1
|
Burda I, Brauns F, Clark FK, Li CB, Roeder AHK. Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns. Development 2024; 151:dev202531. [PMID: 39324278 PMCID: PMC11488635 DOI: 10.1242/dev.202531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Organ sizes and shapes are highly reproducible, or robust, within a species and individuals. Arabidopsis thaliana sepals, which are the leaf-like organs that enclose flower buds, have consistent size and shape, indicating robust development. Cell growth is locally heterogeneous due to intrinsic and extrinsic noise. To achieve robust organ shape, fluctuations in cell growth must average to an even growth rate, which requires that fluctuations are uncorrelated or anti-correlated in time and space. Here, we live image and quantify the development of sepals with an increased or decreased number of cell divisions (lgo mutant and LGO overexpression, respectively), a mutant with altered cell growth variability (ftsh4), and double mutants combining these. Changes in the number of cell divisions do not change the overall growth pattern. By contrast, in ftsh4 mutants, cell growth accumulates in patches of over- and undergrowth owing to correlations that impair averaging, resulting in increased organ shape variability. Thus, we demonstrate in vivo that the number of cell divisions does not affect averaging of cell growth, preserving robust organ morphogenesis, whereas correlated growth fluctuations impair averaging.
Collapse
Affiliation(s)
- Isabella Burda
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Frances K. Clark
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm 10691, Sweden
| | - Adrienne H. K. Roeder
- Genetics, Genomics, and Development Graduate Program, Cornell University, Ithaca, NY 14850, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- School of Integrative Plant Science, Section of Plant Biology,Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Iwamoto A, Yoshioka Y, Nakamura R, Yajima T, Inoue W, Nagakura K. Mechanical forces exerted on floral primordia with a novel experimental system modify floral development in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:763-771. [PMID: 38992325 DOI: 10.1007/s10265-024-01557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Mechanical forces play a crucial role in plant development, including floral development. We previously reported that the phyllotactic variation in the staminate flowers of Ceratophyllum demersum may be caused by mechanical forces on the adaxial side of floral primordia, which may be a common mechanism in angiosperms. On the basis of this result, we developed a novel experimental system for analysis of the effects of mechanical forces on the floral meristem of Arabidopsis thaliana, aiming to induce morphological changes in flowers. In this experimental system, a micromanipulator equipped with a micro device, which is shaped to conform with the contour of the abaxial side of the young floral primordium, is used to exert contact pressure on a floral primordium. In the present study, we conducted contact experiments using this system and successfully induced diverse morphological changes during floral primordial development. In several primordia, the tip of the abaxial sepal primordium was incised with two or three lobes. A different floral primordium developed an additional sepal on the abaxial side (i.e., two abaxial sepals). Additionally, we observed the fusion of sepals in some floral primordia. These results suggest that mechanical forces have multiple effects on floral development, and changes in the tensile stress pattern in the cells of floral primordia are induced by the mechanical forces exerted with the micro device. These effects, in turn, lead to morphological changes in the floral primordia.
Collapse
Affiliation(s)
- Akitoshi Iwamoto
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan.
| | - Yuna Yoshioka
- Department of Biology, Tokyo Gakugei University, Koganei, Japan
| | - Ryoka Nakamura
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan
| | - Takeshi Yajima
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan
| | - Wakana Inoue
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan
| | - Kaho Nagakura
- Department of Biological sciences, Faculty of Science, Kanagawa University, Yokohama, Japan
| |
Collapse
|
3
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Melogno I, Takatani S, Llanos P, Goncalves C, Kodera C, Martin M, Lionnet C, Uyttewaal M, Pastuglia M, Trehin C, Bouchez D, Dumais J, Hamant O. A transient radial cortical microtubule array primes cell division in Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2320470121. [PMID: 38990951 PMCID: PMC11260093 DOI: 10.1073/pnas.2320470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/23/2024] [Indexed: 07/13/2024] Open
Abstract
Although the formation of new walls during plant cell division tends to follow maximal tensile stress direction, analyses of individual cells over time reveal a much more variable behavior. The origin of such variability as well as the exact role of interphasic microtubule behavior before cell division have remained mysterious so far. To approach this question, we took advantage of the Arabidopsis stem, where the tensile stress pattern is both highly anisotropic and stable. Although cortical microtubules (CMTs) generally align with maximal tensile stress, we detected a specific time window, ca. 3 h before cell division, where cells form a radial pattern of CMTs. This microtubule array organization preceded preprophase band (PPB) formation, a transient CMT array predicting the position of the future division plane. It was observed under different growth conditions and was not related to cell geometry or polar auxin transport. Interestingly, this cortical radial pattern correlated with the well-documented increase of cytoplasmic microtubule accumulation before cell division. This radial organization was prolonged in cells of the trm678 mutant, where CMTs are unable to form a PPB. Whereas division plane orientation in trm678 is noisier, we found that cell division symmetry was in contrast less variable between daughter cells. We propose that this "radial step" reflects a trade-off in robustness for two essential cell division attributes: symmetry and orientation. This involves a "reset" stage in G2, where an increased cytoplasmic microtubule accumulation transiently disrupts CMT alignment with tissue stress.
Collapse
Affiliation(s)
- Isaty Melogno
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, 69364Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, 69364Lyon Cedex 07, France
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Paula Llanos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Viña del Mar2520000, Chile
| | - Coralie Goncalves
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles78000, France
| | - Chie Kodera
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles78000, France
| | - Marjolaine Martin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, 69364Lyon Cedex 07, France
| | - Claire Lionnet
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, 69364Lyon Cedex 07, France
| | - Magalie Uyttewaal
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles78000, France
| | - Martine Pastuglia
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles78000, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, 69364Lyon Cedex 07, France
| | - David Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles78000, France
| | - Jacques Dumais
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Viña del Mar2520000, Chile
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), CNRS, 69364Lyon Cedex 07, France
| |
Collapse
|
5
|
Bauer A, Ali O, Bied C, Bœuf S, Bovio S, Delattre A, Ingram G, Golz JF, Landrein B. Spatiotemporally distinct responses to mechanical forces shape the developing seed of Arabidopsis. EMBO J 2024; 43:2733-2758. [PMID: 38831122 PMCID: PMC11217287 DOI: 10.1038/s44318-024-00138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Organ morphogenesis depends on mechanical interactions between cells and tissues. These interactions generate forces that can be sensed by cells and affect key cellular processes. However, how mechanical forces, together with biochemical signals, contribute to the shaping of complex organs is still largely unclear. We address this question using the seed of Arabidopsis as a model system. We show that seeds first experience a phase of rapid anisotropic growth that is dependent on the response of cortical microtubule (CMT) to forces, which guide cellulose deposition according to shape-driven stresses in the outermost layer of the seed coat. However, at later stages of development, we show that seed growth is isotropic and depends on the properties of an inner layer of the seed coat that stiffens its walls in response to tension but has isotropic material properties. Finally, we show that the transition from anisotropic to isotropic growth is due to the dampening of cortical microtubule responses to shape-driven stresses. Altogether, our work supports a model in which spatiotemporally distinct mechanical responses control the shape of developing seeds in Arabidopsis.
