1
|
Nasanbuyan N, Yoshida M, Inutsuka A, Takayanagi Y, Kato S, Hidema S, Nishimori K, Kobayashi K, Onaka T. Differential Functions of Oxytocin Receptor-Expressing Neurons in the Ventromedial Hypothalamus in Social Stress Responses: Induction of Adaptive and Maladaptive Coping Behaviors. Biol Psychiatry 2024:S0006-3223(24)01615-9. [PMID: 39343339 DOI: 10.1016/j.biopsych.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The flexibility to adjust actions and attitudes in response to varying social situations is a fundamental aspect of adaptive social behavior. Adaptive social behaviors influence an individual's vulnerability to social stress. While oxytocin has been proposed to facilitate active coping behaviors during social stress, the exact mechanisms remain unknown. METHODS By using a social defeat stress paradigm in male mice, we identified the distribution of oxytocin receptor (OXTR)-expressing neurons in the ventrolateral part of the ventromedial hypothalamus (vlVMH) that are activated during stress by detection of c-Fos protein expression. We then investigated the role of vlVMH OXTR-expressing neurons in social defeat stress responses by chemogenetic methods or deletion of local OXTRs. The social defeat posture was measured for quantification of adaptive social behavior during repeated social stress. RESULTS Social defeat stress activated OXTR-expressing neurons rather than estrogen type 1-expressing neurons in the rostral vlVMH. OXTR-expressing neurons in the vlVMH were glutamatergic. Chemogenetic activation of vlVMH OXTR-expressing neurons facilitated exhibition of the social defeat posture during exposure to social stress, while local OXTR deletion suppressed it. In contrast, over-activation of vlVMH-OXTR neurons induced generalized social avoidance after exposure to chronic social defeat stress. Neural circuits for the social defeat posture centered on OXTR-expressing neurons were identified by viral tracers and c-Fos mapping. CONCLUSIONS VlVMH OXTR-expressing neurons are a functionally unique population of neurons that promote an active coping behavior during social stress, but their excessive and repetitive activation under chronic social stress impairs subsequent social behavior.
Collapse
Affiliation(s)
- Naranbat Nasanbuyan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan.
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
2
|
Worth AA, Feetham CH, Morrissey NA, Luckman SM. Paraventricular oxytocin neurons impact energy intake and expenditure: projections to the bed nucleus of the stria terminalis reduce sucrose consumption. Front Endocrinol (Lausanne) 2024; 15:1449326. [PMID: 39286269 PMCID: PMC11402739 DOI: 10.3389/fendo.2024.1449326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background The part played by oxytocin and oxytocin neurons in the regulation of food intake is controversial. There is much pharmacological data to support a role for oxytocin notably in regulating sugar consumption, however, several recent experiments have questioned the importance of oxytocin neurons themselves. Methods Here we use a combination of histological and chemogenetic techniques to investigate the selective activation or inhibition of oxytocin neurons in the hypothalamic paraventricular nucleus (OxtPVH). We then identify a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis using the cell-selective expression of channel rhodopsin. Results OxtPVH neurons increase their expression of cFos after both physiological (fast-induced re-feeding or oral lipid) and pharmacological (systemic administration of cholecystokinin or lithium chloride) anorectic signals. Chemogenetic activation of OxtPVH neurons is sufficient to decrease free-feeding in Oxt Cre:hM3Dq mice, while inhibition in Oxt Cre:hM4Di mice attenuates the response to administration of cholecystokinin. Activation of OxtPVH neurons also increases energy expenditure and core-body temperature, without a significant effect on locomotor activity. Finally, the selective, optogenetic stimulation of a pathway from OxtPVH neurons to the bed nucleus of the stria terminalis reduces the consumption of sucrose. Conclusion Our results support a role for oxytocin neurons in the regulation of whole-body metabolism, including a modulatory action on food intake and energy expenditure. Furthermore, we demonstrate that the pathway from OxtPVH neurons to the bed nucleus of the stria terminalis can regulate sugar consumption.
