial carrier family (MCF). Generally, MCF proteins consist of six membrane spanning helices, exhibit typical conserved domains and appear as homodimers in the native membrane. Although structurally related, MCF proteins catalyze the specific transport of various substrates, such as nucleotides, amino acids, dicarboxylates, cofactors, phosphate or H(+). Recent investigations identified MCF proteins also in several other cellular compartments and therefore their localization and physiological function is not only restricted to mitochondria. MCF proteins are a characteristic feature of eukaryotes and bacterial genomes lack corresponding sequences. Therefore, the evolutionary origin of MCF proteins is most likely associated with the establishment of mitochondria. It is not clear whether the host cell, the symbiont, or the chimerical organism invented the ancient MCF sequence. Here, we try to explain the establishment of different MCF proteins and focus on the characteristics of members from plants, in particular from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Zelluläre Physiologie/Membrantransport, Technische Universität KaiserslauternKaiserslautern, Germany
- *Correspondence: Ilka Haferkamp, Biologie, Zelluläre Physiologie/Membrantransport, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 22, 67653 Kaiserslautern, Germany. e-mail:
| | | |
Collapse
|
38
|
Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proc Natl Acad Sci U S A 2011; 108:20455-60. [PMID: 22158898 DOI: 10.1073/pnas.1114010108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel approach has been developed for the isolation and maturation of human antibodies that replicates key features of the adaptive immune system by coupling in vitro somatic hypermutation (SHM) with mammalian cell display. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID), and can be replicated in non-B cells through expression of recombinant AID. A library of human antibodies, based on germline V-gene segments with recombined human regions was used to isolate low-affinity antibodies to human β nerve growth factor (hβNGF). These antibodies, initially naïve to SHM, were subjected to AID-directed SHM in vitro and selected using the same mammalian cell display system, as illustrated by the maturation of one of the antibodies to low pM K(D). This approach overcomes many of the previous limitations of mammalian cell display, enabling direct selection and maturation of antibodies as full-length, glycosylated IgGs.
Collapse
|
39
|
Recombinase-mediated cassette exchange as a novel method to study somatic hypermutation in Ramos cells. mBio 2011; 2:mBio.00186-11. [PMID: 21990614 PMCID: PMC3190358 DOI: 10.1128/mbio.00186-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) mediates the somatic hypermutation (SHM) of immunoglobulin (Ig) variable (V) regions that is required for the generation of antibody diversity and for the affinity maturation of the antibody response against infectious agents and toxic substances. AID preferentially targets WRC (W = A/T, R = A/G) hot spot motifs, particularly WGCW motifs that create overlapping hot spots on both strands. In order to gain a better understanding of the generation of antibody diversity and to create a platform for the in vitro generation of affinity-matured antibodies, we have established a system involving recombinase-mediated cassette exchange (RMCE) to replace the V region and its flanking sequences. This makes it possible to easily manipulate the sequence of the Ig gene within the endogenous heavy chain of the Ramos human Burkitt’s lymphoma cell line. Here we show that the newly integrated wild-type (WT) VH regions introduced by RMCE undergo SHM similarly to non-RMCE-modified Ramos cells. Most importantly, we have shown that introducing a cluster of WGCW motifs into the complementary determining region 2 (CDR2) of the human heavy chain V region significantly raised the mutation frequency and number of mutations per sequence compared to WT controls. Thus, we have demonstrated a novel platform in Ramos cells whereby we can easily and quickly manipulate the endogenous human VH region to further explore the regulation and targeting of SHM. This platform will be useful for generating human antibodies with changes in affinity and specificity in vitro. An effective immune response requires a highly diverse repertoire of affinity-matured antibodies. Activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) of immunoglobulin (Ig) genes. Although a great deal has been learned about the regulation of AID, it remains unclear how it is preferentially targeted to particular motifs, to certain locations within the Ig gene and not to other highly expressed genes in the germinal center B cell. This is an important question because AID is highly mutagenic and is sometimes mistargeted to other highly expressed genes, including proto-oncogenes, leading to B cell lymphomas. Here we describe how we utilize recombinase-mediated cassette exchange (RMCE) to modify the sequence of the endogenous heavy chain locus in the Ramos Burkitt’s lymphoma cell line. This platform can be used to explore the regulation and targeting of SHM and to generate human antibodies with changes in affinity and specificity in vitro.
