1
|
Bai H, Dai Y, Fan P, Zhou Y, Wang X, Chen J, Jiao Y, Du C, Huang Z, Xie Y, Guo X, Lang X, Ling Y, Deng Y, Liu Q, He S, Zhang Z. The METHYLTRANSFERASE B-SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m 6A modification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39206840 DOI: 10.1111/jipb.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid-liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)-SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid-liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
Collapse
Affiliation(s)
- Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yanghuan Dai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Panting Fan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiangying Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jingjing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuzhe Jiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhuoxi Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuting Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoqiang Lang
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yongqing Ling
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Liu
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
2
|
Zhou B, Yu H, Xue Y, Li M, Zhang C, Yu B. The spliceosome-associated protein CWC15 promotes miRNA biogenesis in Arabidopsis. Nat Commun 2024; 15:2399. [PMID: 38493158 PMCID: PMC10944506 DOI: 10.1038/s41467-024-46676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
MicroRNAs (miRNAs) play a key role in regulating gene expression and their biogenesis is precisely controlled through modulating the activity of microprocessor. Here, we report that CWC15, a spliceosome-associated protein, acts as a positive regulator of miRNA biogenesis. CWC15 binds the promoters of genes encoding miRNAs (MIRs), promotes their activity, and increases the occupancy of DNA-dependent RNA polymerases at MIR promoters, suggesting that CWC15 positively regulates the transcription of primary miRNA transcripts (pri-miRNAs). In addition, CWC15 interacts with Serrate (SE) and HYL1, two key components of microprocessor, and is required for efficient pri-miRNA processing and the HYL1-pri-miRNA interaction. Moreover, CWC15 interacts with the 20 S proteasome and PRP4KA, facilitating SE phosphorylation by PRP4KA, and subsequent non-functional SE degradation by the 20 S proteasome. These data reveal that CWC15 ensures optimal miRNA biogenesis by maintaining proper SE levels and by modulating pri-miRNA levels. Taken together, this study uncovers the role of a conserved splicing-related protein in miRNA biogenesis.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA
| | - Huihui Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA
| | - Yong Xue
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA
| | - Mu Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0666, USA.
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588-0118, USA.
| |
Collapse
|
3
|
Li Q, Liu Y, Zhang X. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. THE PLANT CELL 2024; 36:227-245. [PMID: 37772963 PMCID: PMC10827315 DOI: 10.1093/plcell/koad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Biomolecular condensates are dynamic structures formed through diverse mechanisms, including liquid-liquid phase separation. These condensates have emerged as crucial regulators of cellular processes in eukaryotic cells, enabling the compartmentalization of specific biological reactions while allowing for dynamic exchange of molecules with the surrounding environment. RNA silencing, a conserved gene regulatory mechanism mediated by small RNAs (sRNAs), plays pivotal roles in various biological processes. Multiple types of biomolecular condensate, including dicing bodies, processing bodies, small interfering RNA bodies, and Cajal bodies, have been identified as key players in RNA silencing pathways. These biomolecular condensates provide spatial compartmentation for the biogenesis, loading, action, and turnover of small RNAs. Moreover, they actively respond to stresses, such as viral infections, and modulate RNA silencing activities during stress responses. This review summarizes recent advances in understanding of dicing bodies and other biomolecular condensates involved in RNA silencing. We explore their formation, roles in RNA silencing, and contributions to antiviral resistance responses. This comprehensive overview provides insights into the functional significance of biomolecular condensates in RNA silencing and expands our understanding of their roles in gene expression and stress responses in plants.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
4
|
Li M, Yu H, Zhou B, Gan L, Li S, Zhang C, Yu B. JANUS, a spliceosome-associated protein, promotes miRNA biogenesis in Arabidopsis. Nucleic Acids Res 2024; 52:420-430. [PMID: 37994727 PMCID: PMC10783502 DOI: 10.1093/nar/gkad1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