Collapse
Affiliation(s)
- Amy A Worth
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Claire H Feetham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicole A Morrissey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Navarrete J, Schneider KN, Smith BM, Goodwin NL, Zhang YY, Salazar AS, Gonzalez YE, Anumolu P, Gross E, Tsai VS, Heshmati M, Golden SA. Individual Differences in Volitional Social Self-Administration and Motivation in Male and Female Mice Following Social Stress. Biol Psychiatry 2024; 96:309-321. [PMID: 38244753 PMCID: PMC11255129 DOI: 10.1016/j.biopsych.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND A key challenge in developing treatments for neuropsychiatric illness is the disconnect between preclinical models and the complexity of human social behavior. We integrate voluntary social self-administration into a rodent model of social stress as a platform for the identification of fundamental brain and behavior mechanisms underlying stress-induced individual differences in social motivation. METHODS Here, we introduced an operant social stress procedure in male and female mice composed of 3 phases: 1) social self-administration training, 2) social stress exposure concurrent with reinforced self-administration testing, and 3) poststress operant testing under nonreinforced and reinforced conditions. We used social-defeat and witness-defeat stress in male and female mice. RESULTS Social defeat attenuated social reward seeking in males but not females, whereas witness defeat had no effect in males but promoted seeking behavior in females. We resolved social stress-induced changes to social motivation by aggregating z-scored operant metrics into a cumulative social index score to describe the spectrum of individual differences exhibited during operant social stress. Clustering does not adequately describe the relative distributions of social motivation following stress and is better described as a nonbinary behavioral distribution defined by the social index score, capturing a dynamic range of stress-related alterations in social motivation inclusive of sex as a biological variable. CONCLUSIONS We demonstrated that operant social stress can detect stable individual differences in stress-induced changes to social motivation. The inclusion of volitional behavior in social procedures may enhance the understanding of behavioral adaptations that promote stress resiliency and their mechanisms under more naturalistic conditions.
Collapse
Affiliation(s)
- Jovana Navarrete
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Kevin N Schneider
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Briana M Smith
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Nastacia L Goodwin
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Yizhe Y Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Axelle S Salazar
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Yahir E Gonzalez
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Pranav Anumolu
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Ethan Gross
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Valerie S Tsai
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Mitra Heshmati
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington.
| |
Collapse
|
4
|
Whitten CJ, King JE, Rodriguez RM, Hennon LM, Scarborough MC, Hooker MK, Jenkins MS, Katigbak IM, Cooper MA. Activation of androgen receptor-expressing neurons in the posterior medial amygdala is associated with stress resistance in dominant male hamsters. Horm Behav 2024; 164:105577. [PMID: 38878493 PMCID: PMC11330741 DOI: 10.1016/j.yhbeh.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024]
Abstract
Social stress is a negative emotional experience that can increase fear and anxiety. Dominance status can alter the way individuals react to and cope with stressful events. The underlying neurobiology of how social dominance produces stress resistance remains elusive, although experience-dependent changes in androgen receptor (AR) expression is thought to play an essential role. Using a Syrian hamster (Mesocricetus auratus) model, we investigated whether dominant individuals activate more AR-expressing neurons in the posterior dorsal and posterior ventral regions of the medial amygdala (MePD, MePV), and display less social anxiety-like behavior following social defeat stress compared to subordinate counterparts. We allowed male hamsters to form and maintain a dyadic dominance relationship for 12 days, exposed them to social defeat stress, and then tested their approach-avoidance behavior using a social avoidance test. During social defeat stress, dominant subjects showed a longer latency to submit and greater c-Fos expression in AR+ cells in the MePD/MePV compared to subordinates. We found that social defeat exposure reduced the amount of time animals spent interacting with a novel conspecific 24 h later, although there was no effect of dominance status. The amount of social vigilance shown by dominants during social avoidance testing was positively correlated with c-Fos expression in AR+ cells in the MePV. These findings indicate that dominant hamsters show greater neural activity in AR+ cells in the MePV during social defeat compared to their subordinate counterparts, and this pattern of neural activity correlates with their proactive coping response. Consistent with the central role of androgens in experience-dependent changes in aggression, activation of AR+ cells in the MePD/MePV contributes to experience-dependent changes in stress-related behavior.