Collapse
|
40
|
The mismatch repair pathway functions normally at a non-AID target in germinal center B cells. Blood 2011; 118:3013-8. [DOI: 10.1182/blood-2011-03-345991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Deficiency in Msh2, a component of the mismatch repair (MMR) system, leads to an approximately 10-fold increase in the mutation frequency in most tissues. By contrast, Msh2 deficiency in germinal center (GC) B cells decreases the mutation frequency at the IgH V region as a dU:dG mismatch produced by AID initiates modifications by MMR, resulting in mutations at nearby A:T base pairs. This raises the possibility that GC B cells express a factor that converts MMR into a globally mutagenic pathway. To test this notion, we investigated whether MMR corrects mutations in GC B cells at a gene that is not mutated by AID. Strikingly, we found that GC B cells accumulate 5 times more mutations at a reporter gene than during the development of the mouse. Notably, the mutation frequency at this reporter gene was approximately 10 times greater in Msh2−/− compared with wild-type GC B cells cells. In contrast to the V region, the increased level of mutations at A:T base pairs in GC B cells was not caused by MMR. These results show that in GC B cells, (1) MMR functions normally at an AID-insensitive gene and (2) the frequency of background mutagenesis is greater in GC B cells than in their precursor follicular B cells.
Collapse
|
41
|
Upton DC, Gregory BL, Arya R, Unniraman S. AID: a riddle wrapped in a mystery inside an enigma. Immunol Res 2011; 49:14-24. [PMID: 21128007 DOI: 10.1007/s12026-010-8190-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To combat the ever-changing pool of pathogens we face, B cells generate highly optimized antibodies in two distinct steps. A large variety of antibodies are first generated randomly by V(D)J recombination, and then, upon encountering an antigen, antibodies are fine-tuned by somatic hypermutation and class switch recombination--both of which are initiated by the same protein, activation-induced cytidine deaminase (AID). All three processes are highly mutagenic, and mistargeting of each of these has been shown to contribute to tumorigenesis. We study these processes because they provide an excellent model to understand how highly mutagenic reactions are channeled into productive use by cells and the consequent risk this carries. In this review, we will discuss many of the outstanding questions in the field that we grapple with while developing a consistent model for AID action. We will also discuss the complexity added to these models by the recent finding that AID might be part of a demethylase complex.
Collapse
Affiliation(s)
- Dana C Upton
- Department of Immunology, Duke University, 312 Edwin L. Jones Bldg., Campus Box # 3010, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
42
|
Rapid cell division contributes to efficient induction of A/T mutations during Ig gene hypermutation. Mol Immunol 2011; 48:1993-9. [DOI: 10.1016/j.molimm.2011.06.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/04/2011] [Accepted: 06/05/2011] [Indexed: 01/28/2023]
|
43
|
Expression of IgA class switching gene in tonsillar mononuclear cells in patients with IgA nephropathy. Inflamm Res 2011; 60:869-78. [PMID: 21614556 DOI: 10.1007/s00011-011-0347-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/01/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND AND AIM There are many reports suggesting a relationship between the tonsillar autoimmune response and the pathogenesis of IgA nephropathy (IgAN). Hyperproduction of IgA and IgA1 in tonsils could be caused by activation of the Ig class switching recombination (CSR). αGLT (germline transcripts) plays a critical role in the initiation of switching from Cμ to Cα, resulting in production of IgA. Activation-induced cytidine deaminase (AID) is a molecule essential for CSR and Ig gene conversion. The aim of this study was to investigate IgA and IgA1 levels in the supernatant of tonsillar mononuclear cells (TMCs) and the expression of Iα-Cα germline transcript and AID in TMCs stimulated with lipopolysaccharide or hemolytic streptococcus in IgAN patients and chronic tonsillitis patients. METHODS 27 IgAN patients were admitted into our hospital from Jan. 2009 to Feb. 2010. Another 27 patients with chronic tonsillitis but without renal disease were selected as the