1
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
2
|
Liu H, Hu K, O’Connor K, Kelliher MA, Zhu LJ. CleanUpRNAseq: An R/Bioconductor Package for Detecting and Correcting DNA Contamination in RNA-Seq Data. BIOTECH 2024; 13:30. [PMID: 39189209 PMCID: PMC11348166 DOI: 10.3390/biotech13030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 08/28/2024] Open
Abstract
RNA sequencing (RNA-seq) has become a standard method for profiling gene expression, yet genomic DNA (gDNA) contamination carried over to the sequencing library poses a significant challenge to data integrity. Detecting and correcting this contamination is vital for accurate downstream analyses. Particularly, when RNA samples are scarce and invaluable, it becomes essential not only to identify but also to correct gDNA contamination to maximize the data's utility. However, existing tools capable of correcting gDNA contamination are limited and lack thorough evaluation. To fill the gap, we developed CleanUpRNAseq, which offers a comprehensive set of functionalities for identifying and correcting gDNA-contaminated RNA-seq data. Our package offers three correction methods for unstranded RNA-seq data and a dedicated approach for stranded data. Through rigorous validation on published RNA-seq datasets with known levels of gDNA contamination and real-world RNA-seq data, we demonstrate CleanUpRNAseq's efficacy in detecting and correcting detrimental levels of gDNA contamination across diverse library protocols. CleanUpRNAseq thus serves as a valuable tool for post-alignment quality assessment of RNA-seq data and should be integrated into routine workflows for RNA-seq data analysis. Its incorporation into OneStopRNAseq should significantly bolster the accuracy of gene expression quantification and differential expression analysis of RNA-seq data.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
| | - Kevin O’Connor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
| | - Michelle A. Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Wang H, Zhan Q, Ning M, Guo H, Wang Q, Zhao J, Bao P, Xing S, Chen S, Zuo S, Xia X, Li M, Wang P, Lu ZJ. Depletion-assisted multiplexed cell-free RNA sequencing reveals distinct human and microbial signatures in plasma versus extracellular vesicles. Clin Transl Med 2024; 14:e1760. [PMID: 39031987 PMCID: PMC11259601 DOI: 10.1002/ctm2.1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Cell-free long RNAs in human plasma and extracellular vesicles (EVs) have shown promise as biomarkers in liquid biopsy, despite their fragmented nature. METHODS To investigate these fragmented cell-free RNAs (cfRNAs), we developed a cost-effective cfRNA sequencing method called DETECTOR-seq (depletion-assisted multiplexed cell-free total RNA sequencing). DETECTOR-seq utilised a meticulously tailored set of customised guide RNAs to remove large amounts of unwanted RNAs (i.e., fragmented ribosomal and mitochondrial RNAs) in human plasma. Early barcoding strategy was implemented to reduce costs and minimise plasma requirements. RESULTS Using DETECTOR-seq, we conducted a comprehensive analysis of cell-free transcriptomes in both whole human plasma and EVs. Our analysis revealed discernible distributions of RNA types in plasma and EVs. Plasma exhibited pronounced enrichment in structured circular RNAs, tRNAs, Y RNAs and viral RNAs, while EVs showed enrichment in messenger RNAs (mRNAs) and signal recognition particle RNAs (srpRNAs). Functional pathway analysis highlighted RNA splicing-related ribonucleoproteins (RNPs) and antimicrobial humoral response genes in plasma, while EVs demonstrated enrichment in transcriptional activity, cell migration and antigen receptor-mediated immune signals. Our study indicates the comparable potential of cfRNAs from whole plasma and EVs in distinguishing cancer patients (i.e., colorectal and lung cancer) from healthy donors. And microbial cfRNAs in plasma showed potential in classifying specific cancer types. CONCLUSIONS Our comprehensive analysis of total and EV cfRNAs in paired plasma samples provides valuable insights for determining the need for EV purification in cfRNA-based studies. We envision the cost effectiveness and efficiency of DETECTOR-seq will empower transcriptome-wide investigations in the fields of cfRNAs and liquid biopsy. KEYPOINTS DETECTOR-seq (depletion-assisted multiplexed cell-free total RNA sequencing) enabled efficient and specific depletion of sequences derived from fragmented ribosomal and mitochondrial RNAs in plasma. Distinct human and microbial cell-free RNA (cfRNA) signatures in whole Plasma versus extracellular vesicles (EVs) were revealed. Both Plasma and EV cfRNAs were capable of distinguishing cancer patients from normal individuals, while microbial RNAs in Plasma cfRNAs enabled better classification of cancer types than EV cfRNAs.