Collapse
Affiliation(s)
- C J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - J E King
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - R M Rodriguez
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - L M Hennon
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M C Scarborough
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M K Hooker
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M S Jenkins
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - I M Katigbak
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States.
| |
Collapse
|
5
|
Nerio-Morales LK, Boender AJ, Young LJ, Lamprea MR, Smith AS. Limbic oxytocin receptor expression alters molecular signaling and social avoidance behavior in female prairie voles ( Microtus ochrogaster). Front Neurosci 2024; 18:1409316. [PMID: 39081850 PMCID: PMC11286410 DOI: 10.3389/fnins.2024.1409316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The social defeat paradigm is the most representative animal model to study social anxiety disorder (SAD) and its underlying neuronal mechanisms. We have previously reported that defeat progressively reduces oxytocin receptors (OXTR) in limbic regions of the brain over an eight-week period in female prairie voles (Microtus ochrogaster). Oxytocin receptors activate the mitogen-activated protein kinase (MAPK) pathway, which has been previously associated with the anxiolytic effects of oxytocin. Here, we assessed the functional significance of OXTR in stress-induced social avoidance and the response of the MAPK signaling pathway in the nucleus accumbens (NAc), anterior cingulate cortex (ACC), and basolateral amygdala (BLA) of female prairie voles. Methods In experiment 1, Sexually naïve adult female prairie voles were defeated for three consecutive days and tested a week after for social preference/avoidance (SPA) test. Control subjects were similarly handled without defeat conditioning. In experiment 2, sexually and stress naïve adult female prairie voles were bilaterally injected into the NAc, ACC, or the BLA with a CRISPR/Cas9 virus targeting the Oxtr coding sequence to induce OXTR knockdown. Two weeks post-surgery, subjects were tested for SPA behavior. Viral control groups were similarly handled but injected with a control virus. A subgroup of animals from each condition in both experiments were similarly treated and euthanized without being tested for SPA behavior. Brains were harvested for OXTR autoradiography, western blot analysis of MAPK proteins and quantification of local oxytocin content in the NAc, BLA, ACC, and PVN through ELISA. Results Social defeat reduced OXTR binding in the NAc and affected MAPK pathway activity and oxytocin availability. These results were region-specific and sensitive to exposure to the SPA test. Additionally, OXTR knockdown in the NAc, ACC, and BLA induced social avoidance and decreased basal MAPK activity in the NAc. Finally, we found that OXTR knockdown in these regions was associated with less availability of oxytocin in the PVN. Conclusion Dysregulation of the oxytocin system and MAPK signaling pathway in the NAc, ACC, and BLA are important in social behavior disruptions in female voles. This dysregulation could, therefore, play an important role in the etiology of SAD in women.
Collapse
Affiliation(s)
- Lina K. Nerio-Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Arjen J. Boender
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marisol R. Lamprea
- Department of Psychology, School of Human Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Program in Neuroscience, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
6
|
Rappeneau V, Castillo Díaz F. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species. Neurosci Biobehav Rev 2024; 161:105675. [PMID: 38608828 DOI: 10.1016/j.neubiorev.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
| | - Fernando Castillo Díaz
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany
| |
Collapse
|
7
|
Sakaguchi K, Tawata S. Giftedness and atypical sexual differentiation: enhanced perceptual functioning through estrogen deficiency instead of androgen excess. Front Endocrinol (Lausanne) 2024; 15:1343759. [PMID: 38752176 PMCID: PMC11094242 DOI: 10.3389/fendo.2024.1343759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.
Collapse
Affiliation(s)
- Kikue Sakaguchi
- Research Department, National Institution for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan
| | - Shintaro Tawata
- Graduate School of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
8
|
Uvnäs-Moberg K, Gross MM, Calleja-Agius J, Turner JD. The Yin and Yang of the oxytocin and stress systems: opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Front Endocrinol (Lausanne) 2024; 15:1272270. [PMID: 38689729 PMCID: PMC11058227 DOI: 10.3389/fendo.2024.1272270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.