control group. Tonsillar lymphocytes were isolated by density gradient centrifugation using Lymphocyte Separation Medium. The amount of IgA or IgA1 secreted in the culture supernatants was determined by specific enzyme-linked immunosorbent assay. Expressions of Iα-Cα germline transcript and AID mRNA were examined by reverse transcription real-time PCR. The AID protein was determined by Western blotting. RESULTS The production of IgA and IgA1 protein, especially the ratio of IgA1/IgA in TMCs stimulated with or without 10 μg/ml of lipopolysaccharide or 1 × 10(8 )cfu/ml of hemolytic streptococcus, were significantly increased in the IgAN group compared with that in the non-IgAN group (P < 0.05), and the IgA and IgA1 levels in TMCs stimulated with 10 μg/ml of lipopolysaccharide or 1 × 10(8 )cfu/ml of hemolytic streptococcus were markedly increased in patients with IgAN compared with the control group (P < 0.05).The expressions of Iα-Cα and AID mRNA were significantly upregulated in TMCs stimulated with 10 μg/ml of lipopolysaccharide or 1 × 10(8 )cfu/ml of hemolytic streptococcus in patients with IgAN compared with control group (P < 0.05). The expression of AID protein in TMCs stimulated with or without 10 μg/ml of lipopolysaccharide or 1 × 10(8 )cfu/ml of hemolytic streptococcus was significantly increased in the IgAN group compared with that in the non-IgAN group (P < 0.05). The expression of AID protein in TMCs stimulated with 10 μg/ml of lipopolysaccharide or 1 × 10(8) cfu/ml of hemolytic streptococcus was significantly increased in patients with IgAN compared with the control group (P < 0.05, P < 0.01). CONCLUSION Lipopolysaccharide or hemolytic streptococcus can induce the production of IgA and IgA1 and the expression of AID and Iα-Cα in TMCs from patients with IgAN. Our results indicate that the TMCs from patients with IgAN are capable of producing high levels of IgA and IgA1 when stimulated with lipopolysaccharide or hemolytic streptococcus, which may be due to the increased expression of AID and Iα-Cα.
Collapse
|
44
|
Huang X, Takata K, Sato Y, Tanaka T, Ichimura K, Tamura M, Oka T, Yoshino T. Downregulation of the B-cell receptor signaling component CD79b in plasma cell myeloma: a possible post transcriptional regulation. Pathol Int 2011; 61:122-9. [PMID: 21355953 DOI: 10.1111/j.1440-1827.2010.02634.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CD79 molecule, encoded by the CD79a and CD79b genes, is a signaling unit of the B-cell receptor complex, which transmits signals of B-cell activation, growth, and differentiation. They are B-cell-specific and expressed at most stages of B-cell development. Although plasma cells have been believed to lack these gene products, the regulation of CD79 expression in plasma cells is still controversial. In particular, the regulation of CD79b expression remains unclear. We sought to examine CD79b expression in normal and neoplastic plasma cells by immunohistochemical analysis. Out of the 23 clinical samples and 11 cell lines of plasma cell myeloma (PCM), none of the clinical samples and only 1 of 11 cell lines expressed CD79b immunohistologically, whereas non-neoplastic plasma cells in reactive hyperplastic lymph nodes exhibited loss of CD79b protein expression. This finding is quite different from our previous report on CD79a. Not only immunocytochemistry, but also RT-PCR and Western blot analysis of PCM cell lines gave identical results. Interestingly, we detected mRNA transcripts of CD79b in PCM cell lines, although protein translation was lacking. These findings suggest that expression of CD79b is downregulated in both plasma cells and plasma cell myeloma, and this process is possibly under post transcriptional regulation.
Collapse
Affiliation(s)
- Xingang Huang
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bases R. Heat shock protein 70 (Hsp70)-stimulated deoxycytidine deaminases from a human lymphoma cell but not the activation-induced cytidine deaminase (AID) from Ramos 6.4 human Burkitt's lymphoma cells. Cell Stress Chaperones 2011; 16:91-6. [PMID: 20680536 PMCID: PMC3024086 DOI: 10.1007/s12192-010-0213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/27/2010] [Accepted: 07/15/2010] [Indexed: 11/27/2022] Open
Abstract
Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.
Collapse
Affiliation(s)
- Robert Bases
- Radiology and Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA.