Collapse
Affiliation(s)
- Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
- Geneplus‐Beijing InstituteBeijingChina
| | - Qing Zhan
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| | - Meng Ning
- Tianjin Third Central HospitalTianjinChina
| | - Hongjie Guo
- Department of Interventional Radiology and Vascular SurgeryPeking University First HospitalBeijingChina
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
- School of Life SciencesPeking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program, Tsinghua UniversityBeijingChina
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| | - Shanwen Chen
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Shuai Zuo
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | | | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC‐DID), MST State Key Laboratory of Complex Severe and Rare Diseases, MOE Key Laboratory of Rheumatology and Clinical ImmunologyPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Pengyuan Wang
- Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Institute for Precision MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
4
|
Abstract
This review delves into the rapidly evolving landscape of liquid biopsy technologies based on cell-free DNA (cfDNA) and cell-free RNA (cfRNA) and their increasingly prominent role in precision medicine. With the advent of high-throughput DNA sequencing, the use of cfDNA and cfRNA has revolutionized noninvasive clinical testing. Here, we explore the physical characteristics of cfDNA and cfRNA, present an overview of the essential engineering tools used by the field, and highlight clinical applications, including noninvasive prenatal testing, cancer testing, organ transplantation surveillance, and infectious disease testing. Finally, we discuss emerging technologies and the broadening scope of liquid biopsies to new areas of diagnostic medicine.
Collapse
Affiliation(s)
- Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Lauren Ahmann
- Department of Pathology, Stanford University, Stanford, California, USA;
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Wei Gu
- Department of Pathology, Stanford University, Stanford, California, USA;
| |
Collapse
|
5
|
Ball JB, Frank MG, Green-Fulgham SM, Watkins LR. Use of adeno-associated viruses for transgenic modulation of microglia structure and function: A review of technical considerations and challenges. Brain Behav Immun 2024; 118:368-379. [PMID: 38471576 PMCID: PMC11103248 DOI: 10.1016/j.bbi.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Microglia play a central role in the etiology of many neuropathologies. Transgenic tools are a powerful experiment approach to gain reliable and specific control over microglia function. Adeno-associated virus (AAVs) vectors are already an indispensable tool in neuroscience research. Despite ubiquitous use of AAVs and substantial interest in the role of microglia in the study of central nervous system (CNS) function and disease, transduction of microglia using AAVs is seldom reported. This review explores the challenges and advancements made in using AAVs for expressing transgenes in microglia. First, we will examine the functional anatomy of the AAV capsid, which will serve as a basis for subsequent discussions of studies exploring the relationship between capsid mutations and microglia transduction efficacy. After outlining the functional anatomy of AAVs, we will consider the experimental evidence demonstrating AAV-mediated transduction of microglia and microglia-like cell lines followed by an examination of the most promising experimental approaches identified in the literature. Finally, technical limitations will be considered in future applications of AAV experimental approaches.
Collapse
Affiliation(s)
- Jayson B Ball
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| | - Matthew G Frank
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Suzanne M Green-Fulgham
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Van Der Schueren C, Decruyenaere P, Avila Cobos F, Bult J, Deleu J, Dipalo LL, Helsmoortel HH, Hulstaert E, Morlion A, Ramos Varas E, Schoofs K, Trypsteen W, Vanden Eynde E, Van Droogenbroeck H, Verniers K, Vandesompele J, Decock A. Subpar reporting of pre-analytical variables in RNA-focused blood plasma studies. Mol Oncol 2024. [PMID: 38564603 DOI: 10.1002/1878-0261.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Extracellular RNA (cell-free RNA; exRNA) from blood-derived liquid biopsies is an appealing, minimally invasive source of disease biomarkers. As pre-analytical variables strongly influence exRNA measurements, their reporting is essential for meaningful interpretation and replication of results. The aim of this review was to chart to what extent pre-analytical variables are documented, to pinpoint shortcomings and to improve future reporting. In total, 200 blood plasma exRNA studies published in 2018 or 2023 were reviewed for annotation of 22 variables associated with blood collection, plasma preparation, and RNA purification. Our results show that pre-analytical variables are poorly documented, with only three out of 22 variables described in over half of the publications. The percentage of variables reported ranged from 4.6% to 54.6% (mean 24.84%) in 2023 and from 4.6% to 57.1% (mean 28.60%) in 2018. Recommendations and guidelines (i.e., BRISQ, ASCO-CAP, BloodPAC, PPMPT, and CEN standards) have currently not resulted in improved reporting. In conclusion, our results highlight the lack of reporting pre-analytical variables in exRNA studies and advocate for a consistent use of available standards, endorsed by funders and journals.