Collapse
Affiliation(s)
- Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - Olivier Ali
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Camille Bied
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Sophie Bœuf
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
- Université Claude Bernard Lyon 1, CNRS UAR3444, Inserm US8, ENS de Lyon, SFR Biosciences, Lyon, 69007, France
| | - Adrien Delattre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon, CNRS, INRAE, INRIA, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
6
|
Hoermayer L, Montesinos JC, Trozzi N, Spona L, Yoshida S, Marhava P, Caballero-Mancebo S, Benková E, Heisenberg CP, Dagdas Y, Majda M, Friml J. Mechanical forces in plant tissue matrix orient cell divisions via microtubule stabilization. Dev Cell 2024; 59:1333-1344.e4. [PMID: 38579717 DOI: 10.1016/j.devcel.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Plant morphogenesis relies exclusively on oriented cell expansion and division. Nonetheless, the mechanism(s) determining division plane orientation remain elusive. Here, we studied tissue healing after laser-assisted wounding in roots of Arabidopsis thaliana and uncovered how mechanical forces stabilize and reorient the microtubule cytoskeleton for the orientation of cell division. We identified that root tissue functions as an interconnected cell matrix, with a radial gradient of tissue extendibility causing predictable tissue deformation after wounding. This deformation causes instant redirection of expansion in the surrounding cells and reorientation of microtubule arrays, ultimately predicting cell division orientation. Microtubules are destabilized under low tension, whereas stretching of cells, either through wounding or external aspiration, immediately induces their polymerization. The higher microtubule abundance in the stretched cell parts leads to the reorientation of microtubule arrays and, ultimately, informs cell division planes. This provides a long-sought mechanism for flexible re-arrangement of cell divisions by mechanical forces for tissue reconstruction and plant architecture.
Collapse
Affiliation(s)
- Lukas Hoermayer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Juan Carlos Montesinos
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Nicola Trozzi
- Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland
| | - Leonhard Spona
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Saiko Yoshida
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Max Planck Institute for Plant Breeding Research, 50829 Carl-von-Linné-Weg 10, Cologne, Germany
| | - Petra Marhava
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, University of Agricultural Sciences (SLU), 90183 Umeå, Sweden
| | | | - Eva Benková
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Mateusz Majda
- Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
| |
Collapse
|
7
|
Falconieri A, Coppini A, Raffa V. Microtubules as a signal hub for axon growth in response to mechanical force. Biol Chem 2024; 405:67-77. [PMID: 37674311 DOI: 10.1515/hsz-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023]
Abstract
Microtubules are highly polar structures and are characterized by high anisotropy and stiffness. In neurons, they play a key role in the directional transport of vesicles and organelles. In the neuronal projections called axons, they form parallel bundles, mostly oriented with the plus-end towards the axonal termination. Their physico-chemical properties have recently attracted attention as a potential candidate in sensing, processing and transducing physical signals generated by mechanical forces. Here, we discuss the main evidence supporting the role of microtubules as a signal hub for axon growth in response to a traction force. Applying a tension to the axon appears to stabilize the microtubules, which, in turn, coordinate a modulation of axonal transport, local translation and their cross-talk. We speculate on the possible mechanisms modulating microtubule dynamics under tension, based on evidence collected in neuronal and non-neuronal cell types. However, the fundamental question of the causal relationship between these mechanisms is still elusive because the mechano-sensitive element in this chain has not yet been identified.
Collapse
Affiliation(s)
| | - Allegra Coppini
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| |
Collapse
|
8
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Bao Z, Guo Y, Deng Y, Zang J, Zhang J, Deng Y, Ouyang B, Qu X, Bürstenbinder K, Wang P. Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato. THE PLANT CELL 2023; 35:4266-4283. [PMID: 37668409 PMCID: PMC10689142 DOI: 10.1093/plcell/koad231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1-3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70-SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.
Collapse
Affiliation(s)
- Zhiru Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ye Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yaling Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
10
|
Tian TYY, Macdonald CB, Cytrynbaum EN. A Stochastic Model of Cortical Microtubule Anchoring and Mechanics Provides Regulatory Control of Microtubule Shape. Bull Math Biol 2023; 85:103. [PMID: 37725222 DOI: 10.1007/s11538-023-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
The organization of cortical microtubule arrays play an important role in the development of plant cells. Until recently, the direct mechanical influence of cell geometry on the constrained microtubule (MT) trajectories have been largely ignored in computational models. Modelling MTs as thin elastic rods constrained on a surface, a previous study examined the deflection of MTs using a fixed number of segments and uniform segment lengths between MT anchors. It is known that the resulting MT curves converge to geodesics as the anchor spacing approaches zero. In the case of long MTs on a cylinder, buckling has been found for transverse trajectories. There is a clear interplay between two factors in the problem of deflection: curvature of the membrane and the lengths of MT segments. Here, we examine the latter in detail, in the backdrop of a circular cylinder. In reality, the number of segments are not predetermined and their lengths are not uniform. We present a minimal, realistic model treating the anchor spacing as a stochastic process and examine the net effect on deflection. We find that, by tuning the ratio of growth speed to anchoring rate, it is possible to mitigate MT deflection and even prevent buckling for lengths significantly larger than the previously-derived critical buckling length. We suggest that this mediation of deflection by anchoring might provide cells with a means of preventing arrays from deflecting away from the transverse orientation.