Collapse
Affiliation(s)
- Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Section of Anthrozoology and Applied Ethology, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Mechthild M. Gross
- Midwifery Research and Education Unit, Hannover Medical School, Hannover, Germany
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
| |
Collapse
|
9
|
Lake AA, Trainor BC. Leveraging the unique social organization of California mice to study circuit-specific effects of oxytocin on behavior. Horm Behav 2024; 160:105487. [PMID: 38281444 PMCID: PMC11391860 DOI: 10.1016/j.yhbeh.2024.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Oxytocin is a versatile neuropeptide that modulates many different forms of social behavior. Recent hypotheses pose that oxytocin enhances the salience of rewarding and aversive social experiences, and the field has been working to identify mechanisms that allow oxytocin to have diverse effects on behavior. Here we review studies conducted on the California mouse (Peromyscus californicus) that shed light on how oxytocin modulates social behavior following stressful experiences. In this species, both males and females exhibit high levels of aggression, which has facilitated the study of how social stress impacts both sexes. We review findings of short- and long-term effects of social stress on the reactivity of oxytocin neurons. We also consider the results of pharmacological studies which show that oxytocin receptors in the bed nucleus of the stria terminalis and nucleus accumbens have distinct but overlapping effects on social approach behaviors. These findings help explain how social stress can have different behavioral effects in males and females, and how oxytocin can have such divergent effects on behavior. Finally, we consider how new technological developments and innovative research programs take advantage of the unique social organization of California mice to address questions that can be difficult to study in conventional rodent model species. These new methods and questions have opened new avenues for studying the neurobiology of social behavior.
Collapse
Affiliation(s)
- Alyssa A Lake
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
10
|
Grieb ZA, Lee S, Stoehr MC, Horne BW, Norvelle A, Shaughnessy EK, Albers HE, Huhman KL. Sex-dependent regulation of social avoidance by oxytocin signaling in the ventral tegmental area. Behav Brain Res 2024; 462:114881. [PMID: 38272188 PMCID: PMC10923107 DOI: 10.1016/j.bbr.2024.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
It has been hypothesized that oxytocin increases the salience of social stimuli, whether the valence is positive or negative, through its interactions with the ventral tegmental area (VTA). Indeed, oxytocin neurons project to the VTA and activate dopamine neurons that are necessary for social experiences with positive valence. Surprisingly, though, there has not been an investigation of the role of oxytocin in the VTA in mediating social experiences with negative valence (e.g., social stress). Given that there are sex differences in how oxytocin regulates the salience of positively-valenced social interactions, we hypothesized that oxytocin acting in the VTA also alters the salience of social stress in a sex-dependent manner. To test this, female and male Syrian hamsters were site-specifically infused with either saline, oxytocin (9 μM), or oxytocin receptor antagonist (90 μM) into the VTA. Subjects were then exposed to either no defeat or a single, 15 min defeat by one RA. The day following social defeat, subjects underwent a 5 min social avoidance test. There was an interaction between sex and drug treatment, such that the oxytocin antagonist increased social avoidance compared to saline treatment in socially stressed females, while oxytocin decreased social avoidance compared to saline treatment in socially stressed males. Contrary to expectations, these results suggest that oxytocin signaling generally acts to decrease social avoidance, regardless of sex. These sex differences in the efficacy of oxytocin and oxytocin receptor antagonists to alter negatively-valenced social stimuli, however, should be considered when guiding pharmacotherapies for disorders involving social deficits.
Collapse
Affiliation(s)
- Zachary A Grieb
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Susan Lee
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Maura C Stoehr
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Benjamin W Horne
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Alisa Norvelle
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Emma K Shaughnessy
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - H Elliott Albers
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Kim L Huhman
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
Osakada T, Yan R, Jiang Y, Wei D, Tabuchi R, Dai B, Wang X, Zhao G, Wang CX, Liu JJ, Tsien RW, Mar AC, Lin D. A dedicated hypothalamic oxytocin circuit controls aversive social learning. Nature 2024; 626:347-356. [PMID: 38267576 PMCID: PMC11102773 DOI: 10.1038/s41586-023-06958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/08/2023] [Indexed: 01/26/2024]
Abstract
To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.
