1
|
Anaya BJ, D'Angelo D, Bettini R, Molina G, Sanz-Perez A, Dea-Ayuela MA, Galiana C, Rodríguez C, Tirado DF, Lalatsa A, González-Burgos E, Serrano DR. Heparin-azithromycin microparticles show anti-inflammatory effects and inhibit SARS-CoV-2 and bacterial pathogens associated to lung infections. Carbohydr Polym 2025; 348:122930. [PMID: 39567148 DOI: 10.1016/j.carbpol.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/22/2024]
Abstract
Pulmonary infections are a leading cause of morbidity and mortality worldwide, a situation exacerbated by the COVID-19. Azithromycin (AZM) is used orally to treat pulmonary infections due to its ability to accumulate in lung tissues and immune cells after oral administration. Sulfated polysaccharides, such as heparin, are known to inhibit SARS-CoV-2 entry. This study presents a novel approach focused on developing a dry powder inhaler of AZM-loaded microparticles composed of either heparin or its derivatives. The microparticle formulations exhibited potent antiviral activity against SARS-CoV-2 (IC50 ≤ 95 nM) while retaining superior antibacterial efficacy against Streptococcus pneumoniae and Pseudomonas aeruginosa compared to free AZM (MIC ≤15 μg/mL). Importantly, at bactericidal concentrations, no cytotoxic effects were observed on mammalian cells, including Calu-3 cells and red blood cells. The formulations demonstrated effective alveolar aerodynamic deposition (MMAD ranging from 1 μm to 3 μm) with a Fine Particle Fraction below 5 μm close to 50 %. Adopting a conservative estimate of 20 mL for the pulmonary epithelial lining fluid volume in healthy adults, efficacious local concentrations of sulfated polysaccharides and AZM would be delivered to the lung using this multifaceted strategy which holds promise for the treatment of bacterial pulmonary infections associated with COVID-19.
Collapse
Affiliation(s)
- Brayan J Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Davide D'Angelo
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Gracia Molina
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Amadeo Sanz-Perez
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | - Carolina Galiana
- Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universitites, Valencia, Spain
| | - Carmina Rodríguez
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Diego F Tirado
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Aikaterini Lalatsa
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, John Arbuthnot Building, Robertson Wing, 161 Cathedral St, Glasgow G4 0RE, UK
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain.
| | - Dolores R Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Huang W, Baliga C, Aleksandrova EV, Atkinson G, Polikanov YS, Vázquez-Laslop N, Mankin AS. Activity, structure, and diversity of Type II proline-rich antimicrobial peptides from insects. EMBO Rep 2024; 25:5194-5211. [PMID: 39415050 PMCID: PMC11549390 DOI: 10.1038/s44319-024-00277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Apidaecin 1b (Api), the first characterized Type II Proline-rich antimicrobial peptide (PrAMP), is encoded in the honey bee genome. It inhibits bacterial growth by binding in the nascent peptide exit tunnel of the ribosome after the release of the completed protein and trapping the release factors. By genome mining, we have identified 71 PrAMPs encoded in insect genomes as pre-pro-polyproteins. Having chemically synthesized and tested the activity of 26 peptides, we demonstrate that despite significant sequence variation in the N-terminal sequence, the majority of the PrAMPs that retain the conserved C-terminal sequence of Api are able to trap the ribosome at the stop codons and induce stop codon readthrough-all hallmarks of Type II PrAMP mode of action. Some of the characterized PrAMPs exhibit superior antibacterial activity in comparison with Api. The newly solved crystallographic structures of the ribosome complexed with Api and with the more active peptide Fva1 from the stingless bee demonstrate the universal placement of the PrAMPs' C-terminal pharmacophore in the post-release ribosome despite variations in their N-terminal sequence.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chetana Baliga
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, New BEL Road, MSR Nagar, Bangalore, Karnataka, 560054, India
| | - Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Gemma Atkinson
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Yury S Polikanov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
3
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Huang W, Baliga C, Vázquez-Laslop N, Mankin A. Sequence diversity of apidaecin-like peptides arresting the terminating ribosome. Nucleic Acids Res 2024; 52:8967-8978. [PMID: 38953159 PMCID: PMC11347161 DOI: 10.1093/nar/gkae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
The Proline-rich Antimicrobial Peptide (PrAMP) apidaecin (Api) inhibits translation by binding in the ribosomal nascent peptide exit tunnel, trapping release factors RF1 or RF2, and arresting ribosomes at stop codons. To explore the extent of sequence variations of the native 18-amino acid Api that allows it to preserve its activity, we screened a library of synthetic mutant Api genes expressed in bacterial cells, resulting in nearly 350000 peptide variants with multiple substitutions. By applying orthogonal negative and positive selection strategies, we identified a number of multi-substituted Api variants capable of arresting ribosomes at stop codons. Our findings underscore the critical contribution of specific amino acid residues of the peptide for its on-target function while significantly expanding the variety of PrAMPs acting on the terminating ribosome. Additionally, some of the tested synthesized multi-substituted Api variants exhibit improved antibacterial activity compared to that of the wild type PrAMP and may constitute the starting point to develop clinically useful antimicrobials.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chetana Baliga
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Moule MG, Benjamin AB, Burger ML, Herlan C, Lebedev M, Lin JS, Koster KJ, Wavare N, Adams LG, Bräse S, Munoz-Medina R, Cannon CL, Barron AE, Cirillo JD. Peptide-mimetic treatment of Pseudomonas aeruginosa in a mouse model of respiratory infection. Commun Biol 2024; 7:1033. [PMID: 39174819 PMCID: PMC11341572 DOI: 10.1038/s42003-024-06725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2000 deaths in the U.S. annually. While the emergence of resistant bacteria has become ominously common, identification of useful new drug classes has been limited over the past over 40 years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity in mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 min in vitro, and is effective against a range of clinical isolates, including extensively drug resistant strains. In vivo, TM5 significantly reduced bacterial load in the lungs within 24 h compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Madeleine G Moule
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aaron B Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Melanie L Burger
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Claudine Herlan
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maxim Lebedev
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University Schools of Medicine and of Engineering, Stanford, CA, USA
| | - Kent J Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Neha Wavare
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Leslie G Adams
- Department of Veterinary Pathobiology, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ricardo Munoz-Medina
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Annelise E Barron
- Department of Bioengineering, Stanford University Schools of Medicine and of Engineering, Stanford, CA, USA.
