1
|
Cao S, Guo J, Zhu D, Sun Z, Liu L, Zhang Y, Maratbek S, Wang Z, Zhang J, Li W, Ding J, Deng X, Zhang H. Brucella induced upregulation of NO promote macrophages glycolysis through the NF-κB/G6PD pathway. Int Immunopharmacol 2024; 142:113038. [PMID: 39276450 DOI: 10.1016/j.intimp.2024.113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
Increased glycolytic metabolism recently emerged as an essential process driving host defense against Brucella, but little is known about how this process is regulated during infection. We have identified a critical role for nuclear factor kappa B (NF-κB) transcription factor regulation in glycolytic switching during Brucella infection for the first time. Chromatin immunoprecipitation with next-generation sequencing for NF-κB and DNA Pull-Down revealed two novel NF-κB-binding sites in the enhancer region of the Nitric oxide (NO)production-response regulator gene glucose-6-phosphate dehydrogenase (G6PD), which is important for the switch to glycolysis during a Brucella infection. These findings demonstrate that Brucella drives metabolic reprogramming by inhibiting host oxidative phosphorylation (OXPHOS) and enhancing its glycolysis via the NF-κB-G6PD-NO-pathway. These studies provide a theoretical basis for investigating drugs or vaccines to control Brucella colonization and induction of undulant by manipulating host metabolic patterns.
Collapse
Affiliation(s)
- Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Suleimenov Maratbek
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China; College of Veterinary, National Agricultural University of Kazakhstan, Nur Sultan, Kazakhstan
| | - Zhen Wang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Jing Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Wei Li
- Xinjiang Center for Animal Disease Prevention and Control, Urumqi, China.
| | - Jian Ding
- Xinjiang Center for Animal Disease Prevention and Control, Urumqi, China.
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China.
| |
Collapse
|
2
|
Elizalde-Bielsa A, Lázaro-Antón L, de Miguel MJ, Muñoz PM, Conde-Álvarez R, Zúñiga-Ripa A. Disruption of Erythritol Catabolism via the Deletion of Fructose-Bisphosphate Aldolase (Fba) and Transaldolase (Tal) as a Strategy to Improve the Brucella Rev1 Vaccine. Int J Mol Sci 2024; 25:11230. [PMID: 39457012 PMCID: PMC11508834 DOI: 10.3390/ijms252011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Brucellosis is a bacterial zoonosis caused by the genus Brucella, which mainly affects domestic animals. In these natural hosts, brucellae display a tropism towards the reproductive organs, such as the placenta, replicating in high numbers and leading to placentitis and abortion, an ability also exerted by the B. melitensis live-attenuated Rev1 strain, the only vaccine available for ovine brucellosis. It is broadly accepted that this tropism is mediated, at least in part, by the presence of certain preferred nutrients in the placenta, particularly erythritol, a polyol that is ultimately incorporated into the Brucella central carbon metabolism via two reactions dependent on transaldolase (Tal) or fructose-bisphosphate aldolase (Fba). In the light of these remarks, we propose that blocking the incorporation of erythritol into the central carbon metabolism of Rev1 by deleting the genes encoding Tal and Fba may impair the ability of the vaccine to proliferate massively in the placenta. Therefore, a Rev1ΔfbaΔtal double mutant was generated and confirmed to be unable to use erythritol. This mutant exhibited a reduced intracellular fitness both in BeWo trophoblasts and THP-1 macrophages. In the murine model, Rev1ΔfbaΔtal provided comparable protection to the Rev1 reference vaccine while inducing fewer adverse reproductive events in pregnant animals. Altogether, these results postulate the Rev1ΔfbaΔtal mutant as a reproductively safer Rev1-derived vaccine candidate to be studied in the natural host.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (A.E.-B.); (L.L.-A.)
| | - Leticia Lázaro-Antón
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (A.E.-B.); (L.L.-A.)
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
| | - María Jesús de Miguel
- Department of Animal Science, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain; (M.J.d.M.); (P.M.M.)
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pilar M. Muñoz
- Department of Animal Science, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain; (M.J.d.M.); (P.M.M.)
- Instituto Agroalimentario de Aragón—IA2, CITA-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (A.E.-B.); (L.L.-A.)