MicroRNAs (miRNAs) are important regulators of genes expression. Their levels are precisely controlled through modulating the activity of the microprocesser complex (MC). Here, we report that JANUS, a homology of the conserved U2 snRNP assembly factor in yeast and human, is required for miRNA accumulation. JANUS associates with MC components Dicer-like 1 (DCL1) and SERRATE (SE) and directly binds the stem-loop of pri-miRNAs. In a hypomorphic janus mutant, the activity of DCL1, the numbers of MC, and the interaction of primary miRNA transcript (pri-miRNAs) with MC are reduced. These data suggest that JANUS promotes the assembly and activity of MC through its interaction with MC and/or pri-miRNAs. In addition, JANUS modulates the transcription of some pri-miRNAs as it binds the promoter of pri-miRNAs and facilitates Pol II occupancy of at their promoters. Moreover, global splicing defects are detected in janus. Taken together, our study reveals a novel role of a conserved splicing factor in miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Huihui Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Lu Gan
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shangdong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588–0666, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0118, USA
| |
Collapse
|
5
|
Xu C, Zhang Z, He J, Bai Y, Cui J, Liu L, Tang J, Tang G, Chen X, Mo B. The DEAD-box helicase RCF1 plays roles in miRNA biogenesis and RNA splicing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:144-160. [PMID: 37415266 DOI: 10.1111/tpj.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
RCF1 is a highly conserved DEAD-box RNA helicase found in yeast, plants, and mammals. Studies about the functions of RCF1 in plants are limited. Here, we uncovered the functions of RCF1 in Arabidopsis thaliana as a player in pri-miRNA processing and splicing, as well as in pre-mRNA splicing. A mutant with miRNA biogenesis defects was isolated, and the defect was traced to a recessive point mutation in RCF1 (rcf1-4). We show that RCF1 promotes D-body formation and facilitates the interaction between pri-miRNAs and HYL1. Finally, we show that intron-containing pri-miRNAs and pre-mRNAs exhibit a global splicing defect in rcf1-4. Together, this work uncovers roles for RCF1 in miRNA biogenesis and RNA splicing in Arabidopsis.
Collapse
Affiliation(s)
- Chi Xu
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Juan He
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biological Sciences and Biotechnology Research Center, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Xuemei Chen
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Xu Y, Chen X. microRNA biogenesis and stabilization in plants. FUNDAMENTAL RESEARCH 2023; 3:707-717. [PMID: 38933298 PMCID: PMC11197542 DOI: 10.1016/j.fmre.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
MicroRNAs (miRNAs) are short endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level in a broad range of eukaryotic species. In animals, it is estimated that more than 60% of mammalian genes are targets of miRNAs, with miRNAs regulating cellular processes such as differentiation and proliferation. In plants, miRNAs regulate gene expression and play essential roles in diverse biological processes, including growth, development, and stress responses. Arabidopsis mutants with defective miRNA biogenesis are embryo lethal, and abnormal expression of miRNAs can cause severe developmental phenotypes. It is therefore crucial that the homeostasis of miRNAs is tightly regulated. In this review, we summarize the key mechanisms of plant miRNA biogenesis and stabilization. We provide an update on nuclear proteins with functions in miRNA biogenesis and proteins linking miRNA biogenesis to environmental triggers.
Collapse
Affiliation(s)
- Ye Xu
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
| | - Xuemei Chen
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Jozwiak M, Bielewicz D, Szweykowska-Kulinska Z, Jarmolowski A, Bajczyk M. SERRATE: a key factor in coordinated RNA processing in plants. TRENDS IN PLANT SCIENCE 2023; 28:841-853. [PMID: 37019716 DOI: 10.1016/j.tplants.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/17/2023]
Abstract
The SERRATE (SE) protein is involved in the processing of RNA polymerase II (RNAPII) transcripts. It is associated with different complexes engaged in different aspects of plant RNA metabolism, including assemblies involved in transcription, splicing, polyadenylation, miRNA biogenesis, and RNA degradation. SE stability and interactome properties can be influenced by phosphorylation. SE exhibits an intriguing liquid-liquid phase separation property that may be important in the assembly of different RNA-processing bodies. Therefore, we propose that SE seems to participate in the coordination of different RNA-processing steps and can direct the fate of transcripts, targeting them for processing or degradation when they cannot be properly processed or are synthesized in excess.