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA.
| |
Collapse
|
6
|
Lyons N, Wu W, Jin Y, Lamont IL, Pletzer D. Using host-mimicking conditions and a murine cutaneous abscess model to identify synergistic antibiotic combinations effective against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1352339. [PMID: 38808066 PMCID: PMC11130353 DOI: 10.3389/fcimb.2024.1352339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of β-lactam and β-lactam/β-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.
Collapse
Affiliation(s)
- Nikita Lyons
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Zhang M, Yang B, Shi J, Wang Z, Liu Y. Host defense peptides mitigate the spread of antibiotic resistance in physiologically relevant condition. Antimicrob Agents Chemother 2024; 68:e0126123. [PMID: 38415983 PMCID: PMC10994823 DOI: 10.1128/aac.01261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Antibiotic resistance represents a significant challenge to public health and human safety. The primary driver behind the dissemination of antibiotic resistance is the horizontal transfer of plasmids. Current conjugative transfer assay is generally performed in a standardized manner, ignoring the effect of the host environment. Host defense peptides (HDPs) possess a wide range of biological targets and play an essential role in the innate immune system. Herein, we reveal that sub-minimum inhibitory concentrations of HDPs facilitate the conjugative transfer of RP4-7 plasmid in the Luria Broth medium, and this observation is reversed in the RPMI medium, designed to simulate the host environment. Out of these HDPs, indolicidin (Ind), a cationic tridecapeptide from bovine neutrophils, significantly inhibits the conjugation of multidrug resistance plasmids in a dose-dependent manner, including blaNDM- and tet(X4)-bearing plasmids. We demonstrate that the addition of Ind to RPMI medium as the incubation substrate downregulates the expression of conjugation-related genes. In addition, Ind weakens the tricarboxylic acid cycle, impedes the electron transport chain, and disrupts the proton motive force, consequently diminishing the synthesis of adenosine triphosphate and limiting the energy supply. Our findings highlight the importance of the host-like environments for the development of horizontal transfer inhibitors and demonstrate the potential of HDPs in preventing the spread of resistance plasmids.
Collapse
Affiliation(s)
- Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Davis KP, Morales Y, Ende RJ, Peters R, McCabe AL, Mecsas J, Aldridge BB. Critical role of growth medium for detecting drug interactions in Gram-negative bacteria that model in vivo responses. mBio 2024; 15:e0015924. [PMID: 38364199 PMCID: PMC10936441 DOI: 10.1128/mbio.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
The rise in infections caused by multidrug-resistant (MDR) bacteria has necessitated a variety of clinical approaches, including the use of antibiotic combinations. Here, we tested the hypothesis that drug-drug interactions vary in different media, and determined which in vitro models best predict drug interactions in the lungs. We systematically studied pair-wise antibiotic interactions in three different media, CAMHB, (a rich lab medium standard for antibiotic susceptibility testing), a urine mimetic medium (UMM), and a minimal medium of M9 salts supplemented with glucose and iron (M9Glu) with three Gram-negative ESKAPE pathogens, Acinetobacter baumannii (Ab), Klebsiella pneumoniae (Kp), and Pseudomonas aeruginosa (Pa). There were pronounced differences in responses to antibiotic combinations between the three bacterial species grown in the same medium. However, within species, PaO1 responded to drug combinations similarly when grown in all three different media, whereas Ab17978 and other Ab clinical isolates responded similarly when grown in CAMHB and M9Glu medium. By contrast, drug interactions in Kp43816, and other Kp clinical isolates poorly correlated across different media. To assess whether any of these media were predictive of antibiotic interactions against Kp in the lungs of mice, we tested three antibiotic combination pairs. In vitro measurements in M9Glu, but not rich medium or UMM, predicted in vivo outcomes. This work demonstrates that antibiotic interactions are highly variable across three Gram-negative pathogens and highlights the importance of growth medium by showing a superior correlation between in vitro interactions in a minimal growth medium and in vivo outcomes. IMPORTANCE Drug-resistant bacterial infections are a growing concern and have only continued to increase during the SARS-CoV-2 pandemic. Though not routinely used for Gram-negative bacteria, drug combinations are sometimes used for serious infections and may become more widely used as the prevalence of extremely drug-resistant organisms increases. To date, reliable methods are not available for identifying beneficial drug combinations for a particular infection. Our study shows variability across strains in how drug interactions are impacted by growth conditions. It also demonstrates that testing drug combinations in tissue-relevant growth conditions for some strains better models what happens during infection and may better inform combination therapy selection.
Collapse
Affiliation(s)
- Kathleen P. Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Yoelkys Morales
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rachel J. Ende
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Ryan Peters
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Anne L. McCabe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|
9
|
Shi J, Chen C, Zhang M, Wang Z, Liu Y. Repurposing Anthracycline Drugs as Potential Antibiotic Candidates and Potentiators to Tackle Multidrug-Resistant Pathogens. ACS Infect Dis 2024; 10:594-605. [PMID: 38183662 DOI: 10.1021/acsinfecdis.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The escalating mortality rate resulting from multidrug-resistant (MDR) bacteria has intensified the urgency for innovative antimicrobial agents. Currently, the antimicrobial activity of compounds is usually assessed by testing the minimum inhibitory concentration (MIC) on a standardized laboratory medium. However, such screening conditions differ from the in vivo environment, making it easy to overlook some antibacterial agents that are active in vivo but less active in vitro. Herein, by using tissue medium RPMI, we uncover that anthracyclines, especially mitoxantrone (MX), exhibit improved bacteriostatic and bactericidal effects against various MDR bacteria in host-like media. Transcriptome results reveal that LPS modification-related genes of bacterial membrane surfaces and metabolic genes are significantly down-regulated in RPMI media. Mechanistic studies demonstrate that MX leads to more substantial membrane damage, increased ROS production, and DNA damage in host-mimicking conditions. Furthermore, we demonstrate that MX and colistin exhibit strong synergistic effects against mcr-positive strains in host-mimicking media by disrupting iron homeostasis. In an experimental murine infection model, MX monotreatment demonstrates therapeutic efficacy in reducing bacterial burdens. Overall, our work suggests that mimicking the host condition is an effective strategy to identify new antimicrobial agents and highlights the therapeutic potential of anthracycline drugs in combating MDR pathogens.