Collapse
Affiliation(s)
- Tim Y Y Tian
- Mathematics, University of British Columbia, 1984 Mathematics Rd, Vancouver, BC, V6T 1Z2, Canada.
| | - Colin B Macdonald
- Mathematics, University of British Columbia, 1984 Mathematics Rd, Vancouver, BC, V6T 1Z2, Canada
| | - Eric N Cytrynbaum
- Mathematics, University of British Columbia, 1984 Mathematics Rd, Vancouver, BC, V6T 1Z2, Canada
| |
Collapse
|
11
|
Wang R, Li X, Zhu S, Zhang D, Han S, Li Z, Lu J, Chu H, Xiao J, Li S. Integrated flow cytometric and proteomics analyses reveal the regulatory network underlying sugarcane protoplast responses to fusion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107918. [PMID: 37619268 DOI: 10.1016/j.plaphy.2023.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Somatic cell fusion is a process that transfers cytoplasmic and nuclear genes to create new germplasm resources. But our limited understanding of the physiological and molecular mechanisms that shape protoplast responses to fusion. METHOD We employed flow cytometry, cytology, proteomics, and gene expression analysis to examine the sugarcane (Saccharum spp.) protoplast fusion. RESULTS Flow cytometry analysis revealed the fusion rate of protoplasts was 1.95%, the FSC value and SSC of heterozygous cells was 1.17-1.47 times higher than that of protoplasts. The protoplasts viability decreased and the MDA increased after fusion. During fusion, the cell membranes were perforated to different degrees, nuclear activity was weakened, while microtubules depolymerized and formed several short rod like structures in the protoplasts. The most abundant proteins during fusion were mainly involved in RNA processing and modification, cell cycle control, cell division, chromosome partition, nuclear structure, extracellular structures, and nucleotide transport and metabolism. Moreover, the expression of key regeneration genes, such as WUS, GAUT, CESA, PSK, Aux/IAA, Cdc2, Cyclin D3, Cyclin A, and Cyclin B, was significantly altered following fusion. PURPOSE AND SIGNIFICANCE Overall, our findings provide a theoretical basis that increases our knowledge of the mechanisms underlying protoplast fusion.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Xinzhu Li
- School of Biomedical Engineering, South-Central Minzu University, No. 182, Minzu Avenue, Wuhan, 430074, China.
| | - Shuifang Zhu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Demei Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Shijian Han
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Zhigang Li
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Jiahui Lu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Haiwei Chu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Jiming Xiao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Suli Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| |
Collapse
|
12
|
Marconi M, Wabnik K. Computer models of cell polarity establishment in plants. PLANT PHYSIOLOGY 2023; 193:42-53. [PMID: 37144853 PMCID: PMC10469401 DOI: 10.1093/plphys/kiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Plant development is a complex task, and many processes involve changes in the asymmetric subcellular distribution of cell components that strongly depend on cell polarity. Cell polarity regulates anisotropic growth and polar localization of membrane proteins and helps to identify the cell's position relative to its neighbors within an organ. Cell polarity is critical in a variety of plant developmental processes, including embryogenesis, cell division, and response to external stimuli. The most conspicuous downstream effect of cell polarity is the polar transport of the phytohormone auxin, which is the only known hormone transported in a polar fashion in and out of cells by specialized exporters and importers. The biological processes behind the establishment of cell polarity are still unknown, and researchers have proposed several models that have been tested using computer simulations. The evolution of computer models has progressed in tandem with scientific discoveries, which have highlighted the importance of genetic, chemical, and mechanical input in determining cell polarity and regulating polarity-dependent processes such as anisotropic growth, protein subcellular localization, and the development of organ shapes. The purpose of this review is to provide a comprehensive overview of the current understanding of computer models of cell polarity establishment in plants, focusing on the molecular and cellular mechanisms, the proteins involved, and the current state of the field.
Collapse
Affiliation(s)
- Marco Marconi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
13
|
Li Y, Kučera O, Cuvelier D, Rutkowski DM, Deygas M, Rai D, Pavlovič T, Vicente FN, Piel M, Giannone G, Vavylonis D, Akhmanova A, Blanchoin L, Théry M. Compressive forces stabilize microtubules in living cells. NATURE MATERIALS 2023; 22:913-924. [PMID: 37386067 PMCID: PMC10569437 DOI: 10.1038/s41563-023-01578-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.
Collapse
Affiliation(s)
- Yuhui Li
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
| | - Ondřej Kučera
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
- Department of Engineering Technology, South East Technological University, Waterford, Ireland
| | - Damien Cuvelier
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
- Sorbonne Université, F-75005, Paris, France
| | | | - Mathieu Deygas
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
| | - Dipti Rai
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tonja Pavlovič
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Filipe Nunes Vicente
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Matthieu Piel
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | | | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Laurent Blanchoin
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| | - Manuel Théry
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| |
Collapse
|
14
|
Ohlendorf R, Tan NYH, Nakayama N. Engineering Themes in Plant Forms and Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:777-801. [PMID: 37216204 DOI: 10.1146/annurev-arplant-061422-094751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Living structures constantly interact with the biotic and abiotic environment by sensing and responding via specialized functional parts. In other words, biological bodies embody highly functional machines and actuators. What are the signatures of engineering mechanisms in biology? In this review, we connect the dots in the literature to seek engineering principles in plant structures. We identify three thematic motifs-bilayer actuator, slender-bodied functional surface, and self-similarity-and provide an overview of their structure-function relationships. Unlike human-engineered machines and actuators, biological counterparts may appear suboptimal in design, loosely complying with physical theories or engineering principles. We postulate what factors may influence the evolution of functional morphology and anatomy to dissect and comprehend better the why behind the biological forms.
Collapse
Affiliation(s)
- Rahel Ohlendorf
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| | | | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| |
Collapse
|
15
|
Yoshida D, Akita K, Higaki T. Machine learning and feature analysis of the cortical microtubule organization of Arabidopsis cotyledon pavement cells. PROTOPLASMA 2023; 260:987-998. [PMID: 36219259 DOI: 10.1007/s00709-022-01813-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The measurement of cytoskeletal features can provide valuable insights into cell biology. In recent years, digital image analysis of cytoskeletal features has become an important research tool for quantitative evaluation of cytoskeleton organization. In this study, we examined the utility of a supervised machine learning approach with digital image analysis to distinguish different cellular organizational patterns. We focused on the jigsaw puzzle-shaped pavement cells of Arabidopsis thaliana. Measurements of three features of cortical microtubules in these cells (parallelness, density, and the coefficient of variation of the intensity distribution of fluorescently labeled cytoskeletons [as an indicator of microtubule bundling]) were obtained from microscopic images. A random forest machine learning model was then used with these images to differentiate mutant and wild type, and Taxol-treated and control cells. Using these three metrics, we were able to distinguish wild type from bpp125 triple mutant cells, with approximately 80% accuracy; classification accuracy was 88% for control and Taxol-treated cells. Different features contributed most to the classification, namely, coefficient of variation for the wild-type/mutant cells and parallelness for the Taxol-treated/control cells. The random forest method used enabled quantitative evaluation of the contribution of features to the classification, and partial dependence plots showed the relationships between metric values and classification accuracy. While further improvements to the method are needed, our small-scale analysis shows the potential for this approach in large-scale screening analyses.