Collapse
Affiliation(s)
- Monika Jozwiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Dawid Bielewicz
- Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
8
|
Muhammad S, Xu X, Zhou W, Wu L. Alternative splicing: An efficient regulatory approach towards plant developmental plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1758. [PMID: 35983878 DOI: 10.1002/wrna.1758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 05/13/2023]
Abstract
Alternative splicing (AS) is a gene regulatory mechanism that plants adapt to modulate gene expression (GE) in multiple ways. AS generates alternative isoforms of the same gene following various development and environmental stimuli, increasing transcriptome plasticity and proteome complexity. AS controls the expression levels of certain genes and regulates GE networks that shape plant adaptations through nonsense-mediated decay (NMD). This review intends to discuss AS modulation, from interaction with noncoding RNAs to the established roles of splicing factors (SFs) in response to endogenous and exogenous cues. We aim to gather such studies that highlight the magnitude and impact of AS, which are not always clear from individual articles, when AS is increasing in individual genes and at a global level. This work also anticipates making plant researchers know that AS is likely to occur in their investigations and that dynamic changes in AS and their effects must be frequently considered. We also review our understanding of AS-mediated posttranscriptional modulation of plant stress tolerance and discuss its potential application in crop improvement in the future. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.
Collapse
Affiliation(s)
- Sajid Muhammad
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Xu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Shang B, Wang L, Yan X, Li Y, Li C, Wu C, Wang T, Guo X, Choi SW, Zhang T, Wang Z, Tong CY, Oh T, Zhang X, Wang Z, Peng X, Zhang X. Intrinsically disordered proteins SAID1/2 condensate on SERRATE for dual inhibition of miRNA biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2216006120. [PMID: 36972460 PMCID: PMC10083546 DOI: 10.1073/pnas.2216006120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of said1; said2 caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in se. said1; said2 also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs). Mechanistically, SAID1/2 promote pre-mRNA processing 4 kinase A-mediated phosphorylation of SE, causing its degradation in vivo. Unexpectedly, SAID1/2 have strong binding affinity to hairpin-structured pri-miRNAs and can sequester them from SE. Moreover, SAID1/2 directly inhibit pri-miRNA processing by microprocessor in vitro. Whereas SAID1/2 did not impact SE subcellular compartmentation, the proteins themselves exhibited liquid-liquid phase condensation that is nucleated on SE. Thus, we propose that SAID1/2 reduce miRNA production through hijacking pri-miRNAs to prevent microprocessor activity while promoting SE phosphorylation and its destabilization in Arabidopsis.
Collapse
Affiliation(s)
- Baoshuan Shang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Lin Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Yanjun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, College of Life Sciences, Ningbo University, Ningbo315211, China
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Chaohua Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Tian Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- College of Life Science, Shandong Normal University, Jinan, Shandong250014, China
| | - Xiang Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Suk Won Choi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Tianru Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Ziying Wang
- Department of Biology, Texas A&M University, College Station, TX77843
| | - Chun-Yip Tong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Taerin Oh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Zhiye Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Xu Peng
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- Department of Biology, Texas A&M University, College Station, TX77843
| |
Collapse
|
10
|
Ding N, Zhang B. microRNA production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1096772. [PMID: 36743500 PMCID: PMC9893293 DOI: 10.3389/fpls.2023.1096772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In plants, microRNAs (miRNAs) associate with ARGONAUTE (AGO) proteins and act as sequence-specific repressors of target gene expression, at the post-transcriptional level through target transcript cleavage and/or translational inhibition. MiRNAs are mainly transcribed by DNA-dependent RNA polymerase II (POL II) and processed by DICER LIKE1 (DCL1) complex into 21∼22 nucleotide (nt) long. Although the main molecular framework of miRNA biogenesis and modes of action have been established, there are still new requirements continually emerging in the recent years. The studies on the involvement factors in miRNA biogenesis indicate that miRNA biogenesis is not accomplished separately step by step, but is closely linked and dynamically regulated with each other. In this article, we will summarize the current knowledge on miRNA biogenesis, including MIR gene transcription, primary miRNA (pri-miRNA) processing, miRNA AGO1 loading and nuclear export; and miRNA metabolism including methylation, uridylation and turnover. We will describe how miRNAs are produced and how the different steps are regulated. We hope to raise awareness that the linkage between different steps and the subcellular regulation are becoming important for the understanding of plant miRNA biogenesis and modes of action.