| |
Collapse
|
46
|
Laskov R, Yahud V, Hamo R, Steinitz M. Preferential targeting of somatic hypermutation to hotspot motifs and hypermutable sites and generation of mutational clusters in the IgVH alleles of a rheumatoid factor producing lymphoblastoid cell line. Mol Immunol 2010; 48:733-45. [PMID: 21194753 DOI: 10.1016/j.molimm.2010.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/16/2010] [Accepted: 10/18/2010] [Indexed: 01/10/2023]
Abstract
Epstein-Barr virus transforms human peripheral B cells into lymphoblastoid cell lines (LCL) that secrete specific antibodies. Our previous studies showed that a monoclonal LCL that secretes a rheumatoid factor expressed activation-induced cytidine deaminase (AID) and displayed an ongoing process of somatic hypermutation (SHM) at a frequency of 1.7×10⁻³ mut/bp in its productively rearranged IgVH gene. The present work shows that SHM similarly affects the nonproductive IgVH allele of the same culture. Sequencing of multiple cDNA clones derived from cellular subclones of the parental culture, showed that both alleles exhibited an ongoing mutational process with mutation rates of 2-3×10⁻⁵ mut/bp×generation with a high preference for C/G transition mutations and lack of a significant strand bias. About 50% of the mutations were targeted to the underlined C/G bases in the WRCH/DGYW and RCY/RGY hotspot motifs, indicating that they were due to the initial phase of AID activity. Mutations were targeted to the VH alleles and not to the Cμ or to the GAPDH genes. Genealogical trees showed a stepwise accumulation of only 1-3 mutations per branch of the tree. Unexpectedly, 27% of all the mutations in the two alleles occurred repeatedly and independently within certain sites (not necessarily the canonical hotspot motifs) in cellular clones belonging to different branches of the lineage tree. Furthermore, some of the mutations seem to arise as recurrent mutational clusters, independently generated in different cellular clones. Statistical analysis showed that it is very unlikely that these clusters were due to random targeting of equally accessible hotspots, indicating the presence of 'hypermutable sites' that generate recurring mutational clusters in the IgVH alleles. Intrinsic hypermutable sites may enhance affinity maturation and generation of effective mutated antibody repertoires against invading pathogens.
Collapse
Affiliation(s)
- Reuven Laskov
- Dept. of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel.
| | | | | | | |
Collapse
|
47
|
Hancer VS, Kose M, Diz-Kucukkaya R, Yavuz AS, Aktan M. Activation-induced cytidine deaminase mRNA levels in chronic lymphocytic leukemia. Leuk Lymphoma 2010; 52:79-84. [PMID: 21133730 DOI: 10.3109/10428194.2010.531410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Rai and Binet staging systems, which are used as standard methods for evaluating the prognosis of chronic lymphocytic leukemia (CLL), have some restrictions in identifying patients with early-stage CLL who will progress rapidly. To solve this defect, other prognostic parameters have become important in recent years. Intracellular up-regulation of the AID gene in the leukemic lymphocytes of patients with CLL may be an important parameter for predicting the progression of CLL. In this study, AID mRNA expression levels were evaluated in 50 patients with CLL and 50 healthy controls. AID mRNA expression was significantly higher in patients than in controls. We then evaluated AID mRNA levels according to the stages of CLL. Regarding AID mRNA levels, patients with Rai stages 0, I, and II were compared with patients with stages III and IV, whereas patients with Binet stage A were compared with patients with Binet stages B and C. In patients with higher-risk Rai stages III and IV and Binet stages B and C, activation-induced cytidine deaminase (AID) mRNA levels were also significantly higher. Additionally, we found that the mRNA levels of patients with AID in CLL were eight-fold higher than those in control patients, suggesting that AID overexpression promotes chromosomal abnormalities and is associated with CLL progression and survival. For this reason, and because of the simplicity of quantitative real-time PCR analysis, AID might be a useful clinical parameter after its importance is confirmed in larger and multivariate studies.