Collapse
Affiliation(s)
- Daichi Yoshida
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Kae Akita
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Meijirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
- International Research Organization in Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
16
|
Ali O, Cheddadi I, Landrein B, Long Y. Revisiting the relationship between turgor pressure and plant cell growth. THE NEW PHYTOLOGIST 2023; 238:62-69. [PMID: 36527246 DOI: 10.1111/nph.18683] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Growth is central to plant morphogenesis. Plant cells are encased in rigid cell walls, and they must overcome physical confinement to grow to specific sizes and shapes. Cell wall tension and turgor pressure are the main mechanical components impacting plant cell growth. Cell wall mechanics has been the focus of most plant biomechanical studies, and turgor pressure was often considered as a constant and largely passive component. Nevertheless, it is increasingly accepted that turgor pressure plays a significant role in plant growth. Numerous theoretical and experimental studies suggest that turgor pressure can be both spatially inhomogeneous and actively modulated during morphogenesis. Here, we revisit the pressure-growth relationship by reviewing recent advances in investigating the interactions between cellular/tissular pressure and growth.
Collapse
Affiliation(s)
- Olivier Ali
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon Cedex 07, 69364, France
| | - Ibrahim Cheddadi
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon Cedex 07, 69364, France
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon Cedex 07, 69364, France
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore, 117543, Singapore
- Mechanobiology Institute, The National University of Singapore, Singapore, 117411, Singapore
| |
Collapse
|
17
|
Durand-Smet P, Chevallier A, Colin L, Malivert A, Melogno I, Hamant O. Single-Cell Confinement Methods to Study Plant Cytoskeleton. Methods Mol Biol 2023; 2604:63-75. [PMID: 36773225 DOI: 10.1007/978-1-0716-2867-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Progress in cytoskeletal research in animal systems has been accompanied by the development of single-cell systems (e.g., fibroblasts in culture). Single-cell systems exist for plant research, but the presence of a cell wall hinders the possibility to relate cytoskeleton dynamics to changes in cell shape or in mechanical stress pattern. Here we present two protocols to confine wall-less plant protoplasts in microwells with defined geometries. Either protocol might be more or less adapted to the question at hand. For instance, when using microwells made of agarose, the composition of the well can be easily modified to analyze the impact of biochemical cues. When using microwells in a stiff polymer (NOA73), protoplasts can be pressurized, and the wall of the well can be coated with cell wall components. Using both protocols, we could analyze microtubule and actin dynamics in vivo while also revealing the relative contribution of geometry and stress in their self-organization.
Collapse
Affiliation(s)
- Pauline Durand-Smet
- Laboratoire Matière et Systèmes Complexes, Unité Mixte de Recherche 7057, CNRS and Université Paris Cité, Paris cedex 13, France.
| | - Antoine Chevallier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Léia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Isaty Melogno
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France.
| |
Collapse
|
18
|
Abstract
Understanding the mechanism by which patterned gene activity leads to mechanical deformation of cells and tissues to create complex forms is a major challenge for developmental biology. Plants offer advantages for addressing this problem because their cells do not migrate or rearrange during morphogenesis, which simplifies analysis. We synthesize results from experimental analysis and computational modeling to show how mechanical interactions between cellulose fibers translate through wall, cell, and tissue levels to generate complex plant tissue shapes. Genes can modify mechanical properties and stresses at each level, though the values and pattern of stresses differ from one level to the next. The dynamic cellulose network provides elastic resistance to deformation while allowing growth through fiber sliding, which enables morphogenesis while maintaining mechanical strength.
Collapse
Affiliation(s)
- Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16870, USA
| |
Collapse
|
19
|
Ishikawa M, Fujiwara A, Kosetsu K, Horiuchi Y, Kamamoto N, Umakawa N, Tamada Y, Zhang L, Matsushita K, Palfalvi G, Nishiyama T, Kitasaki S, Masuda Y, Shiroza Y, Kitagawa M, Nakamura T, Cui H, Hiwatashi Y, Kabeya Y, Shigenobu S, Aoyama T, Kato K, Murata T, Fujimoto K, Benfey PN, Hasebe M, Kofuji R. GRAS transcription factors regulate cell division planes in moss overriding the default rule. Proc Natl Acad Sci U S A 2023; 120:e2210632120. [PMID: 36669117 PMCID: PMC9942845 DOI: 10.1073/pnas.2210632120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/30/2022] [Indexed: 01/22/2023] Open
Abstract
Plant cells are surrounded by a cell wall and do not migrate, which makes the regulation of cell division orientation crucial for development. Regulatory mechanisms controlling cell division orientation may have contributed to the evolution of body organization in land plants. The GRAS family of transcription factors was transferred horizontally from soil bacteria to an algal common ancestor of land plants. SHORTROOT (SHR) and SCARECROW (SCR) genes in this family regulate formative periclinal cell divisions in the roots of flowering plants, but their roles in nonflowering plants and their evolution have not been studied in relation to body organization. Here, we show that SHR cell autonomously inhibits formative periclinal cell divisions indispensable for leaf vein formation in the moss Physcomitrium patens, and SHR expression is positively and negatively regulated by SCR and the GRAS member LATERAL SUPPRESSOR, respectively. While precursor cells of a leaf vein lacking SHR usually follow the geometry rule of dividing along the division plane with the minimum surface area, SHR overrides this rule and forces cells to divide nonpericlinally. Together, these results imply that these bacterially derived GRAS transcription factors were involved in the establishment of the genetic regulatory networks modulating cell division orientation in the common ancestor of land plants and were later adapted to function in flowering plant and moss lineages for their specific body organizations.
Collapse
Affiliation(s)
- Masaki Ishikawa
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Ayaka Fujiwara
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | - Ken Kosetsu
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Yuta Horiuchi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Naoya Kamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka560-0043, Japan
| | - Naoyuki Umakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | - Yosuke Tamada
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
- School of Engineering, Utsunomiya University, Utsunomiya321-8585, Japan
| | - Liechi Zhang
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Katsuyoshi Matsushita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka560-0043, Japan
| | - Gergo Palfalvi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Tomoaki Nishiyama
- Division of Integrated Omics Research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa920-0934, Japan
| | - Sota Kitasaki
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | - Yuri Masuda
- Department of Biology, Kanazawa University, Kanazawa920-1192, Japan
| | - Yoshiki Shiroza
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | | | - Toru Nakamura
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
| | - Hongchang Cui
- Department of Biology, Duke University, Durham, NC27516
- HHMI, Duke University, Durham, NC27516
- Department of Biological Science, Florida State University, Tallahassee, FL32306-4295
| | - Yuji Hiwatashi
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
- School of Food Industrial Sciences, Miyagi University, Sendai982-0215, Japan
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Shuji Shigenobu
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Tsuyoshi Aoyama
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Kagayaki Kato
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki444-8585, Japan
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi243-0292, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka560-0043, Japan
| | - Philip N. Benfey
- Department of Biological Science, Florida State University, Tallahassee, FL32306-4295
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
- Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki444-8585, Japan
| | - Rumiko Kofuji
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa920-1192, Japan
- Department of Biology, Kanazawa University, Kanazawa920-1192, Japan
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa920-1192, Japan
| |
Collapse
|
20
|
Su C, Rodriguez-Franco M, Lace B, Nebel N, Hernandez-Reyes C, Liang P, Schulze E, Mymrikov EV, Gross NM, Knerr J, Wang H, Siukstaite L, Keller J, Libourel C, Fischer AAM, Gabor KE, Mark E, Popp C, Hunte C, Weber W, Wendler P, Stanislas T, Delaux PM, Einsle O, Grosse R, Römer W, Ott T. Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nat Commun 2023; 14:323. [PMID: 36658193 PMCID: PMC9852587 DOI: 10.1038/s41467-023-35976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.