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (A.E.-B.); (L.L.-A.)
| |
Collapse
|
3
|
Barbieux E, Potemberg G, Stubbe FX, Fraikin A, Poncin K, Reboul A, Rouma T, Zúñiga-Ripa A, De Bolle X, Muraille E. Genome-wide analysis of Brucella melitensis growth in spleen of infected mice allows rational selection of new vaccine candidates. PLoS Pathog 2024; 20:e1012459. [PMID: 39186777 PMCID: PMC11346958 DOI: 10.1371/journal.ppat.1012459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Live attenuated vaccines (LAVs) whose virulence would be controlled at the tissue level could be a crucial tool to effectively fight intracellular bacterial pathogens, because they would optimize the induction of protective immune memory while avoiding the long-term persistence of vaccine strains in the host. Rational development of these new LAVs implies developing an exhaustive map of the bacterial virulence genes according to the host organs implicated. We report here the use of transposon sequencing to compare the bacterial genes involved in the multiplication of Brucella melitensis, a major causative agent of brucellosis, in the lungs and spleens of C57BL/6 infected mice. We found 257 and 135 genes predicted to be essential for B. melitensis multiplication in the spleen and lung, respectively, with 87 genes common to both organs. We selected genes whose deletion is predicted to produce moderate or severe attenuation in the spleen, the main known reservoir of Brucella, and compared deletion mutants for these genes for their ability to protect mice against challenge with a virulent strain of B. melitensis. The protective efficacy of a deletion mutant for the plsC gene, implicated in phospholipid biosynthesis, is similar to that of the reference Rev.1 vaccine but with a shorter persistence in the spleen. Our results demonstrate that B. melitensis faces different selective pressures depending on the organ and underscore the effectiveness of functional genome mapping for the design of new safer LAV candidates.
Collapse
Affiliation(s)
- Emeline Barbieux
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - François-Xavier Stubbe
- Unité de recherche en physiologie moléculaire (URPhyM)-Laboratoire de Génétique moléculaire (GéMo), University of Namur, Namur, Belgium
| | - Audrey Fraikin
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Katy Poncin
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Angeline Reboul
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Thomas Rouma
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología - IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Xavier De Bolle
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
4
|
Lázaro-Antón L, Veiga-da-Cunha M, Elizalde-Bielsa A, Chevalier N, Conde-Álvarez R, Iriarte M, Letesson JJ, Moriyón I, Van Schaftingen E, Zúñiga-Ripa A. A novel gluconeogenic route enables efficient use of erythritol in zoonotic Brucella. Front Vet Sci 2024; 11:1328293. [PMID: 38601913 PMCID: PMC11005471 DOI: 10.3389/fvets.2024.1328293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 04/12/2024] Open
Abstract
Brucellosis is a worldwide extended zoonosis caused by pathogens of the genus Brucella. While most B. abortus, B. melitensis, and B. suis biovars grow slowly in complex media, they multiply intensely in livestock genitals and placenta indicating high metabolic capacities. Mutant analyses in vitro and in infection models emphasize that erythritol (abundant in placenta and genitals) is a preferred substrate of brucellae, and suggest hexoses, pentoses, and gluconeogenic substrates use in host cells. While Brucella sugar and erythritol catabolic pathways are known, growth on 3-4 carbon substrates persists in Fbp- and GlpX-deleted mutants, the canonical gluconeogenic fructose 1,6-bisphosphate (F1,6bP) bisphosphatases. Exploiting the prototrophic and fast-growing properties of B. suis biovar 5, we show that gluconeogenesis requires fructose-bisphosphate aldolase (Fba); the existence of a novel broad substrate bisphosphatase (Bbp) active on sedoheptulose 1,7-bisphosphate (S1,7bP), F1,6bP, and other phosphorylated substrates; that Brucella Fbp unexpectedly acts on S1,7bP and F1,6bP; and that, while active in B. abortus and B. melitensis, GlpX is disabled in B. suis biovar 5. Thus, two Fba-dependent reactions (dihydroxyacetone-phosphate + glyceraldehyde 3-phosphate ⇌ F1,6bP; and dihydroxyacetone-phosphate + erythrose 4-phosphate ⇌ S1,7bP) can, respectively, yield fructose 6-phosphate and sedoheptulose 7-phosphate for classical gluconeogenesis and the Pentose Phosphate Shunt (PPS), the latter reaction opening a new gluconeogenic route. Since erythritol generates the PPS-intermediate erythrose 4-phosphate, and the Fba/Fbp-Bbp route predicts sedoheptulose 7-phosphate generation from erythrose 4-phosphate, we re-examined the erythritol connections with PPS. Growth on erythritol required transaldolase or the Fba/Fbp-Bbp pathway, strongly suggesting that Fba/Fbp-Bbp works as a PPS entry for both erythritol and gluconeogenic substrates in Brucella. We propose that, by increasing erythritol channeling into PPS through these peculiar routes, brucellae proliferate in livestock genitals and placenta in the high numbers that cause abortion and infertility, and make brucellosis highly contagious. These findings could be the basis for developing attenuated brucellosis vaccines safer in pregnant animals.