Collapse
Affiliation(s)
| | - Philippe Decruyenaere
- Department of Biomolecular Medicine, Ghent University, Belgium
- Department of Hematology, Ghent University Hospital, Belgium
| | - Francisco Avila Cobos
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Johanna Bult
- Department of Biomolecular Medicine, Ghent University, Belgium
- Department of Hematology, University Medical Center Groningen, The Netherlands
| | - Jill Deleu
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Laudonia Lidia Dipalo
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Hetty Hilde Helsmoortel
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Eva Hulstaert
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
- Department of Dermatology, AZ Sint-Blasius, Belgium
| | - Annelien Morlion
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Elena Ramos Varas
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Kathleen Schoofs
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
- Translational Oncogenomics and Bioinformatics Lab, Cancer Research Institute Ghent (CRIG), Belgium
- Center for Medical Biotechnology, VIB-UGent, Belgium
| | - Wim Trypsteen
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Eveline Vanden Eynde
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Hanne Van Droogenbroeck
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Kimberly Verniers
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
- CellCarta, Belgium
| | - Anneleen Decock
- Department of Biomolecular Medicine, Ghent University, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Belgium
| |
Collapse
|
7
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 676] [Impact Index Per Article: 676.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Đermić D, Ljubić S, Matulić M, Procino A, Feliciello MC, Ugarković Đ, Feliciello I. Reverse transcription-quantitative PCR (RT-qPCR) without the need for prior removal of DNA. Sci Rep 2023; 13:11470. [PMID: 37454173 PMCID: PMC10349872 DOI: 10.1038/s41598-023-38383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
The procedure illustrated in this paper represents a new method for transcriptome analysis by PCR (Polymerase Chain Reaction), which circumvents the need for elimination of potential DNA contamination. Compared to the existing methodologies, our method is more precise, simpler and more reproducible because it preserves the RNA's integrity, does not require materials and/or reagents that are used for elimination of DNA and it also reduces the number of samples that should be set up as negative controls. This novel procedure involves the use of a specifically modified primer during reverse transcription step, which contains mismatched bases, thus producing cDNA molecules that differ from genomic DNA. By using the same modified primer in PCR amplification, only cDNA template is amplified since genomic DNA template is partially heterologous to the primer. In this way, amplification by PCR is unaffected by any potential DNA contamination since it is specific only for the cDNA template. Furthermore, it accurately reflects the initial RNA concentration of the sample, which is prone to changes due to various physical or enzymatic treatments commonly used by the current methodologies for DNA elimination. The method is particularly suitable for quantification of highly repetitive DNA transcripts, such as satellite DNA.
Collapse
Affiliation(s)
- Damir Đermić
- Division of Molecular Biology, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Sven Ljubić
- Division of Molecular Biology, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Alfredo Procino
- Division of Molecular Biology, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Maria Chiara Feliciello
- Department of Statistical Science, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Đurđica Ugarković
- Division of Molecular Biology, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| | - Isidoro Feliciello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80135, Naples, Italy.
| |
Collapse
|
9
|
Cabús L, Lagarde J, Curado J, Lizano E, Pérez-Boza J. Current challenges and best practices for cell-free long RNA biomarker discovery. Biomark Res 2022; 10:62. [PMID: 35978416 PMCID: PMC9385245 DOI: 10.1186/s40364-022-00409-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
The analysis of biomarkers in biological fluids, also known as liquid biopsies, is seen with great potential to diagnose complex diseases such as cancer with a high sensitivity and minimal invasiveness. Although it can target any biomolecule, most liquid biopsy studies have focused on circulating nucleic acids. Historically, studies have aimed at the detection of specific mutations on cell-free DNA (cfDNA), but recently, the study of cell-free RNA (cfRNA) has gained traction. Since 2020, a handful of cfDNA tests have been approved for therapy selection by the FDA, however, no cfRNA tests are approved to date. One of the main drawbacks in the field of RNA-based liquid biopsies is the low reproducibility of the results, often caused by technical and biological variability, a lack of standardized protocols and insufficient cohorts. In this review, we will identify the main challenges and biases introduced during the different stages of biomarker discovery in liquid biopsies with cfRNA and propose solutions to minimize them.