Collapse
Affiliation(s)
- Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
De R, Whiteley M, Azad RK. A gene network-driven approach to infer novel pathogenicity-associated genes: application to Pseudomonas aeruginosa PAO1. mSystems 2023; 8:e0047323. [PMID: 37921470 PMCID: PMC10734507 DOI: 10.1128/msystems.00473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE We present here a new systems-level approach to decipher genetic factors and biological pathways associated with virulence and/or antibiotic treatment of bacterial pathogens. The power of this approach was demonstrated by application to a well-studied pathogen Pseudomonas aeruginosa PAO1. Our gene co-expression network-based approach unraveled known and unknown genes and their networks associated with pathogenicity in P. aeruginosa PAO1. The systems-level investigation of P. aeruginosa PAO1 helped identify putative pathogenicity and resistance-associated genetic factors that could not otherwise be detected by conventional approaches of differential gene expression analysis. The network-based analysis uncovered modules that harbor genes not previously reported by several original studies on P. aeruginosa virulence and resistance. These could potentially act as molecular determinants of P. aeruginosa PAO1 pathogenicity and responses to antibiotics.
Collapse
Affiliation(s)
- Ronika De
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
| | - Marvin Whiteley
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
- Department of Mathematics, University of North Texas, Denton, Texas, USA
| |
Collapse
|
11
|
Coenye T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going? Clin Microbiol Rev 2023; 36:e0002423. [PMID: 37812003 PMCID: PMC10732061 DOI: 10.1128/cmr.00024-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Our knowledge about the fundamental aspects of biofilm biology, including the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. However, this knowledge has so far not been translated into major changes in clinical practice. While the biofilm concept is increasingly on the radar of clinical microbiologists, physicians, and healthcare professionals in general, the standardized tools to study biofilms in the clinical microbiology laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, the microenvironment at the site of infection is an important driver for microbial physiology and hence susceptibility; but this is poorly reflected in current AST methods. The goal of this review is to provide an overview of the state of the art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps needed to get past these bottlenecks, will be discussed.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Moule MG, Benjamin AB, Buger ML, Herlan C, Lebedev M, Lin JS, Koster KJ, Wavare N, Adams LG, Bräse S, Barron AE, Cirillo JD. Peptide-mimetic treatment of Pseudomonas aeruginosa in a mouse model of respiratory infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564794. [PMID: 37961726 PMCID: PMC10634950 DOI: 10.1101/2023.10.30.564794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2,000 deaths annually. While the emergence of resistant bacteria has become concerningly common, identification of useful new drug classes has been limited over the past 40+ years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity for mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 minutes in vitro , and is effective against a range of clinical isolates. In vivo , TM5 significantly reduced bacterial load in the lungs within 24 hours compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.
Collapse
|
13
|
Van Herck A, Beeckmans H, Kerckhof P, Sacreas A, Bos S, Kaes J, Vanstapel A, Vanaudenaerde BM, Van Slambrouck J, Orlitová M, Jin X, Ceulemans LJ, Van Raemdonck DE, Neyrinck AP, Godinas L, Dupont LJ, Verleden GM, Dubbeldam A, De Wever W, Vos R. Prognostic Value of Chest CT Findings at BOS Diagnosis in Lung Transplant Recipients. Transplantation 2023; 107:e292-e304. [PMID: 37870882 DOI: 10.1097/tp.0000000000004726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome (BOS) after lung transplantation is characterized by fibrotic small airway remodeling, recognizable on high-resolution computed tomography (HRCT). We studied the prognostic value of key HRCT features at BOS diagnosis after lung transplantation. METHODS The presence and severity of bronchiectasis, mucous plugging, peribronchial thickening, parenchymal anomalies, and air trapping, summarized in a total severity score, were assessed using a simplified Brody II scoring system on HRCT at BOS diagnosis, in a cohort of 106 bilateral lung transplant recipients transplanted between January 2004 and January 2016. Obtained scores were subsequently evaluated regarding post-BOS graft survival, spirometric parameters, and preceding airway infections. RESULTS A high total Brody II severity score at BOS diagnosis (P = 0.046) and high subscores for mucous plugging (P = 0.0018), peribronchial thickening (P = 0.0004), or parenchymal involvement (P = 0.0121) are related to worse graft survival. A high total Brody II score was associated with a shorter time to BOS onset (P = 0.0058), lower forced expiratory volume in 1 s (P = 0.0006) forced vital capacity (0.0418), more preceding airway infections (P = 0.004), specifically with Pseudomonas aeruginosa (P = 0.002), and increased airway inflammation (P = 0.032). CONCLUSIONS HRCT findings at BOS diagnosis after lung transplantation provide additional information regarding its underlying pathophysiology and for future prognosis of graft survival.