Collapse
Affiliation(s)
- Leticia Lázaro-Antón
- Departamento de Microbiología y Parasitología – IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Maria Veiga-da-Cunha
- Groupe de Recherches Metaboliques, De Duve Institute, UCLouvain, Brussels, Belgium
| | - Aitor Elizalde-Bielsa
- Departamento de Microbiología y Parasitología – IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Nathalie Chevalier
- Groupe de Recherches Metaboliques, De Duve Institute, UCLouvain, Brussels, Belgium
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología – IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología – IDISNA, Universidad de Navarra, Pamplona, Spain
| | | | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología – IDISNA, Universidad de Navarra, Pamplona, Spain
| | | | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología – IDISNA, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
5
|
Analysis of the Brucella suis Twin Arginine Translocation System and Its Substrates Shows That It Is Essential for Viability. Infect Immun 2023; 91:e0045922. [PMID: 36448838 PMCID: PMC9872638 DOI: 10.1128/iai.00459-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacteria use the twin arginine translocator (Tat) system to export folded proteins from the cytosol to the bacterial envelope or to the extracellular environment. As with most Gram-negative bacteria, the Tat system of the zoonotic pathogen Brucella spp. is encoded by a three-gene operon, tatABC. Our attempts, using several different strategies, to create a Brucella suis strain 1330 tat mutant were all unsuccessful. This suggested that, for B. suis, Tat is essential, in contrast to a recent report for Brucella melitensis. This was supported by our findings that two molecules that inhibit the Pseudomonas aeruginosa Tat system also inhibit B. suis, B. melitensis, and Brucella abortus growth in vitro. In a bioinformatic screen of the B. suis 1330 proteome, we identified 28 proteins with putative Tat signal sequences. We used a heterologous reporter assay based on export of the Tat-dependent amidase AmiA by using the Tat signal sequences from the Brucella proteins to confirm that 20 of the 28 candidates can engage the Tat pathway.
Collapse
|
6
|
Shevtsov A, Cloeckaert A, Berdimuratova K, Shevtsova E, Shustov AV, Amirgazin A, Karibayev T, Kamalova D, Zygmunt MS, Ramanculov Y, Vergnaud G. Brucella abortus in Kazakhstan, population structure and comparison with worldwide genetic diversity. Front Microbiol 2023; 14:1106994. [PMID: 37032899 PMCID: PMC10073595 DOI: 10.3389/fmicb.2023.1106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes.
Collapse
Affiliation(s)
- Alexandr Shevtsov
- National Center for Biotechnology, Astana, Kazakhstan
- *Correspondence: Alexandr Shevtsov,
| | | | | | | | | | | | | | | | | | - Yerlan Ramanculov
- National Center for Biotechnology, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Gilles Vergnaud
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Gilles Vergnaud,
| |
Collapse
|
7
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
8
|
Poveda-Urkixo I, Ramírez GA, Grilló MJ. Kinetics of Placental Infection by Different Smooth Brucella Strains in Mice. Pathogens 2022; 11:pathogens11030279. [PMID: 35335603 PMCID: PMC8955611 DOI: 10.3390/pathogens11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/18/2023] Open
Abstract
Abortion and reproductive failures induced by Brucella are the main symptoms of animal brucellosis. Laboratory animal models are essential tools of research to study the Brucella pathogenesis before experimentation in natural hosts. To extend the existing knowledge, we studied B. melitensis 16M (virulent) and Rev1 (attenuated) as well as B. suis bv2 infections in pregnant mice. Here, we report new information about kinetics of infection (in spleens, blood, placentas, vaginal shedding, and foetuses), serum cytokine profiles, and histopathological features in placentas and the litter throughout mice pregnancy. Both B. melitensis strains showed a marked placental tropism and reduced viability of pups (mainly in 16M infections), which was preceded by an intense Th1-immune response during placental development. In contrast, B. suis bv2 displayed lower placental tropism, mild proinflammatory immune response, and scarce bacterial transmission to the litter, thus allowing foetal viability. Overall, our studies revealed three different smooth Brucella patterns of placental and foetal pathogenesis in mice, providing a useful animal model for experimental brucellosis.