Collapse
|
11
|
Bajczyk M, Jarmolowski A, Jozwiak M, Pacak A, Pietrykowska H, Sierocka I, Swida-Barteczka A, Szewc L, Szweykowska-Kulinska Z. Recent Insights into Plant miRNA Biogenesis: Multiple Layers of miRNA Level Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020342. [PMID: 36679055 PMCID: PMC9864873 DOI: 10.3390/plants12020342] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
MicroRNAs are small RNAs, 20-22 nt long, the main role of which is to downregulate gene expression at the level of mRNAs. MiRNAs are fundamental regulators of plant growth and development in response to internal signals as well as in response to abiotic and biotic factors. Therefore, the deficiency or excess of individual miRNAs is detrimental to particular aspects of a plant's life. In consequence, the miRNA levels must be appropriately adjusted. To obtain proper expression of each miRNA, their biogenesis is controlled at multiple regulatory layers. Here, we addressed processes discovered to influence miRNA steady-state levels, such as MIR transcription, co-transcriptional pri-miRNA processing (including splicing, polyadenylation, microprocessor assembly and activity) and miRNA-encoded peptides synthesis. MiRNA stability, RISC formation and miRNA export out of the nucleus and out of the plant cell also define the levels of miRNAs in various plant tissues. Moreover, we show the evolutionary conservation of miRNA biogenesis core proteins across the plant kingdom.
Collapse
|
12
|
Chithung TA, Kansal S, Jajo R, Balyan S, Raghuvanshi S. Understanding the evolution of miRNA biogenesis machinery in plants with special focus on rice. Funct Integr Genomics 2023; 23:30. [PMID: 36604385 DOI: 10.1007/s10142-022-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
miRNA biogenesis process is an intricate and complex event consisting of many proteins working in a highly coordinated fashion. Most of these proteins have been studied in Arabidopsis; however, their orthologs and functions have not been explored in other plant species. In the present study, we have manually curated all the experimentally verified information present in the literature regarding these proteins and found a total of 98 genes involved in miRNA biogenesis in Arabidopsis. The conservation pattern of these proteins was identified in other plant species ranging from dicots to lower organisms, and we found that a major proportion of proteins involved in the pri-miRNA processing are conserved. However, nearly 20% of the genes, mostly involved in either transcription or functioning of the miRNAs, were absent in the lower organisms. Further, we manually curated a regulatory network of the core components of the biogenesis process and found that nearly half (46%) of the proteins interact with them, indicating that the processing step is perhaps the most under surveillance/regulation. We have subsequently attempted to characterize the orthologs identified in Oryza sativa, on the basis of transcriptome and epigenetic modifications under field drought conditions in order to assess the impact of drought on the process. We found several participating genes to be differentially expressed and/or epigenetically methylated under drought, although the core components like DCL1, SE, and HYL1 remain unaffected by the stress itself. The study enhances our present understanding of the biogenesis process and its regulation.
Collapse
Affiliation(s)
- Tonu Angaila Chithung
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Ringyao Jajo
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Sonia Balyan
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
13
|
Meng X, Wang Q, Hao R, Li X, Li M, Hu R, Du H, Hu Z, Yu B, Li S. RNA-binding protein MAC5A interacts with the 26S proteasome to regulate DNA damage response in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:446-462. [PMID: 36331331 PMCID: PMC9806599 DOI: 10.1093/plphys/kiac510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Quanhui Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ruili Hao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xudong Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
14
|
Jamla M, Joshi S, Patil S, Tripathi BN, Kumar V. MicroRNAs modulating nutrient homeostasis: a sustainable approach for developing biofortified crops. PROTOPLASMA 2023; 260:5-19. [PMID: 35657503 DOI: 10.1007/s00709-022-01775-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
During their lifespan, sessile plants have to cope with bioavailability of the suboptimal nutrient concentration and have to constantly sense/evolve the connecting web of signal cascades for efficient nutrient uptake, storage, and translocation for proper growth and metabolism. However, environmental fluctuations and escalating anthropogenic activities are making it a formidable challenge for plants. This is adding to (micro)nutrient-deficient crops and nutritional insecurity. Biofortification is emerging as a sustainable and efficacious approach which can be utilized to combat the micronutrient malnutrition. A biofortified crop has an enriched level of desired nutrients developed using conventional breeding, agronomic practices, or advanced biotechnological tools. Nutrient homeostasis gets hampered under nutrient stress, which involves disturbance in short-distance and long-distance cell-cell/cell-organ communications involving multiple cellular and molecular components. Advanced sequencing platforms coupled with bioinformatics pipelines and databases have suggested the potential roles of tiny signaling molecules and post-transcriptional regulators, the microRNAs (miRNAs) in key plant phenomena including nutrient homeostasis. miRNAs are seen as emerging targets for biotechnology-based biofortification programs. Thus, understanding the mechanistic insights and regulatory role of miRNAs could open new windows for exploring them in developing nutrient-efficient biofortified crops. This review discusses significance and roles of miRNAs in plant nutrition and nutrient homeostasis and how they play key roles in plant responses to nutrient imbalances/deficiencies/toxicities covering major nutrients-nitrogen (N), phosphorus (P), sulfur (S), magnesium (Mg), iron (Fe), and zinc (Zn). A perspective view has been given on developing miRNA-engineered biofortified crops with recent success stories. Current challenges and future strategies have also been discussed.