Collapse
Affiliation(s)
- Anke Van Herck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Division of Lung Transplantation, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Michaela Orlitová
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Laurent Godinas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Geert M Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| | - Adriana Dubbeldam
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Walter De Wever
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, Leuven Transplant Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Kalpana S, Lin WY, Wang YC, Fu Y, Wang HY. Alternate Antimicrobial Therapies and Their Companion Tests. Diagnostics (Basel) 2023; 13:2490. [PMID: 37568853 PMCID: PMC10417861 DOI: 10.3390/diagnostics13152490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
New antimicrobial approaches are essential to counter antimicrobial resistance. The drug development pipeline is exhausted with the emergence of resistance, resulting in unsuccessful trials. The lack of an effective drug developed from the conventional drug portfolio has mandated the introspection into the list of potentially effective unconventional alternate antimicrobial molecules. Alternate therapies with clinically explicable forms include monoclonal antibodies, antimicrobial peptides, aptamers, and phages. Clinical diagnostics optimize the drug delivery. In the era of diagnostic-based applications, it is logical to draw diagnostic-based treatment for infectious diseases. Selection criteria of alternate therapeutics in infectious diseases include detection, monitoring of response, and resistance mechanism identification. Integrating these diagnostic applications is disruptive to the traditional therapeutic development. The challenges and mitigation methods need to be noted. Applying the goals of clinical pharmacokinetics that include enhancing efficacy and decreasing toxicity of drug therapy, this review analyses the strong correlation of alternate antimicrobial therapeutics in infectious diseases. The relationship between drug concentration and the resulting effect defined by the pharmacodynamic parameters are also analyzed. This review analyzes the perspectives of aligning diagnostic initiatives with the use of alternate therapeutics, with a particular focus on companion diagnostic applications in infectious diseases.
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Wan-Ying Lin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA;
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
15
|
Chan DK, Dykema K, Fatima M, Harvey H, Qaderi I, Burrows LL. Nutrient Limitation Sensitizes Pseudomonas aeruginosa to Vancomycin. ACS Infect Dis 2023; 9:1408-1423. [PMID: 37279282 PMCID: PMC10353551 DOI: 10.1021/acsinfecdis.3c00167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 06/08/2023]
Abstract
Traditional antibacterial screens rely on growing bacteria in nutrient-replete conditions which are not representative of the natural environment or sites of infection. Instead, screening in more physiologically relevant conditions may reveal novel activity for existing antibiotics. Here, we screened a panel of antibiotics reported to lack activity against the opportunistic Gram-negative bacterium, Pseudomonas aeruginosa, under low-nutrient and low-iron conditions, and discovered that the glycopeptide vancomycin inhibited the growth of P. aeruginosa at low micromolar concentrations through its canonical mechanism of action, disruption of peptidoglycan crosslinking. Spontaneous vancomycin-resistant mutants underwent activating mutations in the sensor kinase of the two-component CpxSR system, which induced cross-resistance to almost all classes of β-lactams, including the siderophore antibiotic cefiderocol. Other mutations that conferred vancomycin resistance mapped to WapR, an α-1,3-rhamnosyltransferase involved in lipopolysaccharide core biosynthesis. A WapR P164T mutant had a modified LPS profile compared to wild type that was accompanied by increased susceptibility to select bacteriophages. We conclude that screening in nutrient-limited conditions can reveal novel activity for existing antibiotics and lead to discovery of new and impactful resistance mechanisms.
Collapse
Affiliation(s)
- Derek
C. K. Chan
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Katherine Dykema
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Mahrukh Fatima
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Hanjeong Harvey
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Ikram Qaderi
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Lori L. Burrows
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
16
|
Al-Marzooq F, Ghazawi A, Daoud L, Tariq S. Boosting the Antibacterial Activity of Azithromycin on Multidrug-Resistant Escherichia coli by Efflux Pump Inhibition Coupled with Outer Membrane Permeabilization Induced by Phenylalanine-Arginine β-Naphthylamide. Int J Mol Sci 2023; 24:ijms24108662. [PMID: 37240007 DOI: 10.3390/ijms24108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The global spread of multidrug-resistant (MDR) bacteria increases the demand for the discovery of new antibiotics and adjuvants. Phenylalanine-arginine β-naphthylamide (PAβN) is an inhibitor of efflux pumps in Gram-negative bacteria, such as the AcrAB-TolC complex in Escherichia coli. We aimed to explore the synergistic effect and mechanism of action of PAβN combined with azithromycin (AZT) on a group of MDR E. coli strains. Antibiotic susceptibility was tested for 56 strains, which were screened for macrolide resistance genes. Then, 29 strains were tested for synergy using the checkerboard assay. PAβN significantly enhanced AZT activity in a dose-dependent manner in strains expressing the mphA gene and encoding macrolide phosphotransferase, but not in strains carrying the ermB gene and encoding macrolide methylase. Early bacterial killing (6 h) was observed in a colistin-resistant strain with the mcr-1 gene, leading to lipid remodeling, which caused outer membrane (OM) permeability defects. Clear OM damage was revealed by transmission electron microscopy in bacteria exposed to high doses of PAβN. Increased OM permeability was also proven by fluorometric assays, confirming the action of PAβN on OM. PAβN maintained its activity as an efflux pump inhibitor at low doses without permeabilizing OM. A non-significant increase in acrA, acrB, and tolC expression in response to prolonged exposure to PAβN was noted in cells treated with PAβN alone or with AZT, as a reflection of bacterial attempts to counteract pump inhibition. Thus, PAβN was found to be effective in potentiating the antibacterial activity of AZT on E. coli through dose-dependent action. This warrants further investigations of its effect combined with other antibiotics on multiple Gram-negative bacterial species. Synergetic combinations will help in the battle against MDR pathogens, adding new tools to the arsenal of existing medications.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Lana Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
17
|
Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel) 2023; 12:antibiotics12030499. [PMID: 36978366 PMCID: PMC10044227 DOI: 10.3390/antibiotics12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat infections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spiramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aeruginosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensitized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In contrast, when the spiramycin was injected together with the bacterium, the mortality dropped to about 50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin, gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.