Collapse
Affiliation(s)
- Chao Su
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | - Beatrice Lace
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nils Nebel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Casandra Hernandez-Reyes
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Pengbo Liang
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eija Schulze
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Evgeny V Mymrikov
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Nikolas M Gross
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Julian Knerr
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Hong Wang
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Alexandra A M Fischer
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina E Gabor
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Eric Mark
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Claudia Popp
- Ludwig-Maximilians-University (LMU) Munich, Institute of Genetics, 82152, Martinsried, Germany
| | - Carola Hunte
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wilfried Weber
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Thomas Stanislas
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Robert Grosse
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
21
|
Jacobs B, Schneider R, Molenaar J, Filion L, Deinum EE. Microtubule nucleation complex behavior is critical for cortical array homogeneity and xylem wall patterning. Proc Natl Acad Sci U S A 2022; 119:e2203900119. [PMID: 36475944 PMCID: PMC9897462 DOI: 10.1073/pnas.2203900119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls are versatile materials that can adopt a wide range of mechanical properties through controlled deposition of cellulose fibrils. Wall integrity requires a sufficiently homogeneous fibril distribution to cope effectively with wall stresses. Additionally, specific conditions, such as the negative pressure in water transporting xylem vessels, may require more complex wall patterns, e.g., bands in protoxylem. The orientation and patterning of cellulose fibrils are guided by dynamic cortical microtubules. New microtubules are predominantly nucleated from parent microtubules causing positive feedback on local microtubule density with the potential to yield highly inhomogeneous patterns. Inhomogeneity indeed appears in all current cortical array simulations that include microtubule-based nucleation, suggesting that plant cells must possess an as-yet unknown balancing mechanism to prevent it. Here, in a combined simulation and experimental approach, we show that a limited local recruitment of nucleation complexes to microtubules can counter the positive feedback, whereas local tubulin depletion cannot. We observe that nucleation complexes preferentially appear at the plasma membrane near microtubules. By incorporating our experimental findings in stochastic simulations, we find that the spatial behavior of nucleation complexes delicately balances the positive feedback, such that differences in local microtubule dynamics-as in developing protoxylem-can quickly turn a homogeneous array into a banded one. Our results provide insight into how the plant cytoskeleton has evolved to meet diverse mechanical requirements and greatly increase the predictive power of computational cell biology studies.
Collapse
Affiliation(s)
- Bas Jacobs
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PBWageningen, the Netherlands
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476Potsdam, Germany
| | - Jaap Molenaar
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PBWageningen, the Netherlands
| | - Laura Filion
- Soft Condensed Matter group, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CCUtrecht, the Netherlands
| | - Eva E. Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PBWageningen, the Netherlands
| |
Collapse
|
22
|
Pfaff SA, Wang X, Wagner ER, Wilson LA, Kiemle SN, Cosgrove DJ. Detecting the orientation of newly-deposited crystalline cellulose with fluorescent CBM3. Cell Surf 2022; 8:100089. [PMID: 36426175 PMCID: PMC9678952 DOI: 10.1016/j.tcsw.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Cellulose microfibril patterning influences many of the mechanical attributes of plant cell walls. We developed a simple, fluorescence microscopy-based method to detect the orientation of newly-synthesized cellulose microfibrils in epidermal peels of onion and Arabidopsis. It is based on Alexa Fluor 488-tagged carbohydrate binding module 3a (CBM3a) from Clostridium thermocellum which displayed a nearly 4-fold greater binding to cell walls at pH 5.5 compared with pH 8. Binding to isolated cellulose did not display this pH dependence. At pH 7.5 fibrillar patterns at the surface of the epidermal peels were visible, corresponding to the directionality of surface cellulose microfibrils, as verified by atomic force microscopy. The fibrillar pattern was not visible as the labeling intensity increased at lower pH. The pH of greatest cell wall labeling corresponds to the isoelectric point of CBM3a, suggesting that electrostatic forces limit CBM3a penetration into the wall. Consistent with this, digestion of the wall with pectate lyase to remove homogalacturonan increased labeling intensity. We conclude that electrostatic interactions strongly influence labeling of cell walls with CBM3 and potentially other proteins, holding implications for any work that relies on penetration of protein probes such as CBMs, antibodies, or enzymes into charged polymeric substrates.