Collapse
Affiliation(s)
- Veysel Sabri Hancer
- Department of Medical Biology and Genetics, Istanbul Bilim University, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
48
|
Chahwan R, Wontakal SN, Roa S. Crosstalk between genetic and epigenetic information through cytosine deamination. Trends Genet 2010; 26:443-8. [DOI: 10.1016/j.tig.2010.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 01/25/2023]
|
49
|
Paddock MN, Buelow BD, Takeda S, Scharenberg AM. The BRCT domain of PARP-1 is required for immunoglobulin gene conversion. PLoS Biol 2010; 8:e1000428. [PMID: 20652015 PMCID: PMC2907289 DOI: 10.1371/journal.pbio.1000428] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 06/08/2010] [Indexed: 11/18/2022] Open
Abstract
During affinity maturation, genomic integrity is maintained through specific targeting of DNA mutations. The DNA damage sensor PARP-1 helps determine whether a DNA lesion results in faithful or mutagenic repair. Genetic variation at immunoglobulin (Ig) gene variable regions in B-cells is created through a multi-step process involving deamination of cytosine bases by activation-induced cytidine deaminase (AID) and their subsequent mutagenic repair. To protect the genome from dangerous, potentially oncogenic effects of off-target mutations, both AID activity and mutagenic repair are targeted specifically to the Ig genes. However, the mechanisms of targeting are unknown and recent data have highlighted the role of regulating mutagenic repair to limit the accumulation of somatic mutations resulting from the more widely distributed AID-induced lesions to the Ig genes. Here we investigated the role of the DNA damage sensor poly-(ADPribose)-polymerase-1 (PARP-1) in the repair of AID-induced DNA lesions. We show through sequencing of the diversifying Ig genes in PARP-1−/− DT40 B-cells that PARP-1 deficiency results in a marked reduction in gene conversion events and enhanced high-fidelity repair of AID-induced lesions at both Ig heavy and light chains. To further characterize the role of PARP-1 in the mutagenic repair of AID-induced lesions, we performed functional analyses comparing the role of engineered PARP-1 variants in high-fidelity repair of DNA damage induced by methyl methane sulfonate (MMS) and the mutagenic repair of lesions at the Ig genes induced by AID. This revealed a requirement for the previously uncharacterized BRCT domain of PARP-1 to reconstitute both gene conversion and a normal rate of somatic mutation at Ig genes, while being dispensable for the high-fidelity base excision repair. From these data we conclude that the BRCT domain of PARP-1 is required to initiate a significant proportion of the mutagenic repair specific to diversifying antibody genes. This role is distinct from the known roles of PARP-1 in high-fidelity DNA repair, suggesting that the PARP-1 BRCT domain has a specialized role in assembling mutagenic DNA repair complexes involved in antibody diversification. To produce a limitless diversity of antibodies within the constraints of a finite genome, activated B cells introduce random mutations into antibody genes through a process of targeted DNA damage and subsequent mutagenic repair. At the same time, the rest of the genome must be protected from mutagenesis to prevent off-target mutations which can lead to the development of lymphoma or leukemia. How antibody genes are specifically targeted is still largely unknown. A potential player in this process is the DNA-damage-sensing enzyme PARP-1, which recruits DNA repair enzymes to sites of damage. Using a chicken B cell lymphoma cell line because it has only a single PARP isoform and constitutively mutates its antibody genes, we compared the types of mutations accumulated in PARP-1−/− cells to wild type. We found that in cells lacking PARP-1, the major pathway of mutagenic repair was disrupted and fewer mutations than normal were introduced into their antibody genes. To identify what might be important for mutagenesis, we tested different factors for their ability to rescue this mutagenic deficiency and found a role for the BRCT (BRCA1 C-terminal) domain of PARP-1, a consensus protein domain known to be involved in directing protein-protein interactions. Our evidence suggests that PARP-1 may be interacting with another hypothetical protein via its BRCT domain that is required for the mutagenic rather than faithful repair of DNA lesions in the antibody genes.
Collapse
Affiliation(s)
- Marcia N. Paddock
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Immunity and Immunotherapies, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Ben D. Buelow
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Immunity and Immunotherapies, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Shunichi Takeda
- Crest Laboratory, Department of Radiation Genetics, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Andrew M. Scharenberg
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Immunity and Immunotherapies, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
50
|
Liu JQ, Joshi PS, Wang C, El-Omrani HY, Xiao Y, Liu X, Hagan JP, Liu CG, Wu LC, Bai XF. Targeting activation-induced cytidine deaminase overcomes tumor evasion of immunotherapy by CTLs. THE JOURNAL OF IMMUNOLOGY 2010; 184:5435-43. [PMID: 20404277 DOI: 10.4049/jimmunol.0903322] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme essential for the generation of Ab diversity in B cells and is considered to be a general gene mutator. In addition, AID expression was also implicated in the pathogenesis of human B cell malignancies and associated with poor prognosis. In this study, we report that small interfering RNA silencing of AID in plasmacytoma dramatically increased its susceptibility to immunotherapy by CTLs. AID silencing did not decrease the mutation frequencies of tumor Ag gene P1A. Gene-array analysis showed dramatically altered expression of a number of genes in AID-silenced plasmacytoma cells, and upregulation of CD200 was shown to be in favor of tumor eradication by CTLs. Taken together, we demonstrate a novel function of AID in tumor evasion of CTL therapy and that targeting AID should be beneficial in the immunotherapy of AID-positive tumors.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|