Collapse
|
18
|
Anderson E, Nair B, Nizet V, Kumar G. Man vs Microbes - The Race of the Century. J Med Microbiol 2023; 72. [PMID: 36748622 DOI: 10.1099/jmm.0.001646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The complexity of the antimicrobial resistance (AMR) crisis and its global impact on healthcare invokes an urgent need to understand the underlying forces and to conceive and implement innovative solutions. Beyond focusing on a traditional pathogen-centric approach to antibiotic discovery yielding diminishing returns, future therapeutic interventions can expand to focus more comprehensively on host-pathogen interactions. In this manner, increasing the resiliency of our innate immune system or attenuating the virulence mechanisms of the pathogens can be explored to improve therapeutic outcomes. Key pathogen survival strategies such as tolerance, persistence, aggregation, and biofilm formation can be considered and interrupted to sensitize pathogens for more efficient immune clearance. Understanding the evolution and emergence of so-called 'super clones' that drive AMR spread with rapid clonotyping assays may guide more precise antibiotic regimens. Innovative alternatives to classical antibiotics such as bacteriophage therapy, novel engineered peptide antibiotics, ionophores, nanomedicines, and repurposing drugs from other domains of medicine to boost innate immunity are beginning to be successfully implemented to combat AMR. Policy changes supporting shorter durations of antibiotic treatment, greater antibiotic stewardship, and increased surveillance measures can enhance patient safety and enable implementation of the next generation of targeted prevention and control programmes at a global level.
Collapse
Affiliation(s)
- Ericka Anderson
- Collaborative to Halt Antibiotic Resistant Microbes (CHARM), Department of Pediatrics University of California San Diego, La Jolla, CA, USA
| | - Bipin Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Victor Nizet
- Collaborative to Halt Antibiotic Resistant Microbes (CHARM), Department of Pediatrics University of California San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
| | - Geetha Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
19
|
Belanger CR, Dostert M, Blimkie TM, Lee AHY, Dhillon BK, Wu BC, Akhoundsadegh N, Rahanjam N, Castillo-Arnemann J, Falsafi R, Pletzer D, Haney CH, Hancock REW. Surviving the host: Microbial metabolic genes required for growth of Pseudomonas aeruginosa in physiologically-relevant conditions. Front Microbiol 2022; 13:1055512. [PMID: 36504765 PMCID: PMC9732424 DOI: 10.3389/fmicb.2022.1055512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas aeruginosa, like other pathogens, adapts to the limiting nutritional environment of the host by altering patterns of gene expression and utilizing alternative pathways required for survival. Understanding the genes essential for survival in the host gives insight into pathways that this organism requires during infection and has the potential to identify better ways to treat infections. Here, we used a saturated transposon insertion mutant pool of P. aeruginosa strain PAO1 and transposon insertion sequencing (Tn-Seq), to identify genes conditionally important for survival under conditions mimicking the environment of a nosocomial infection. Conditions tested included tissue culture medium with and without human serum, a murine abscess model, and a human skin organoid model. Genes known to be upregulated during infections, as well as those involved in nucleotide metabolism, and cobalamin (vitamin B12) biosynthesis, etc., were required for survival in vivo- and in host mimicking conditions, but not in nutrient rich lab medium, Mueller Hinton broth (MHB). Correspondingly, mutants in genes encoding proteins of nucleotide and cobalamin metabolism pathways were shown to have growth defects under physiologically-relevant media conditions, in vivo, and in vivo-like models, and were downregulated in expression under these conditions, when compared to MHB. This study provides evidence for the relevance of studying P. aeruginosa fitness in physiologically-relevant host mimicking conditions and identified metabolic pathways that represent potential novel targets for alternative therapies.
Collapse
Affiliation(s)
- Corrie R. Belanger
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Dostert
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Travis M. Blimkie
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Bhavjinder Kaur Dhillon
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Bing Catherine Wu
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Noushin Akhoundsadegh
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Negin Rahanjam
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Javier Castillo-Arnemann
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cara H. Haney
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Robert E. W. Hancock,
| |
Collapse
|
20
|
Ye D, Wang C, Li X, Zhao L, Liu S, Du J, Jia X, Wang Z, Tian L, Xu J, Li J, Yan Z, Ding J, Shen J, Xia X. Trace antibiotics perturb the metabolism of Escherichia coli. Sci Bull (Beijing) 2022; 67:2158-2161. [PMID: 36545990 DOI: 10.1016/j.scib.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Dongyang Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengfei Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaowei Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liang Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Saiwa Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingjing Du
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xixi Jia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhinan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Tian
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zuhao Yan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiangyi Ding
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xi Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Gao J, Hu X, Xu C, Guo M, Li S, Yang F, Pan X, Zhou F, Jin Y, Bai F, Cheng Z, Wu Z, Chen S, Huang X, Wu W. Neutrophil-mediated delivery of the combination of colistin and azithromycin for the treatment of bacterial infection. iScience 2022; 25:105035. [PMID: 36117992 PMCID: PMC9474925 DOI: 10.1016/j.isci.2022.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Novel treatment strategies are in urgent need to deal with the rapid development of antibiotic-resistant superbugs. Combination therapies and targeted drug delivery have been exploited to promote treatment efficacies. In this study, we loaded neutrophils with azithromycin and colistin to combine the advantages of antibiotic combinations, targeted delivery, and immunomodulatory effect of azithromycin to treat infections caused by Gram-negative pathogens. Delivery of colistin into neutrophils was mediated by fusogenic liposome, while azithromycin was directly taken up by neutrophils. Neutrophils loaded with the drugs maintained the abilitity to generate reactive oxygen species and migrate. In vitro assays demonstrated enhanced bactericidal activity against multidrug-resistant pathogens and reduced inflammatory cytokine production by the drug-loaded neutrophils. A single intravenous administration of the drug-loaded neutrophils effectively protected mice from Pseudomonas aeruginosa infection in an acute pneumonia model. This study provides a potential effective therapeutic approach for the treatment of bacterial infections. Neutrophils are loaded with colistin and azithromycin in vitro The loaded drugs enhance the bactericidal effect and reduce the inflammatory response Drug-loaded neutrophils conferred effective protection against bacterial infection