Collapse
Affiliation(s)
- Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484887, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
| |
Collapse
|
15
|
Arabidopsis AAR2, a conserved splicing factor in eukaryotes, acts in microRNA biogenesis. Proc Natl Acad Sci U S A 2022; 119:e2208415119. [PMID: 36191209 PMCID: PMC9565372 DOI: 10.1073/pnas.2208415119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In yeast and humans, AAR2 is involved in pre-messenger RNA (pre-mRNA) splicing through regulating U5 snRNP assembly. This study shows that Arabidopsis AAR2 promotes microRNA (miRNA) accumulation in addition to its conserved role in pre-mRNA splicing. AAR2 is associated with the microprocessor component HYL1 and promotes its dephosphorylation to produce the active form in miRNA biogenesis. The study also reveals a previously unknown role of HYL1 in causing the degradation of the primary precursors to miRNAs (pri-miRNAs) and a role of AAR2 in protecting pri-miRNAs from HYL1-depedent degradation. Taken together, our findings provide insights into the role of a conserved splicing factor in miRNA biogenesis in plants. MicroRNAs (miRNAs) play an essential role in plant growth and development, and as such, their biogenesis is fine-tuned via regulation of the core microprocessor components. Here, we report that Arabidopsis AAR2, a homolog of a U5 snRNP assembly factor in yeast and humans, not only acts in splicing but also promotes miRNA biogenesis. AAR2 interacts with the microprocessor component hyponastic leaves 1 (HYL1) in the cytoplasm, nucleus, and dicing bodies. In aar2 mutants, abundance of nonphosphorylated HYL1, the active form of HYL1, and the number of HYL1-labeled dicing bodies are reduced. Primary miRNA (pri-miRNA) accumulation is compromised despite normal promoter activities of MIR genes in aar2 mutants. RNA decay assays show that the aar2-1 mutation leads to faster degradation of pri-miRNAs in a HYL1-dependent manner, which reveals a previously unknown and negative role of HYL1 in miRNA biogenesis. Taken together, our findings reveal a dual role of AAR2 in miRNA biogenesis and pre-messenger RNA splicing.
Collapse
|
16
|
He M, Kong X, Jiang Y, Qu H, Zhu H. MicroRNAs: emerging regulators in horticultural crops. TRENDS IN PLANT SCIENCE 2022; 27:936-951. [PMID: 35466027 DOI: 10.1016/j.tplants.2022.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 05/24/2023]
Abstract
Horticulture is one of the oldest agricultural practices with great popularity throughout the world. Horticultural crops include fruits, vegetables, ornamental plants, as well as medicinal and beverage plants. They are cultivated for food, specific nutrition, and medical use, or for aesthetic pleasure. MicroRNAs (miRNAs), which constitute a major class of endogenous small RNAs in plants, affect a multitude of developmental and physiological processes by imparting sequence specificity to gene regulation. Over the past decade, tens of thousands of miRNAs have been identified in more than 100 horticultural crops and their critical roles in regulating quality development of diverse horticultural crops have been demonstrated. Here, we review how miRNAs have emerged as important regulators and promising tools for horticultural crop improvement.