Collapse
Affiliation(s)
- Lluc Cabús
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
- Flomics Biotech, Barcelona, Spain
| | | | | | - Esther Lizano
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
10
|
Li X, Zhang P, Wang H, Yu Y. Genes expressed at low levels raise false discovery rates in RNA samples contaminated with genomic DNA. BMC Genomics 2022; 23:554. [PMID: 35922750 PMCID: PMC9351092 DOI: 10.1186/s12864-022-08785-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background RNA preparations contaminated with genomic DNA (gDNA) are frequently disregarded by RNA-seq studies. Such contamination may generate false results; however, their effect on the outcomes of RNA-seq analyses is unknown. To address this gap in our knowledge, here we added different concentrations of gDNA to total RNA preparations and subjected them to RNA-seq analysis. Results We found that the contaminating gDNA altered the quantification of transcripts at relatively high concentrations. Differentially expressed genes (DEGs) resulting from gDNA contamination may therefore contribute to higher rates of false enrichment of pathways compared with analogous samples lacking numerous DEGs. A strategy was developed to correct gene expression levels in gDNA-contaminated RNA samples, which assessed the magnitude of contamination to improve the reliability of the results. Conclusions Our study indicates that caution must be exercised when interpreting results associated with low-abundance transcripts. The data provided here will likely serve as a valuable resource to evaluate the influence of gDNA contamination on RNA-seq analysis, particularly related to the detection of putative novel gene elements. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08785-1.
Collapse
Affiliation(s)
- Xiangnan Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Peipei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Haijian Wang
- Shanghai Pudong Hospital, Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Ying Yu
- Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Esfahani MS, Hamilton EG, Mehrmohamadi M, Nabet BY, Alig SK, King DA, Steen CB, Macaulay CW, Schultz A, Nesselbush MC, Soo J, Schroers-Martin JG, Chen B, Binkley MS, Stehr H, Chabon JJ, Sworder BJ, Hui ABY, Frank MJ, Moding EJ, Liu CL, Newman AM, Isbell JM, Rudin CM, Li BT, Kurtz DM, Diehn M, Alizadeh AA. Inferring gene expression from cell-free DNA fragmentation profiles. Nat Biotechnol 2022; 40:585-597. [PMID: 35361996 PMCID: PMC9337986 DOI: 10.1038/s41587-022-01222-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Profiling of circulating tumor DNA (ctDNA) in the bloodstream shows promise for noninvasive cancer detection. Chromatin fragmentation features have previously been explored to infer gene expression profiles from cell-free DNA (cfDNA), but current fragmentomic methods require high concentrations of tumor-derived DNA and provide limited resolution. Here we describe promoter fragmentation entropy as an epigenomic cfDNA feature that predicts RNA expression levels at individual genes. We developed 'epigenetic expression inference from cell-free DNA-sequencing' (EPIC-seq), a method that uses targeted sequencing of promoters of genes of interest. Profiling 329 blood samples from 201 patients with cancer and 87 healthy adults, we demonstrate classification of subtypes of lung carcinoma and diffuse large B cell lymphoma. Applying EPIC-seq to serial blood samples from patients treated with PD-(L)1 immune-checkpoint inhibitors, we show that gene expression profiles inferred by EPIC-seq are correlated with clinical response. Our results indicate that EPIC-seq could enable noninvasive, high-throughput tissue-of-origin characterization with diagnostic, prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Mohammad Shahrokh Esfahani
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Emily G. Hamilton
- Program in Cancer Biology, Stanford School of Medicine, Stanford, CA, USA
| | - Mahya Mehrmohamadi
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Barzin Y. Nabet
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Stefan K. Alig
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Daniel A. King
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Chloé B. Steen
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.,Department of Biomedical Informatics, Stanford School of Medicine, Stanford, CA, USA
| | - Charles W. Macaulay
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Andre Schultz
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | | | - Joanne Soo
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Joseph G. Schroers-Martin
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Binbin Chen
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Michael S. Binkley
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Henning Stehr