Collapse
Affiliation(s)
- Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fangyu Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
23
|
The Azithromycin Pro-Drug CSY5669 Boosts Bacterial Killing While Attenuating Lung Inflammation Associated with Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0229821. [PMID: 35972289 PMCID: PMC9487537 DOI: 10.1128/aac.02298-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a major problem, with methicillin-resistant Staphylococcus aureus (MRSA) being a prototypical example in surgical and community-acquired infections. S. aureus, like many pathogens, is immune evasive and able to multiply within host immune cells. Consequently, compounds that aid host immunity (e.g., by stimulating the host-mediated killing of pathogens) are appealing alternatives or adjuncts to classical antibiotics. Azithromycin is both an antibacterial and an immunomodulatory drug that accumulates in immune cells. We set out to improve the immunomodulatory properties of azithromycin by coupling the immune activators, nitric oxide and acetate, to its core structure. This new compound, designated CSY5669, enhanced the intracellular killing of MRSA by 45% ± 20% in monocyte-derived macrophages and by 55% ± 15% in peripheral blood leukocytes, compared with untreated controls. CSY5669-treated peripheral blood leukocytes produced fewer proinflammatory cytokines, while in both monocyte-derived macrophages and peripheral blood leukocytes, phagocytosis, ROS production, and degranulation were unaffected. In mice with MRSA pneumonia, CSY5669 treatment reduced inflammation, lung pathology and vascular leakage with doses as low as 0.01 μmol/kg p.o. CSY5669 had diminished direct in vitro antibacterial properties compared with azithromycin. Also, CSY5669 was immunomodulatory at concentrations well below 1% of the minimum inhibitory concentration, which would minimize selection for macrolide-resistant bacteria if it were to be used as a host-directed therapy. This study highlights the potential of CSY5669 as a possible adjunctive therapy in pneumonia caused by MRSA, as CSY5669 could enhance bacterial eradication while simultaneously limiting inflammation-associated pathology.
Collapse
|
24
|
Hanson MA, Kondo S, Lemaitre B. Drosophila immunity: the Drosocin gene encodes two host defence peptides with pathogen-specific roles. Proc Biol Sci 2022; 289:20220773. [PMID: 35730150 PMCID: PMC9233930 DOI: 10.1098/rspb.2022.0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are key to defence against infection in plants and animals. Use of AMP mutations in Drosophila has now revealed that AMPs can additively or synergistically contribute to defence in vivo. However, these studies also revealed high specificity, wherein just one AMP contributes an outsized role in combatting a specific pathogen. Here, we show the Drosocin locus (CG10816) is more complex than previously described. In addition to its namesake peptide 'Drosocin', it encodes a second mature peptide from a precursor via furin cleavage. This peptide corresponds to the previously uncharacterized 'Immune-induced Molecule 7'. A polymorphism (Thr52Ala) in the Drosocin precursor protein previously masked the identification of this peptide, which we name 'Buletin'. Using mutations differently affecting Drosocin and Buletin, we show that only Drosocin contributes to Drosocin gene-mediated defence against Enterobacter cloacae. Strikingly, we observed that Buletin, but not Drosocin, contributes to the Drosocin gene-mediated defence against Providencia burhodogranariea, including an importance of the Thr52Ala polymorphism for survival. Our study reveals that the Drosocin gene encodes two prominent host defence peptides with different specificity against distinct pathogens. This finding emphasizes the complexity of the Drosophila humoral response and demonstrates how natural polymorphisms can affect host susceptibility.
Collapse
Affiliation(s)
- M. A. Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S. Kondo
- Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| | - B. Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Expanding the search for small-molecule antibacterials by multidimensional profiling. Nat Chem Biol 2022; 18:584-595. [PMID: 35606559 DOI: 10.1038/s41589-022-01040-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/15/2022] [Indexed: 11/08/2022]
Abstract
New techniques for systematic profiling of small-molecule effects can enhance traditional growth inhibition screens for antibiotic discovery and change how we search for new antibacterial agents. Computational models that integrate physicochemical compound properties with their phenotypic and molecular downstream effects can not only predict efficacy of molecules yet to be tested, but also reveal unprecedented insights on compound modes of action (MoAs). The unbiased characterization of compounds that themselves are not growth inhibitory but exhibit diverse MoAs, can expand antibacterial strategies beyond direct inhibition of core essential functions. Early and systematic functional annotation of compound libraries thus paves the way to new models in the selection of lead antimicrobial compounds. In this Review, we discuss how multidimensional small-molecule profiling and the ever-increasing computing power are accelerating the discovery of unconventional antibacterials capable of bypassing resistance and exploiting synergies with established antibacterial treatments and with protective host mechanisms.
Collapse
|
26
|
Ulloa ER, Sakoulas G. Azithromycin: An Underappreciated Quinolone-Sparing Oral Treatment for Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2022; 11:515. [PMID: 35453266 PMCID: PMC9024921 DOI: 10.3390/antibiotics11040515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Outpatient treatment of Pseudomonas aeruginosa infections is challenged by increasing rates of resistance to fluoroquinolones, the only class of antibiotics which offers an established oral route of administration against this organism. Azithromycin does not demonstrate activity against P. aeruginosa when evaluated under standard methods of susceptibility testing with bacteriologic media. However, growing evidence shows that azithromycin is very active against P. aeruginosa when using physiologic media that recapitulate the in vivo milieu and is supported by animal models of infection and various clinical settings, including cystic fibrosis. We present three cases of outpatient management of P. aeruginosa otolaryngological infections successfully treated with oral azithromycin, 500 mg daily ranging from 3-8 weeks, where use of fluoroquinolones was not possible due to either resistance or patient intolerance. We review the previous data supporting this clinical approach, in the hope that this will alert clinicians to this treatment option and to inspire a more thorough clinical trial evaluation of azithromycin in this environment of growing medical need.