Collapse
Affiliation(s)
- Meiying He
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjin Kong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
17
|
Jeena GS, Singh N, Shukla RK. An insight into microRNA biogenesis and its regulatory role in plant secondary metabolism. PLANT CELL REPORTS 2022; 41:1651-1671. [PMID: 35579713 DOI: 10.1007/s00299-022-02877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The present review highlights the regulatory roles of microRNAs in plant secondary metabolism and focuses on different bioengineering strategies to modulate secondary metabolite content in plants. MicroRNAs (miRNAs) are the class of small endogenous, essential, non-coding RNAs that riboregulate the gene expression involved in various biological processes in most eukaryotes. MiRNAs has emerged as important regulators in plants that function by silencing target genes through cleavage or translational inhibition. These miRNAs plays an important role in a wide range of plant biological and metabolic processes, including plant development and various environmental response controls. Several important plant secondary metabolites like alkaloids, terpenoids, and phenolics are well studied for their function in plant defense against different types of pests and herbivores. Due to the presence of a wide range of biological and pharmaceutical properties of plant secondary metabolites, it is important to study the regulation of their biosynthetic pathways. The contribution of miRNAs in regulating plant secondary metabolism is not well explored. Recent advancements in molecular techniques have improved our knowledge in understanding the molecular function of genes, proteins, enzymes, and small RNAs involved in different steps of secondary metabolic pathways. In the present review, we have discussed the recent progress made on miRNA biogenesis, its regulation, and highlighted the current research developed in the field of identification, analysis, and characterizations of various miRNAs that regulate plant secondary metabolism. We have also discussed how different bioengineering strategies such as artificial miRNA (amiRNA), endogenous target mimicry, and CRISPR/Cas9 could be utilized to enhance the secondary metabolite production in plants.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Neeti Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
18
|
Ding C, Shen T, Ran N, Zhang H, Pan H, Su X, Xu M. Integrated Degradome and Srna Sequencing Revealed miRNA-mRNA Regulatory Networks between the Phloem and Developing Xylem of Poplar. Int J Mol Sci 2022; 23:ijms23094537. [PMID: 35562928 PMCID: PMC9100975 DOI: 10.3390/ijms23094537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Lignin and cellulose are the most abundant natural organic polymers in nature. MiRNAs are a class of regulatory RNAs discovered in mammals, plants, viruses, and bacteria. Studies have shown that miRNAs play a role in lignin and cellulose biosynthesis by targeting key enzymes. However, the specific miRNAs functioning in the phloem and developing xylem of Populus deltoides are still unknown. In this study, a total of 134 miRNAs were identified via high-throughput small RNA sequencing, including 132 known and two novel miRNAs, six of which were only expressed in the phloem. A total of 58 differentially expressed miRNAs (DEmiRNAs) were identified between the developing xylem and the phloem. Among these miRNAs, 21 were significantly upregulated in the developing xylem in contrast to the phloem and 37 were significantly downregulated. A total of 2431 target genes of 134 miRNAs were obtained via high-throughput degradome sequencing. Most target genes of these miRNAs were transcription factors, including AP2, ARF, bHLH, bZIP, GRAS, GRF, MYB, NAC, TCP, and WRKY genes. Furthermore, 13 and nine miRNAs were involved in lignin and cellulose biosynthesis, respectively, and we validated the miRNAs via qRT-PCR. Our study explores these miRNAs and their regulatory networks in the phloem and developing xylem of P.deltoides and provides new insight into wood formation.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Tengfei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Na Ran
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Heng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Huixin Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (X.S.); (M.X.); Tel.: +86-136-4130-7199 (X.S.); +86-150-9430-7586 (M.X.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
- Correspondence: (X.S.); (M.X.); Tel.: +86-136-4130-7199 (X.S.); +86-150-9430-7586 (M.X.)
| |
Collapse
|
19
|
Zhang L, Xiang Y, Chen S, Shi M, Jiang X, He Z, Gao S. Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:844149. [PMID: 35350301 PMCID: PMC8957957 DOI: 10.3389/fpls.2022.844149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs), a class of endogenous, non-coding RNAs, which is 20-24 nucleotide long, regulate the expression of its target genes post-transcriptionally and play critical roles in plant normal growth, development, and biotic and abiotic stresses. In cells, miRNA biogenesis and stability control are important in regulating intracellular miRNA abundance. In addition, research on these two aspects has achieved fruitful results. In this review, we focus on the recent research progress in our understanding of miRNA biogenesis and their stability control in plants.