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Jacob J. Chabon
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Brian J. Sworder
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Angela B-Y Hui
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Matthew J. Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Everett J. Moding
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Chih Long Liu
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Aaron M. Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.,Department of Biomedical Informatics, Stanford School of Medicine, Stanford, CA, USA
| | - James M. Isbell
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T. Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David M. Kurtz
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.,Correspondence and requests for materials should be addressed to Maximilian Diehn or Ash A. Alizadeh, ;
| | - Ash A. Alizadeh
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.,Correspondence and requests for materials should be addressed to Maximilian Diehn or Ash A. Alizadeh, ;
| |
Collapse
|
12
|
Robinson EL, Baker AH, Brittan M, McCracken I, Condorelli G, Emanueli C, Srivastava PK, Gaetano C, Thum T, Vanhaverbeke M, Angione C, Heymans S, Devaux Y, Pedrazzini T, Martelli F. Dissecting the transcriptome in cardiovascular disease. Cardiovasc Res 2022; 118:1004-1019. [PMID: 33757121 PMCID: PMC8930073 DOI: 10.1093/cvr/cvab117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The human transcriptome comprises a complex network of coding and non-coding RNAs implicated in a myriad of biological functions. Non-coding RNAs exhibit highly organized spatial and temporal expression patterns and are emerging as critical regulators of differentiation, homeostasis, and pathological states, including in the cardiovascular system. This review defines the current knowledge gaps, unmet methodological needs, and describes the challenges in dissecting and understanding the role and regulation of the non-coding transcriptome in cardiovascular disease. These challenges include poor annotation of the non-coding genome, determination of the cellular distribution of transcripts, assessment of the role of RNA processing and identification of cell-type specific changes in cardiovascular physiology and disease. We highlight similarities and differences in the hurdles associated with the analysis of the non-coding and protein-coding transcriptomes. In addition, we discuss how the lack of consensus and absence of standardized methods affect reproducibility of data. These shortcomings should be defeated in order to make significant scientific progress and foster the development of clinically applicable non-coding RNA-based therapeutic strategies to lessen the burden of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
- The Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Ian McCracken
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - G Condorelli
- Humanitas Research Hospital, Humanitas University, Via Manzoni 113, Rozzano, MI 20089, Italy
| | - C Emanueli
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - P K Srivastava
- Imperial College, National Heart and Lung Institute, Hammersmith campus, Du Cane Road, London W12 0NN, UK
| | - C Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia 27100, Italy
| | - T Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Carl-Neuberg-Straße 1 30625 Hannover, Germany
| | - M Vanhaverbeke
- UZ Gasthuisberg Campus, KU Leuven, Herestraat 49 3000 Leuven, Belgium
| | - C Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, TS4 3BX, UK
| | - S Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 Maastricht University, Maastricht, The Netherlands
| | - Y Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - T Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011 Lausanne, Switzerland
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato, Milan, Italy
| | | |
Collapse
|
13
|
LncRNA Biomarkers of Inflammation and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:121-145. [PMID: 35220568 DOI: 10.1007/978-3-030-92034-0_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are promising candidates as biomarkers of inflammation and cancer. LncRNAs have several properties that make them well-suited as molecular markers of disease: (1) many lncRNAs are expressed in a tissue-specific manner, (2) distinct lncRNAs are upregulated based on different inflammatory or oncogenic stimuli, (3) lncRNAs released from cells are packaged and protected in extracellular vesicles, and (4) circulating lncRNAs in the blood are detectable using various RNA sequencing approaches. Here we focus on the potential for lncRNA biomarkers to detect inflammation and cancer, highlighting key biological, technological, and analytical considerations that will help advance the development of lncRNA-based liquid biopsies.