Collapse
Affiliation(s)
- Erlinda R. Ulloa
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Division of Infectious Disease, Children’s Hospital of Orange County, Orange, CA 92868, USA
| | - George Sakoulas
- Sharp Rees-Stealy Medical Group, San Diego, CA 92123, USA;
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Nielsen JE, Alford MA, Yung DBY, Molchanova N, Fortkort JA, Lin JS, Diamond G, Hancock REW, Jenssen H, Pletzer D, Lund R, Barron AE. Self-Assembly of Antimicrobial Peptoids Impacts Their Biological Effects on ESKAPE Bacterial Pathogens. ACS Infect Dis 2022; 8:533-545. [PMID: 35175731 DOI: 10.1021/acsinfecdis.1c00536] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antimicrobial peptides (AMPs) are promising pharmaceutical candidates for the prevention and treatment of infections caused by multidrug-resistant ESKAPE pathogens, which are responsible for the majority of hospital-acquired infections. Clinical translation of AMPs has been limited, in part by apparent toxicity on systemic dosing and by instability arising from susceptibility to proteolysis. Peptoids (sequence-specific oligo-N-substituted glycines) resist proteolytic digestion and thus are of value as AMP mimics. Only a few natural AMPs such as LL-37 and polymyxin self-assemble in solution; whether antimicrobial peptoids mimic these properties has been unknown. Here, we examine the antibacterial efficacy and dynamic self-assembly in aqueous media of eight peptoid mimics of cationic AMPs designed to self-assemble and two nonassembling controls. These amphipathic peptoids self-assembled in different ways, as determined by small-angle X-ray scattering; some adopt helical bundles, while others form core-shell ellipsoidal or worm-like micelles. Interestingly, many of these peptoid assemblies show promising antibacterial, antibiofilm activity in vitro in media, under host-mimicking conditions and antiabscess activity in vivo. While self-assembly correlated overall with antibacterial efficacy, this correlation was imperfect. Certain self-assembled morphologies seem better-suited for antibacterial activity. In particular, a peptoid exhibiting a high fraction of long, worm-like micelles showed reduced antibacterial, antibiofilm, and antiabscess activity against ESKAPE pathogens compared with peptoids that form ellipsoidal or bundled assemblies. This is the first report of self-assembling peptoid antibacterials with activity against in vivo biofilm-like infections relevant to clinical medicine.
Collapse
Affiliation(s)
- Josefine Eilsø Nielsen
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Morgan Ashley Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Deborah Bow Yue Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Natalia Molchanova
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John A. Fortkort
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Jennifer S. Lin
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, Kentucky 40202, United States
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Reidar Lund
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Annelise E. Barron
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Davis K, Greenstein T, Viau Colindres R, Aldridge BB. Leveraging laboratory and clinical studies to design effective antibiotic combination therapy. Curr Opin Microbiol 2021; 64:68-75. [PMID: 34628295 PMCID: PMC8671129 DOI: 10.1016/j.mib.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023]
Abstract
Interest in antibiotic combination therapy is increasing due to antimicrobial resistance and a slowing antibiotic pipeline. However, aside from specific indications, combination therapy in the clinic is often not administered systematically; instead, it is used at the physician's discretion as a bet-hedging mechanism to increase the chances of appropriately targeting a pathogen(s) with an unknown antibiotic resistance profile. Some recent clinical trials have been unable to demonstrate superior efficacy of combination therapy over monotherapy. Other trials have shown a benefit of combination therapy in defined circumstances consistent with recent studies indicating that factors including species, strain, resistance profile, and microenvironment affect drug combination efficacy and drug interactions. In this review, we discuss how a careful study design that takes these factors into account, along with the different drug interaction and potency metrics for assessing combination performance, may provide the necessary insight to understand the best clinical use-cases for combination therapy.
Collapse
Affiliation(s)
- Kathleen Davis
- Department of Molecular Biology & Microbiology, Tufts University School of Medicine, United States; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States
| | - Talia Greenstein
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Graduate School of Biomedical Sciences, Tufts University School of Medicine, United States
| | - Roberto Viau Colindres
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Department of Geographic Medicine and Infectious Diseases, Tufts Medical Center, United States
| | - Bree B Aldridge
- Department of Molecular Biology & Microbiology, Tufts University School of Medicine, United States; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, United States; Graduate School of Biomedical Sciences, Tufts University School of Medicine, United States
| |
Collapse
|
29
|
Larkins-Ford J, Greenstein T, Van N, Degefu YN, Olson MC, Sokolov A, Aldridge BB. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst 2021; 12:1046-1063.e7. [PMID: 34469743 PMCID: PMC8617591 DOI: 10.1016/j.cels.2021.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse models of tuberculosis. We systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000 measurements. Using these in vitro data, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro models that distinguish whether drug combinations are better than the standard of care in two important preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring combination therapies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yonatan N Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA.
| |
Collapse
|
30
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
31
|
Testing physiologically relevant conditions in minimal inhibitory concentration assays. Nat Protoc 2021; 16:3761-3774. [PMID: 34215865 DOI: 10.1038/s41596-021-00572-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
The minimal inhibitory concentration (MIC) assay uses agar or broth dilution methods to measure, under defined test conditions, the lowest effective concentration of an antimicrobial agent that inhibits visible growth of a bacterium of interest. This assay is used to test the susceptibilities of bacterial isolates and of novel antimicrobial drugs, and is typically done in nutrient-rich laboratory media that have little relevance to in vivo conditions. As an extension to our original protocol on MIC assays (also published in Nature Protocols), here we describe the application of the MIC broth microdilution assay to test antimicrobial susceptibility in conditions that are more physiologically relevant to infections observed in the clinic. Specifically, we describe a platform that can be applied to the preparation of medium that mimics lung and wound exudate or blood conditions for the growth and susceptibility testing of bacteria, including ESKAPE pathogens. This protocol can also be applied to most physiologically relevant liquid medium and aerobic pathogens, and takes 3-4 d to complete.