Collapse
Affiliation(s)
- Sarah A. Pfaff
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Xuan Wang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Edward R. Wagner
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Liza A. Wilson
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah N. Kiemle
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel J. Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Yamamoto S, Gaillard J, Vianay B, Guerin C, Orhant-Prioux M, Blanchoin L, Théry M. Actin network architecture can ensure robust centering or sensitive decentering of the centrosome. EMBO J 2022; 41:e111631. [PMID: 35916262 PMCID: PMC9574749 DOI: 10.15252/embj.2022111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023] Open
Abstract
The orientation of cell polarity depends on the position of the centrosome, the main microtubule-organizing center (MTOC). Microtubules (MTs) transmit pushing forces to the MTOC as they grow against the cell periphery. How the actin network regulates these forces remains unclear. Here, in a cell-free assay, we used purified proteins to reconstitute the interaction of a microtubule aster with actin networks of various architectures in cell-sized microwells. In the absence of actin filaments, MTOC positioning was highly sensitive to variations in microtubule length. The presence of a bulk actin network limited microtubule displacement, and MTOCs were held in place. In contrast, the assembly of a branched actin network along the well edges centered the MTOCs by maintaining an isotropic balance of pushing forces. An anisotropic peripheral actin network caused the MTOC to decenter by focusing the pushing forces. Overall, our results show that actin networks can limit the sensitivity of MTOC positioning to microtubule length and enforce robust MTOC centering or decentering depending on the isotropy of its architecture.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Jérémie Gaillard
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Benoit Vianay
- Institut de Recherche Saint Louis, UMRS1160-HIPI, CytoMorpho Lab, University of Paris, CEA, INSERM, Paris, France
| | - Christophe Guerin
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Magali Orhant-Prioux
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Laurent Blanchoin
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Institut de Recherche Saint Louis, UMRS1160-HIPI, CytoMorpho Lab, University of Paris, CEA, INSERM, Paris, France
| | - Manuel Théry
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Institut de Recherche Saint Louis, UMRS1160-HIPI, CytoMorpho Lab, University of Paris, CEA, INSERM, Paris, France
| |
Collapse
|
24
|
Xu Y, Li R, Luo H, Wang Z, Li MW, Lam HM, Huang C. Protoplasts: small cells with big roles in plant biology. TRENDS IN PLANT SCIENCE 2022; 27:828-829. [PMID: 35422380 DOI: 10.1016/j.tplants.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ying Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ruilian Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Maize Engineering Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Maize Engineering Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhili Wang
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Cheng Huang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Maize Engineering Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
25
|
Banwarth-Kuhn M, Rodriguez K, Michael C, Ta CK, Plong A, Bourgain-Chang E, Nematbakhsh A, Chen W, Roy-Chowdhury A, Reddy GV, Alber M. Combined computational modeling and experimental analysis integrating chemical and mechanical signals suggests possible mechanism of shoot meristem maintenance. PLoS Comput Biol 2022; 18:e1010199. [PMID: 35727850 PMCID: PMC9249181 DOI: 10.1371/journal.pcbi.1010199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/01/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Stem cell maintenance in multilayered shoot apical meristems (SAMs) of plants requires strict regulation of cell growth and division. Exactly how the complex milieu of chemical and mechanical signals interact in the central region of the SAM to regulate cell division plane orientation is not well understood. In this paper, simulations using a newly developed multiscale computational model are combined with experimental studies to suggest and test three hypothesized mechanisms for the regulation of cell division plane orientation and the direction of anisotropic cell expansion in the corpus. Simulations predict that in the Apical corpus, WUSCHEL and cytokinin regulate the direction of anisotropic cell expansion, and cells divide according to tensile stress on the cell wall. In the Basal corpus, model simulations suggest dual roles for WUSCHEL and cytokinin in regulating both the direction of anisotropic cell expansion and cell division plane orientation. Simulation results are followed by a detailed analysis of changes in cell characteristics upon manipulation of WUSCHEL and cytokinin in experiments that support model predictions. Moreover, simulations predict that this layer-specific mechanism maintains both the experimentally observed shape and structure of the SAM as well as the distribution of WUSCHEL in the tissue. This provides an additional link between the roles of WUSCHEL, cytokinin, and mechanical stress in regulating SAM growth and proper stem cell maintenance in the SAM.
Collapse
Affiliation(s)
- Mikahl Banwarth-Kuhn
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Applied Mathematics, University of California, Merced, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Kevin Rodriguez
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Christian Michael
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Calvin-Khang Ta
- Computer Science and Engineering Department, University of California, Riverside, California, United States of America
| | - Alexander Plong
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Eric Bourgain-Chang
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Ali Nematbakhsh
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Weitao Chen
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Amit Roy-Chowdhury
- Computer Science and Engineering Department, University of California, Riverside, California, United States of America
- Department of Electrical and Computer Engineering, University of California, Riverside, California, United States of America
| | - G. Venugopala Reddy
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
- Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Mark Alber
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| |
Collapse
|
26
|
Abstract
Plant architecture fundamentally differs from that of other multicellular organisms in that individual cells serve as osmotic bricks, defined by the equilibrium between the internal turgor pressure and the mechanical resistance of the surrounding cell wall, which constitutes the interface between plant cells and their environment. The state and integrity of the cell wall are constantly monitored by cell wall surveillance pathways, which relay information to the cell interior. A recent surge of discoveries has led to significant advances in both mechanistic and conceptual insights into a multitude of cell wall response pathways that play diverse roles in the development, defense, stress response, and maintenance of structural integrity of the cell. However, these advances have also revealed the complexity of cell wall sensing, and many more questions remain to be answered, for example, regarding the mechanisms of cell wall perception, the molecular players in this process, and how cell wall-related signals are transduced and integrated into cellular behavior. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future discoveries in this exciting area of plant biology.
Collapse
Affiliation(s)
- Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls University, Tübingen, Germany;
| |
Collapse
|
27
|
Jonsson K, Hamant O, Bhalerao RP. Plant cell walls as mechanical signaling hubs for morphogenesis. Curr Biol 2022; 32:R334-R340. [PMID: 35413265 DOI: 10.1016/j.cub.2022.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The instructive role of mechanical cues during morphogenesis is increasingly being recognized in all kingdoms. Patterns of mechanical stress depend on shape, growth and external factors. In plants, the cell wall integrates these three parameters to function as a hub for mechanical feedback. Plant cells are interconnected by cell walls that provide structural integrity and yet are flexible enough to act as both targets and transducers of mechanical cues. Such cues may act locally at the subcellular level or across entire tissues, requiring tight control of both cell-wall composition and cell-cell adhesion. Here we focus on how changes in cell-wall chemistry and mechanics act in communicating diverse cues to direct growth asymmetries required for plant morphogenesis. We explore the role of cellulose microfibrils, microtubule arrays and pectin methylesterification in the transduction of mechanical cues during morphogenesis. Plant hormones can affect the mechanochemical composition of the cell wall and, in turn, the cell wall can modulate hormone signaling pathways, as well as the tissue-level distribution of these hormones. This also leads us to revisit the position of biochemical growth factors, such as plant hormones, acting both upstream and downstream of mechanical signaling. Finally, while the structure of the cell wall is being elucidated with increasing precision, existing data clearly show that the integration of genetic, biochemical and theoretical studies will be essential for a better understanding of the role of the cell wall as a hub for the mechanical control of plant morphogenesis.