Collapse
Affiliation(s)
- Lu Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yu Xiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shengbo Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Min Shi
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xianda Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhuoli He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shuai Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
20
|
Jungers CF, Djuranovic S. Modulation of miRISC-Mediated Gene Silencing in Eukaryotes. Front Mol Biosci 2022; 9:832916. [PMID: 35237661 PMCID: PMC8882679 DOI: 10.3389/fmolb.2022.832916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression is regulated at multiple levels in eukaryotic cells. Regulation at the post-transcriptional level is modulated by various trans-acting factors that bind to specific sequences in the messenger RNA (mRNA). The binding of different trans factors influences various aspects of the mRNA such as degradation rate, translation efficiency, splicing, localization, etc. MicroRNAs (miRNAs) are short endogenous ncRNAs that combine with the Argonaute to form the microRNA-induced silencing complex (miRISC), which uses base-pair complementation to silence the target transcript. RNA-binding proteins (RBPs) contribute to post-transcriptional control by influencing the mRNA stability and translation upon binding to cis-elements within the mRNA transcript. RBPs have been shown to impact gene expression through influencing the miRISC biogenesis, composition, or miRISC-mRNA target interaction. While there is clear evidence that those interactions between RBPs, miRNAs, miRISC and target mRNAs influence the efficiency of miRISC-mediated gene silencing, the exact mechanism for most of them remains unclear. This review summarizes our current knowledge on gene expression regulation through interactions of miRNAs and RBPs.
Collapse
|
21
|
FDDM1 and FDDM2, Two SGS3-like Proteins, Function as a Complex to Affect DNA Methylation in Arabidopsis. Genes (Basel) 2022; 13:genes13020339. [PMID: 35205382 PMCID: PMC8872474 DOI: 10.3390/genes13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
DNA methylation is an important epigenetic modification required for the specific regulation of gene expression and the maintenance of genome stability in plants and animals. However, the mechanism of DNA demethylation remains largely unknown. Here, we show that two SGS3-like proteins, FACTOR OF DNA DEMETHYLATION 1 (FDDM1) and FDDM2, negatively affect the DNA methylation levels at ROS1-dependend DNA loci in Arabidopsis. FDDM1 binds dsRNAs with 5′ overhangs through its XS (rice gene X and SGS3) domain and forms a heterodimer with FDDM2 through its XH (rice gene X Homology) domain. A lack of FDDM1 or FDDM2 increased DNA methylation levels at several ROS1-dependent DNA loci. However, FDDM1 and FDDM2 may not have an additive effect on DNA methylation levels. Moreover, the XS and XH domains are required for the function of FDDM1. Taken together, these results suggest that FDDM1 and FDDM2 act as a heterodimer to positively modulate DNA demethylation. Our finding extends the function of plant-specific SGS3-like proteins.
Collapse
|
22
|
RNA-Binding Protein MAC5A Is Required for Gibberellin-Regulated Stamen Development. Int J Mol Sci 2022; 23:ijms23042009. [PMID: 35216125 PMCID: PMC8874600 DOI: 10.3390/ijms23042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
The development of floral organs is coordinated by an elaborate network of homeotic genes, and gibberellin (GA) signaling is involved in floral organ development; however, the underlying molecular mechanisms remain elusive. In the present study, we found that MOS4-ASSOCIATED COMPLEX 5A (MAC5A), which is a protein containing an RNA-binding motif, was involved in the development of sepals, petals, and stamens; either the loss or gain of MAC5A function resulted in stamen malformation and a reduced seed set. The exogenous application of GA considerably exacerbated the defects in mac5a null mutants, including fewer stamens and male sterility. MAC5A was predominantly expressed in pollen grains and stamens, and overexpression of MAC5A affected the expression of homeotic genes such as APETALA1 (AP1), AP2, and AGAMOUS (AG). MAC5A may interact with RABBIT EARS (RBE), a repressor of AG expression in Arabidopsis flowers. The petal defect in rbe null mutants was at least partly rescued in mac5a rbe double mutants. These findings suggest that MAC5A is a novel factor that is required for the normal development of stamens and depends on the GA signaling pathway.