Collapse
Affiliation(s)
- Irati Poveda-Urkixo
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Spain;
| | - Gustavo A. Ramírez
- Departamento de Sanidad Animal, Universidad de Lleida, 25198 Lleida, Spain;
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Spain;
- Correspondence:
| |
Collapse
|
9
|
Aragón-Aranda B, Palacios-Chaves L, Salvador-Bescós M, de Miguel MJ, Muñoz PM, Vences-Guzmán MÁ, Zúñiga-Ripa A, Lázaro-Antón L, Sohlenkamp C, Moriyón I, Iriarte M, Conde-Álvarez R. The Phospholipid N-Methyltransferase and Phosphatidylcholine Synthase Pathways and the ChoXWV Choline Uptake System Involved in Phosphatidylcholine Synthesis Are Widely Conserved in Most, but Not All Brucella Species. Front Microbiol 2021; 12:614243. [PMID: 34421831 PMCID: PMC8371380 DOI: 10.3389/fmicb.2021.614243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
The brucellae are facultative intracellular bacteria with a cell envelope rich in phosphatidylcholine (PC). PC is abundant in eukaryotes but rare in prokaryotes, and it has been proposed that Brucella uses PC to mimic eukaryotic-like features and avoid innate immune responses in the host. Two PC synthesis pathways are known in prokaryotes: the PmtA-catalyzed trimethylation of phosphatidylethanolamine and the direct linkage of choline to CDP-diacylglycerol catalyzed by the PC synthase Pcs. Previous studies have reported that B. abortus and B. melitensis possess non-functional PmtAs and that PC is synthesized exclusively via Pcs in these strains. A putative choline transporter ChoXWV has also been linked to PC synthesis in B. abortus. Here, we report that Pcs and Pmt pathways are active in B. suis biovar 2 and that a bioinformatics analysis of Brucella genomes suggests that PmtA is only inactivated in B. abortus and B. melitensis strains. We also show that ChoXWV is active in B. suis biovar 2 and conserved in all brucellae except B. canis and B. inopinata. Unexpectedly, the experimentally verified ChoXWV dysfunction in B. canis did not abrogate PC synthesis in a PmtA-deficient mutant, which suggests the presence of an unknown mechanism for obtaining choline for the Pcs pathway in Brucella. We also found that ChoXWV dysfunction did not cause attenuation in B. suis biovar 2. The results of these studies are discussed with respect to the proposed role of PC in Brucella virulence and how differential use of the Pmt and Pcs pathways may influence the interactions of these bacteria with their mammalian hosts.
Collapse
Affiliation(s)
- Beatriz Aragón-Aranda
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Leyre Palacios-Chaves
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | | | - Amaia Zúñiga-Ripa
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Leticia Lázaro-Antón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ignacio Moriyón
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Dpto. de Microbiología y Parasitología, Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
10
|
Sanchez SE, Omsland A. Conditional impairment of Coxiella burnetii by glucose-6P dehydrogenase activity. Pathog Dis 2021; 79:6321164. [PMID: 34259815 PMCID: PMC8292140 DOI: 10.1093/femspd/ftab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/06/2021] [Indexed: 11/12/2022] Open
Abstract
Coxiella burnetii is a bacterial obligate intracellular parasite and the etiological agent of query (Q) fever. While the C. burnetii genome has been reduced to ∼2 Mb as a likely consequence of genome streamlining in response to parasitism, enzymes for a nearly complete central metabolic machinery are encoded by the genome. However, lack of a canonical hexokinase for phosphorylation of glucose and an apparent absence of the oxidative branch of the pentose phosphate pathway, a major mechanism for regeneration of the reducing equivalent nicotinamide adenine dinucleotide phosphate (NADPH), have been noted as potential metabolic limitations of C. burnetii. By complementing C. burnetii with the gene zwf encoding the glucose-6-phosphate-consuming and NADPH-producing enzyme glucose-6-phosphate dehydrogenase (G6PD), we demonstrate a severe metabolic fitness defect for C. burnetii under conditions of glucose limitation. Supplementation of the medium with the gluconeogenic carbon source glutamate did not rescue the growth defect of bacteria complemented with zwf. Absence of G6PD in C. burnetii therefore likely relates to the negative effect of its activity under conditions of glucose limitation. Coxiella burnetii central metabolism with emphasis on glucose, NAD+, NADP+ and NADPH is discussed in a broader perspective, including comparisons with other bacterial obligate intracellular parasites.