Collapse
Affiliation(s)
- Kristoffer Jonsson
- IRBV, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada.
| | - Olivier Hamant
- Laboratoire Reproduction et Developpement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69364 Lyon, France
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden.
| |
Collapse
|
28
|
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. Fifteen compelling open questions in plant cell biology. THE PLANT CELL 2022; 34:72-102. [PMID: 34529074 PMCID: PMC8774073 DOI: 10.1093/plcell/koab225] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/02/2023]
Abstract
As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, Missouri 63130, USA
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine Faulkner
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna 1030, Austria
| | - Heather Meyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
| | | |
Collapse
|
29
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
30
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
31
|
Halat LS, Bali B, Wasteneys G. Cytoplasmic Linker Protein-Associating Protein at the Nexus of Hormone Signaling, Microtubule Organization, and the Transition From Division to Differentiation in Primary Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:883363. [PMID: 35574108 PMCID: PMC9096829 DOI: 10.3389/fpls.2022.883363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
The transition from cell division to differentiation in primary roots is dependent on precise gradients of phytohormones, including auxin, cytokinins and brassinosteroids. The reorganization of microtubules also plays a key role in determining whether a cell will enter another round of mitosis or begin to rapidly elongate as the first step in terminal differentiation. In the last few years, progress has been made to establish connections between signaling pathways at distinct locations within the root. This review focuses on the different factors that influence whether a root cell remains in the division zone or transitions to elongation and differentiation using Arabidopsis thaliana as a model system. We highlight the role of the microtubule-associated protein CLASP as an intermediary between sustaining hormone signaling and controlling microtubule organization. We discuss new, innovative tools and methods, such as hormone sensors and computer modeling, that are allowing researchers to more accurately visualize the belowground growth dynamics of plants.
Collapse
|
32
|
Colin L, Hamant O. The plasma membrane as a mechanotransducer in plants. C R Biol 2021; 344:389-407. [PMID: 35787608 DOI: 10.5802/crbiol.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022]
Abstract
The plasma membrane is a physical boundary made of amphiphilic lipid molecules, proteins and carbohydrates extensions. Its role in mechanotransduction generates increasing attention in animal systems, where membrane tension is mainly induced by cortical actomyosin. In plant cells, cortical tension is of osmotic origin. Yet, because the plasma membrane in plant cells has comparable physical properties, findings from animal systems likely apply to plant cells too. Recent results suggest that this is indeed the case, with a role of membrane tension in vesicle trafficking, mechanosensitive channel opening or cytoskeleton organization in plant cells. Prospects for the plant science community are at least three fold: (i) to develop and use probes to monitor membrane tension in tissues, in parallel with other biochemical probes, with implications for protein activity and nanodomain clustering, (ii) to develop single cell approaches to decipher the mechanisms operating at the plant cell cortex at high spatio-temporal resolution, and (iii) to revisit the role of membrane composition at cell and tissue scale, by considering the physical implications of phospholipid properties and interactions in mechanotransduction.
Collapse
|
33
|
Gorelova V, Sprakel J, Weijers D. Plant cell polarity as the nexus of tissue mechanics and morphogenesis. NATURE PLANTS 2021; 7:1548-1559. [PMID: 34887521 DOI: 10.1038/s41477-021-01021-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
How reproducible body patterns emerge from the collective activity of individual cells is a key question in developmental biology. Plant cells are encaged in their walls and unable to migrate. Morphogenesis thus relies on directional cell division, by precise positioning of division planes, and anisotropic cellular growth, mediated by regulated mechanical inhomogeneity of the walls. Both processes require the prior establishment of cell polarity, marked by the formation of polar domains at the plasma membrane, in a number of developmental contexts. The establishment of cell polarity involves biochemical cues, but increasing evidence suggests that mechanical forces also play a prominent instructive role. While evidence for mutual regulation between cell polarity and tissue mechanics is emerging, the nature of this bidirectional feedback remains unclear. Here we review the role of cell polarity at the interface of tissue mechanics and morphogenesis. We also aim to integrate biochemistry-centred insights with concepts derived from physics and physical chemistry. Lastly, we propose a set of questions that will help address the fundamental nature of cell polarization and its mechanistic basis.
Collapse
Affiliation(s)
- Vera Gorelova
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
34
|
Malivert A, Erguvan Ö, Chevallier A, Dehem A, Friaud R, Liu M, Martin M, Peyraud T, Hamant O, Verger S. FERONIA and microtubules independently contribute to mechanical integrity in the Arabidopsis shoot. PLoS Biol 2021; 19:e3001454. [PMID: 34767544 PMCID: PMC8612563 DOI: 10.1371/journal.pbio.3001454] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/24/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022] Open
Abstract
To survive, cells must constantly resist mechanical stress. In plants, this involves the reinforcement of cell walls, notably through microtubule-dependent cellulose deposition. How wall sensing might contribute to this response is unknown. Here, we tested whether the microtubule response to stress acts downstream of known wall sensors. Using a multistep screen with 11 mutant lines, we identify FERONIA (FER) as the primary candidate for the cell’s response to stress in the shoot. However, this does not imply that FER acts upstream of the microtubule response to stress. In fact, when performing mechanical perturbations, we instead show that the expected microtubule response to stress does not require FER. We reveal that the feronia phenotype can be partially rescued by reducing tensile stress levels. Conversely, in the absence of both microtubules and FER, cells appear to swell and burst. Altogether, this shows that the microtubule response to stress acts as an independent pathway to resist stress, in parallel to FER. We propose that both pathways are required to maintain the mechanical integrity of plant cells. In all living organisms, cells must resist mechanical stress to survive. This study of the model plant Arabidopsis reveals that the candidate cell wall mechanoreceptor FERONIA and microtubules independently contribute to this mechanical feedback.
Collapse
Affiliation(s)
- Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Özer Erguvan
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Antoine Chevallier
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Antoine Dehem
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Rodrigue Friaud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Marjolaine Martin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Théophile Peyraud
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
- * E-mail: (OH); (SV)
| | - Stéphane Verger
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, Lyon, France
- * E-mail: (OH); (SV)
| |
Collapse
|
35
|
Neeli-Venkata R, Diaz CM, Celador R, Sanchez Y, Minc N. Detection of surface forces by the cell-wall mechanosensor Wsc1 in yeast. Dev Cell 2021; 56:2856-2870.e7. [PMID: 34666001 DOI: 10.1016/j.devcel.2021.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Surface receptors of animal cells, such as integrins, promote mechanosensation by forming clusters as signaling hubs that transduce tensile forces. Walled cells of plants and fungi also feature surface sensors, with long extracellular domains that are embedded in their cell walls (CWs) and are thought to detect injuries and promote repair. How these sensors probe surface forces remains unknown. By studying the conserved CW sensor Wsc1 in fission yeast, we uncovered the formation of micrometer-sized clusters at sites of force application onto the CW. Clusters assembled within minutes of CW compression, in dose dependence with mechanical stress and disassembled upon relaxation. Our data support that Wsc1 accumulates to sites of enhanced mechanical stress through reduced lateral diffusivity, mediated by the binding of its extracellular WSC domain to CW polysaccharides, independent of canonical polarity, trafficking, and downstream CW regulatory pathways. Wsc1 may represent an autonomous module to detect and transduce local surface forces onto the CW.