Collapse
|
32
|
董 雅, 李 彭, 孙 莹, 饶 义, 于 世, 胡 海. [Biofilm Eradication Four-Step Strategy: Study of Using Self-Assembled Azithromycin/Rhamnolipid Nanoparticles for Removing Pseudomonas aeruginosa Biofilm]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:598-604. [PMID: 34323037 PMCID: PMC10409402 DOI: 10.12182/20210760207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the in vitro eradicative effect of self-assembled azithromycin/rhamnolipid nanoparticles (AZI-RHL NPs) on P seudomonas aeruginosa ( P. aeruginosa) biofilm. METHODS AZI-RHL NPs were prepared and characterized. The minimum inhibitory concentration (MIC) of AZI-RHL NPs on planktonic P. aeruginosa was measured by the broth microdilution method. The eradicative effect of AZI-RHL NPs on P. aeruginosa biofilm was evaluated via crystal violet staining and SYTO 9/PI live/dead staining. Fluorescence labeling was used to measure the eradicative effect of NPs on extracellular polymeric substances (EPS). In addition, crystal violet staining was performed to evaluate the inhibitory effect of AZI-RHL NPs on the adhesion of P. aeruginosa on human bronchial epithelial BEAS-2B cells. To investigate the ability of AZI-RHL NPs to penetrate mucus, the interaction between NPs and mucin was measured via particle size changes after co-incubation with mucin solution. RESULTS The AZI-RHL NPs had a particle size of about 121 nm and were negatively charged on the surface, displaying a high encapsulation efficiency and a high drug loading capacity of 96.72% and 45.08% for AZI, respectively and 99.38% and 53.07% for RHL, respectively. The MIC of AZI-RHL NPs on planktonic P. aeruginosa was half of that of using AZI alone. AZI-RHL NPs displayed the capacity to effectively destroy the biofilm structure and remove the proteins and polysaccharides in EPS, eradicating biofilms in addition to reducing the survival rate of bacteria in the biofilm. AZI-RHL NPs were shown to have inhibited P. aeruginosa adhesion on BEAS-2B cells and prevented the residual bacteria from forming a new biofilm. There was no significant change in the particle size of NPs after co-incubation with mucin solution, indicating a weak interaction between NPs and mucin, and suggesting that NPs could penetrate the mucus and reach the P. aeruginosa infection sites. CONCLUSION AZI-RHL NPs were able to effectively enhance the removal of P. aeruginosa biofilm through a four-step strategy of biofilm eradication, including penetrating the mucus, disintegrating the biofilm structure, killing the bacteria dispersed from biofilm, and preventing the adhesion of residual bacteria. We hope that this study will provide a replicable common strategy for the treatment of refractory infections caused by P. aeruginosa and other types of biofilms.
Collapse
Affiliation(s)
- 雅婷 董
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 彭宇 李
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 莹莹 孙
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 义琴 饶
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 世慧 于
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - 海燕 胡
- 中山大学药学院 (广州 510006)School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
33
|
Thomsen K, Kobayashi O, Kishi K, Shirai R, Østrup Jensen P, Heydorn A, Hentzer M, Calum H, Christophersen L, Høiby N, Moser C. Animal models of chronic and recurrent Pseudomonas aeruginosa lung infection: significance of macrolide treatment. APMIS 2021; 130:458-476. [PMID: 34117660 DOI: 10.1111/apm.13161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Animal models of human diseases are invaluable and inevitable elements in identifying and testing novel treatments for serious diseases, including severe infections. Planning and conducting investigator-initiated human trials are generally accepted as being enormously challenging. In contrast, it is often underestimated how much planning, including background and modifying experiments, is needed to establish a relevant infectious disease animal model. However, representative animal infectious models, well designed to test generated hypotheses, are useful to improve our understanding of pathogenesis, virulence factors and host response and to identify novel treatment candidates and therapeutic strategies. Such results can subsequently proceed to clinical testing if suitable. The present review aims at presenting all the pulmonary Pseudomonas aeruginosa infectious models we have knowledge of and the detailed descriptions of established animal models in our laboratory focusing on macrolide therapy are presented.
Collapse
Affiliation(s)
- Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Osamu Kobayashi
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Kenji Kishi
- Oitaken Kouseiren Tsurumi Hospital, Tsurumi, Beppu City, Japan
| | - Ryo Shirai
- Department of Internal Medicine, Kawasaki Medical School, General Medical Center, Okayama, Japan
| | - Peter Østrup Jensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Arne Heydorn
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital, Hillerød, Denmark
| | - Morten Hentzer
- Department of Molecular Pharmacology, H. Lundbeck A/S, Copenhagen, Denmark
| | - Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Yung DBY, Sircombe KJ, Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 2021; 116:1-15. [PMID: 33576132 DOI: 10.1111/mmi.14699] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) are opportunistic pathogens that are most commonly co-isolated from chronic wounds and the sputum of cystic fibrosis patients. Over the last few years, there have been plenty of contrasting results from studies involving P. aeruginosa and S. aureus co-cultures. The general concept that P. aeruginosa outcompetes S. aureus has been challenged and there is more evidence now that they can co-exist. Nevertheless, it still remains difficult to mimic polymicrobial infections in vitro and in vivo. In this review, we discuss recent advances in regard to Pa-Sa molecular interactions, their physical responses, and in vitro and in vivo models. We believe it is important to optimize growth conditions in the laboratory, determine appropriate bacterial starting ratios, and consider environmental factors to study the co-existence of these two pathogens. Ideally, optimized growth media should reflect host-mimicking conditions with or without host cells that allow both bacteria to co-exist. To further identify mechanisms that could help to treat these complex infections, we propose to use relevant polymicrobial animal models. Ultimately, we briefly discuss how polymicrobial infections can increase antibiotic tolerance.
Collapse
Affiliation(s)
- Deborah Bow Yue Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|