Collapse
|
23
|
Araújo PM, Grativol C. In silico Identification of Candidate miRNA-encoded Peptides in Four Fabaceae Species. Comput Biol Chem 2022; 97:107644. [DOI: 10.1016/j.compbiolchem.2022.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/26/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
|
24
|
Li M, Yu H, Liu K, Yang W, Zhou B, Gan L, Li S, Zhang C, Yu B. Serrate-Associated Protein 1, a splicing-related protein, promotes miRNA biogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:1959-1973. [PMID: 34449907 PMCID: PMC8568667 DOI: 10.1111/nph.17691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/20/2021] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNAs) are essential regulators of gene expression in metazoans and plants. In plants, most miRNAs are generated from primary miRNA transcripts (pri-miRNAs), which are processed by the Dicer-like 1 (DCL1) complex along with accessory proteins. Serrate-Associated Protein 1 (SEAP1), a conserved splicing-related protein, has been studied in human and yeast. However, the functions of SEAP1 in plants remain elusive. Lack of SEAP1 results in embryo lethality and knockdown of SEAP1 by an artificial miRNA (amiRSEAP1 ) causes pleiotropic developmental defects and reduction in miRNA accumulation. SEAP1 associates with the DCL1 complex, and may promote the interaction of the DCL1 complexes with pri-miRNAs. SEAP1 also enhances pri-miRNA accumulation, but does not affect pri-miRNA transcription, suggesting it may indirectly or directly stabilize pri-miRNAs. In addition, SEAP1 affects the splicing of some pri-miRNAs and intron retention of messenger RNAs at global levels. Our findings uncover both conserved and novel functions of SEAP1 in plants. Besides the role as a splicing factor, SEPA1 may promote miRNA biogenesis by positively modulating pri-miRNA splicing, processing and/or stability.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Huihui Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Kan Liu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Weilong Yang
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Bangjun Zhou
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Lu Gan
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Shengjun Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chi Zhang
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| |
Collapse
|
25
|
Subcellular Localization of miRNAs and Implications in Cellular Homeostasis. Genes (Basel) 2021; 12:genes12060856. [PMID: 34199614 PMCID: PMC8226975 DOI: 10.3390/genes12060856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are thought to act as post-transcriptional regulators in the cytoplasm by either dampening translation or stimulating degradation of target mRNAs. With the increasing resolution and scope of RNA mapping, recent studies have revealed novel insights into the subcellular localization of miRNAs. Based on miRNA subcellular localization, unconventional functions and mechanisms at the transcriptional and post-transcriptional levels have been identified. This minireview provides an overview of the subcellular localization of miRNAs and the mechanisms by which they regulate transcription and cellular homeostasis in mammals, with a particular focus on the roles of phase-separated biomolecular condensates.
Collapse
|
26
|
Meng X, Li A, Yu B, Li S. Interplay between miRNAs and lncRNAs: Mode of action and biological roles in plant development and stress adaptation. Comput Struct Biotechnol J 2021; 19:2567-2574. [PMID: 34025943 PMCID: PMC8114054 DOI: 10.1016/j.csbj.2021.04.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022] Open
Abstract
Plants employ sophisticated mechanisms to control developmental processes and to cope with environmental changes at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs), two classes of endogenous noncoding RNAs, are key regulators of gene expression in plants. Recent studies have identified the interplay between miRNAs and lncRNAs as a novel regulatory layer of gene expression in plants. On one hand, miRNAs target lncRNAs for the production of phased small interfering RNAs (phasiRNAs). On the other hand, lncRNAs serve as origin of miRNAs or regulate the accumulation or activity of miRNAs at transcription and post-transcriptional levels. Theses lncRNA-miRNA interplays are crucial for plant development, physiology and responses to biotic and abiotic stresses. In this review, we summarize recent advances in the biological roles, interaction mechanisms and computational predication methods of the interplay between miRNAs and lncRNAs in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
27
|
Abstract
MicroRNAs (miRNAs) are essential non-coding riboregulators of gene expression in plants and animals. In plants, miRNAs guide their effector protein named ARGONAUTE (AGO) to find target RNAs for gene silencing through target RNA cleavage or translational inhibition. miRNAs are derived from primary miRNA transcripts (pri-miRNAs), most of which are transcribed by the DNA-dependent RNA polymerase II. In plants, an RNase III enzyme DICER-LIKE1-containing complex processes pri-miRNAs in the nucleus into miRNAs. To ensure proper function of miRNAs, plants use multiple mechanisms to control miRNA accumulation. On one hand, pri-miRNA levels are controlled through transcription and stability. On the other hand, the activities of the DCL1 complex are regulated by many protein factors at transcriptional, post-transcriptional and post-translational levels. Notably, recent studies reveal that pri-miRNA structure/sequence features and modifications also play important roles in miRNA biogenesis. In this review, we summarize recent progresses on the mechanisms regulating miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| |
Collapse
|