Collapse
Affiliation(s)
- Ramakanth Neeli-Venkata
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Celia Municio Diaz
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Ruben Celador
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Yolanda Sanchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
36
|
Calcutt R, Vincent R, Dean D, Arinzeh TL, Dixit R. Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. SCIENCE ADVANCES 2021; 7:eabj1469. [PMID: 34669469 PMCID: PMC8528414 DOI: 10.1126/sciadv.abj1469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mechanistic studies of plant development would benefit from an in vitro model that mimics the endogenous physical interactions between cells and their microenvironment. Here, we present artificial scaffolds to which both solid- and liquid-cultured tobacco BY-2 cells adhere without perturbing cell morphology, division, and cortical microtubule organization. Scaffolds consisting of polyvinylidene tri-fluoroethylene (PVDF-TrFE) were prepared to mimic the cell wall’s fibrillar structure and its relative hydrophobicity and piezoelectric property. We found that cells adhered best to scaffolds consisting of nanosized aligned fibers. In addition, poling of PVDF-TrFE, which orients the fiber dipoles and renders the scaffold more piezoelectric, increased cell adhesion. Enzymatic treatments revealed that the plant cell wall polysaccharide, pectin, is largely responsible for cell adhesion to scaffolds, analogous to pectin-mediated cell adhesion in plant tissues. Together, this work establishes the first plant biomimetic scaffolds that will enable studies of how cell-cell and cell-matrix interactions affect plant developmental pathways.
Collapse
Affiliation(s)
- Ryan Calcutt
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard Vincent
- Department of Biomedical Engineering and Center for Engineering Mechanobiology, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Derrick Dean
- Biomedical Engineering Program and Center for Engineering Mechanobiology, Alabama State University, Montgomery, AL 36014, USA
- Corresponding author. (T.L.A.); (D.D.); (R.D.)
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering and Center for Engineering Mechanobiology, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Corresponding author. (T.L.A.); (D.D.); (R.D.)
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Corresponding author. (T.L.A.); (D.D.); (R.D.)
| |
Collapse
|
37
|
Robinson S. Mechanobiology of cell division in plant growth. THE NEW PHYTOLOGIST 2021; 231:559-564. [PMID: 33774836 DOI: 10.1111/nph.17369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Cell division in plants is particularly important as cells cannot rearrange. It therefore determines the arrangement of cells (topology) and their size and shape (geometry). Cell division reduces mechanical stress locally by producing smaller cells and alters mechanical properties by reinforcing the mechanical wall network, both of which can alter overall tissue morphology. Division orientation is often regarded as following geometric rules, however recent work has suggested that divisions align with the direction of maximal tensile stress. Mechanical stress has already been shown to feed into many processes of development including those that alter mechanical properties. Such an alignment may enable cell division to selectively reinforce the cell wall network in the direction of maximal tensile stress. Therefore there exists potential feedback between cell division, mechanical stress and growth. Improving our understanding of this topic will help to shed light on the debated role of cell division in organ scale growth.
Collapse
Affiliation(s)
- Sarah Robinson
- Sainsbury Laboratory, Cambridge University, Bateman St., Cambridge, CB2 1LR, UK
| |
Collapse
|
38
|
Moulia B, Douady S, Hamant O. Fluctuations shape plants through proprioception. Science 2021; 372:372/6540/eabc6868. [PMID: 33888615 DOI: 10.1126/science.abc6868] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plants constantly experience fluctuating internal and external mechanical cues, ranging from nanoscale deformation of wall components, cell growth variability, nutating stems, and fluttering leaves to stem flexion under tree weight and wind drag. Developing plants use such fluctuations to monitor and channel their own shape and growth through a form of proprioception. Fluctuations in mechanical cues may also be actively enhanced, producing oscillating behaviors in tissues. For example, proprioception through leaf nastic movements may promote organ flattening. We propose that fluctuation-enhanced proprioception allows plant organs to sense their own shapes and behave like active materials with adaptable outputs to face variable environments, whether internal or external. Because certain shapes are more amenable to fluctuations, proprioception may also help plant shapes to reach self-organized criticality to support such adaptability.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France.
| | - Stéphane Douady
- Laboratoire Matières et Systèmes Complexes (MSC), Université de Paris, CNRS, 75205 Paris Cedex 13, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France.
| |
Collapse
|
39
|
Abstract
The plant cell wall is an extracellular matrix that envelopes cells, gives them structure and shape, constitutes the interface with symbionts, and defends plants against external biotic and abiotic stress factors. The assembly of this matrix is regulated and mediated by the cytoskeleton. Cytoskeletal elements define where new cell wall material is added and how fibrillar macromolecules are oriented in the wall. Inversely, the cytoskeleton is also key in the perception of mechanical cues generated by structural changes in the cell wall as well as the mediation of intracellular responses. We review the delivery processes of the cell wall precursors that are required for the cell wall assembly process and the structural continuity between the inside and the outside of the cell. We provide an overview of the different morphogenetic processes for which cell wall assembly is a crucial element and elaborate on relevant feedback mechanisms.
Collapse
|
40
|
Trinh DC, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, Hamant O. How Mechanical Forces Shape Plant Organs. Curr Biol 2021; 31:R143-R159. [PMID: 33561417 DOI: 10.1016/j.cub.2020.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs - spheres, cylinders and lamina - can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features - folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi, Vietnam
| | - Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariko Asaoka
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
41
|
Saltini M, Mulder BM. A plausible mechanism for longitudinal lock-in of the plant cortical microtubule array after light-induced reorientation. QUANTITATIVE PLANT BIOLOGY 2021; 2:e9. [PMID: 37077209 PMCID: PMC10095967 DOI: 10.1017/qpb.2021.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 05/03/2023]
Abstract
The light-induced reorientation of the cortical microtubule array in dark-grown Arabidopsis thaliana hypocotyl cells is a striking example of the dynamical plasticity of the microtubule cytoskeleton. A consensus model, based on katanin-mediated severing at microtubule crossovers, has been developed that successfully describes the onset of the observed switch between a transverse and longitudinal array orientation. However, we currently lack an understanding of why the newly populated longitudinal array direction remains stable for longer times and re-equilibration effects would tend to drive the system back to a mixed orientation state. Using both simulations and analytical calculations, we show that the assumption of a small orientation-dependent shift in microtubule dynamics is sufficient to explain the long-term lock-in of the longitudinal array orientation. Furthermore, we show that the natural alternative hypothesis that there is a selective advantage in severing longitudinal microtubules, is neither necessary nor sufficient to achieve cortical array reorientation, but is able to accelerate this process significantly.
Collapse
Affiliation(s)
- Marco Saltini
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Author for correspondence: M. Saltini, E-mail:
| | - Bela M. Mulder
- Living Matter Department, AMOLF, Amsterdam, The Netherlands
| |
Collapse
|