Collapse
Affiliation(s)
- Savannah E Sanchez
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA.,School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Brucella ovis Cysteine Biosynthesis Contributes to Peroxide Stress Survival and Fitness in the Intracellular Niche. Infect Immun 2021; 89:IAI.00808-20. [PMID: 33753413 DOI: 10.1128/iai.00808-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Brucella ovis is an ovine intracellular pathogen with tropism for the male genital tract. To establish and maintain infection, B. ovis must survive stressful conditions inside host cells, including low pH, nutrient limitation, and reactive oxygen species. The same conditions are often encountered in axenic cultures during stationary phase. Studies of stationary phase may thus inform our understanding of Brucella infection biology, yet the genes and pathways that are important in Brucella stationary-phase physiology remain poorly defined. We measured fitness of a barcoded pool of B. ovis Tn-himar mutants as a function of growth phase and identified cysE as a determinant of fitness in stationary phase. CysE catalyzes the first step in cysteine biosynthesis from serine, and we provide genetic evidence that two related enzymes, CysK1 and CysK2, function redundantly to catalyze cysteine synthesis at steps downstream of CysE. Deleting cysE (ΔcysE) or both cysK1 and cysK2 (ΔcysK1 ΔcysK2) results in premature entry into stationary phase, reduced culture yield, and sensitivity to exogenous hydrogen peroxide. These phenotypes can be chemically complemented by cysteine or glutathione. ΔcysE and ΔcysK1 ΔcysK2 strains have no defect in host cell entry in vitro but have significantly diminished intracellular fitness between 2 and 24 h postinfection. Our study has uncovered unexpected redundancy at the CysK step of cysteine biosynthesis in B. ovis and demonstrates that cysteine anabolism is a determinant of peroxide stress survival and fitness in the intracellular niche.
Collapse
|
12
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
13
|
Lázaro-Antón L, de Miguel MJ, Barbier T, Conde-Álvarez R, Muñoz PM, Letesson JJ, Iriarte M, Moriyón I, Zúñiga-Ripa A. Glucose Oxidation to Pyruvate Is Not Essential for Brucella suis Biovar 5 Virulence in the Mouse Model. Front Microbiol 2021; 11:620049. [PMID: 33519781 PMCID: PMC7840955 DOI: 10.3389/fmicb.2020.620049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Brucella species cause brucellosis, a worldwide extended zoonosis. The brucellae are related to free-living and plant-associated α2-Proteobacteria and, since they multiply within host cells, their metabolism probably reflects this adaptation. To investigate this, we used the rodent-associated Brucella suis biovar 5, which in contrast to the ruminant-associated Brucella abortus and Brucella melitensis and other B. suis biovars, is fast-growing and conserves the ancestral Entner-Doudoroff pathway (EDP) present in the plant-associated relatives. We constructed mutants in Edd (glucose-6-phosphate dehydratase; first EDP step), PpdK (pyruvate phosphate dikinase; phosphoenolpyruvate ⇌ pyruvate), and Pyk (pyruvate kinase; phosphoenolpyruvate → pyruvate). In a chemically defined medium with glucose as the only C source, the Edd mutant showed reduced growth rates and the triple Edd-PpdK-Pyk mutant did not grow. Moreover, the triple mutant was also unable to grow on ribose or xylose. Therefore, B. suis biovar 5 sugar catabolism proceeds through both the Pentose Phosphate shunt and EDP, and EDP absence and exclusive use of the shunt could explain at least in part the comparatively reduced growth rates of B. melitensis and B. abortus. The triple Edd-PpdK-Pyk mutant was not attenuated in mice. Thus, although an anabolic use is likely, this suggests that hexose/pentose catabolism to pyruvate is not essential for B. suis biovar 5 multiplication within host cells, a hypothesis consistent with the lack of classical glycolysis in all Brucella species and of EDP in B. melitensis and B. abortus. These results and those of previous works suggest that within cells, the brucellae use mostly 3 and 4 C substrates fed into anaplerotic pathways and only a limited supply of 5 and 6 C sugars, thus favoring the EDP loss observed in some species.
Collapse
Affiliation(s)
- Leticia Lázaro-Antón
- Department of Microbiology and Parasitology, Facultad de Medicina, ISTUN Instituto de Salud Tropical, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Thibault Barbier
- Research Unit in Biology of Microorganisms (URBM), NARILIS, University of Namur, Namur, Belgium
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, Facultad de Medicina, ISTUN Instituto de Salud Tropical, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Jean Jacques Letesson
- Research Unit in Biology of Microorganisms (URBM), NARILIS, University of Namur, Namur, Belgium
| | - Maite Iriarte
- Department of Microbiology and Parasitology, Facultad de Medicina, ISTUN Instituto de Salud Tropical, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Moriyón
- Department of Microbiology and Parasitology, Facultad de Medicina, ISTUN Instituto de Salud Tropical, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Facultad de Medicina, ISTUN Instituto de Salud Tropical, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|