Collapse
|
14
|
Hulstaert E, Decock A, Morlion A, Everaert C, Verniers K, Nuytens J, Nijs N, Schroth GP, Kuersten S, Gross SM, Mestdagh P, Vandesompele J. Messenger RNA capture sequencing of extracellular RNA from human biofluids using a comprehensive set of spike-in controls. STAR Protoc 2021; 2:100475. [PMID: 33937877 PMCID: PMC8076706 DOI: 10.1016/j.xpro.2021.100475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Comprehensive transcriptome analysis of extracellular RNA (exRNA) purified from human biofluids is challenging because of the low RNA concentration and compromised RNA integrity. Here, we describe an optimized workflow to (1) isolate exRNA from different types of biofluids and (2) to prepare messenger RNA (mRNA)-enriched sequencing libraries using complementary hybridization probes. Importantly, the workflow includes 2 sets of synthetic spike-in RNA molecules as processing controls for RNA purification and sequencing library preparation and as an alternative data normalization strategy. For complete details on the use and execution of this protocol, please refer to Hulstaert et al. (2020). Extracellular RNA from biofluids has a low concentration and a compromised integrity An optimized workflow for mRNA capture sequencing of human biofluids is provided Synthetic spike-in RNA molecules serve as processing controls Spike-in RNAs allow for data normalization and calculation of mRNA concentration
Collapse
Affiliation(s)
- Eva Hulstaert
- Center for Medical Genetics, Department of Biomolecular Medicine, OncoRNALab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Department of Dermatology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Anneleen Decock
- Center for Medical Genetics, Department of Biomolecular Medicine, OncoRNALab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Annelien Morlion
- Center for Medical Genetics, Department of Biomolecular Medicine, OncoRNALab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Celine Everaert
- Center for Medical Genetics, Department of Biomolecular Medicine, OncoRNALab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Kimberly Verniers
- Center for Medical Genetics, Department of Biomolecular Medicine, OncoRNALab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Justine Nuytens
- Center for Medical Genetics, Department of Biomolecular Medicine, OncoRNALab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Nele Nijs
- Biogazelle, Technologiepark 82, 9052 Zwijnaarde, Belgium
| | | | | | | | - Pieter Mestdagh
- Center for Medical Genetics, Department of Biomolecular Medicine, OncoRNALab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Biogazelle, Technologiepark 82, 9052 Zwijnaarde, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Department of Biomolecular Medicine, OncoRNALab, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium.,Biogazelle, Technologiepark 82, 9052 Zwijnaarde, Belgium
| |
Collapse
|
15
|
Reply to Verwilt et al.: Experimental evidence against DNA contamination in SILVER-seq. Proc Natl Acad Sci U S A 2020; 117:18937-18938. [PMID: 32788395 PMCID: PMC7431041 DOI: 10.1073/pnas.2008585117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
16
|
Verwilt J, Trypsteen W, Van Paemel R, De Preter K, Giraldez MD, Mestdagh P, Vandesompele J. When DNA gets in the way: A cautionary note for DNA contamination in extracellular RNA-seq studies. Proc Natl Acad Sci U S A 2020; 117:18934-18936. [PMID: 32788394 PMCID: PMC7431080 DOI: 10.1073/pnas.2001675117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jasper Verwilt
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium;
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Wim Trypsteen
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Ruben Van Paemel
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Maria D Giraldez
- Digestive Diseases Unit, Virgen del Rocio University Hospital, 41013 Seville, Spain
- OncoDigest Group, Institute of Biomedicine of Seville (IBiS), 41013 Seville, Spain
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Moufarrej MN, Wong RJ, Shaw GM, Stevenson DK, Quake SR. Investigating Pregnancy and Its Complications Using Circulating Cell-Free RNA in Women's Blood During Gestation. Front Pediatr 2020; 8:605219. [PMID: 33381480 PMCID: PMC7767905 DOI: 10.3389/fped.2020.605219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, there have been major advances in the application of non-invasive techniques to predict pregnancy-related complications, for example by measuring cell-free RNA (cfRNA) in maternal blood. In contrast to cell-free DNA (cfDNA), which is already in clinical use to diagnose fetal aneuploidy, circulating RNA levels can correspond with tissue-specific gene expression and provide a snapshot of prenatal health across gestation. Here, we review the physiologic origins of cfRNA and its novel applications and corresponding challenges to monitor fetal and maternal health and predict pregnancy-related complications.
Collapse
Affiliation(s)
- Mira N Moufarrej
- Departments of Bioengineering and Applied Physics, Stanford University, and Chan Zuckerberg Biohub, Stanford, CA, United States
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, and Chan Zuckerberg Biohub, Stanford, CA, United States
| |
Collapse
|