Collapse
Affiliation(s)
- Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| | - Rongzhen Yan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yiwen Jiang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Dongyu Wei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Rina Tabuchi
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Bing Dai
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Xiaohan Wang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Gavin Zhao
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Clara Xi Wang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Jing-Jing Liu
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Richard W Tsien
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Adam C Mar
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Ritz NL, Brocka M, Butler MI, Cowan CSM, Barrera-Bugueño C, Turkington CJR, Draper LA, Bastiaanssen TFS, Turpin V, Morales L, Campos D, Gheorghe CE, Ratsika A, Sharma V, Golubeva AV, Aburto MR, Shkoporov AN, Moloney GM, Hill C, Clarke G, Slattery DA, Dinan TG, Cryan JF. Social anxiety disorder-associated gut microbiota increases social fear. Proc Natl Acad Sci U S A 2024; 121:e2308706120. [PMID: 38147649 PMCID: PMC10769841 DOI: 10.1073/pnas.2308706120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/05/2023] [Indexed: 12/28/2023] Open
Abstract
Social anxiety disorder (SAD) is a crippling psychiatric disorder characterized by intense fear or anxiety in social situations and their avoidance. However, the underlying biology of SAD is unclear and better treatments are needed. Recently, the gut microbiota has emerged as a key regulator of both brain and behaviour, especially those related to social function. Moreover, increasing data supports a role for immune function and oxytocin signalling in social responses. To investigate whether the gut microbiota plays a causal role in modulating behaviours relevant to SAD, we transplanted the microbiota from SAD patients, which was identified by 16S rRNA sequencing to be of a differential composition compared to healthy controls, to mice. Although the mice that received the SAD microbiota had normal behaviours across a battery of tests designed to assess depression and general anxiety-like behaviours, they had a specific heightened sensitivity to social fear, a model of SAD. This distinct heightened social fear response was coupled with changes in central and peripheral immune function and oxytocin expression in the bed nucleus of the stria terminalis. This work demonstrates an interkingdom basis for social fear responses and posits the microbiome as a potential therapeutic target for SAD.
Collapse
Affiliation(s)
- Nathaniel L. Ritz
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Marta Brocka
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Mary I. Butler
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - Caitlin S. M. Cowan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Camila Barrera-Bugueño
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Christopher J. R. Turkington
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Lorraine A. Draper
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Thomaz F. S. Bastiaanssen
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Valentine Turpin
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Lorena Morales
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - David Campos
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Cassandra E. Gheorghe
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - Anna Ratsika
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Virat Sharma
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Anna V. Golubeva
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
| | - Maria R. Aburto
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Andrey N. Shkoporov
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Gerard M. Moloney
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- School of Microbiology, University College Cork, CorkT12K8AF, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - David A. Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt60528, Germany
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, CorkT12YT20, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, CorkT12YT20, Ireland
- Department of Anatomy and Neuroscience, University College Cork, CorkT12YT20, Ireland
| |
Collapse
|
13
|
Breach MR, Akouri HE, Costantine S, Dodson CM, McGovern N, Lenz KM. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Horm Behav 2024; 157:105427. [PMID: 37743114 PMCID: PMC10842952 DOI: 10.1016/j.yhbeh.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Prenatal exposure to inflammation via maternal infection, allergy, or autoimmunity increases one's risk for developing neurodevelopmental and psychiatric disorders. Many of these disorders are associated with altered social behavior, yet the mechanisms underlying inflammation-induced social impairment remain unknown. We previously found that a rat model of acute allergic maternal immune activation (MIA) produced deficits like those found in MIA-linked disorders, including impairments in juvenile social play behavior. The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behavior, including juvenile social play, across mammalian species. OT and AVP are also implicated in neuropsychiatric disorders characterized by social impairment, making them good candidate regulators of social deficits after MIA. We profiled how acute prenatal exposure to allergic MIA changed OT and AVP innervation in several brain regions important for social behavior in juvenile male and female rat offspring. We also assessed whether MIA altered additional behavioral phenotypes related to sociality and anxiety. We found that allergic MIA increased OT and AVP fiber immunoreactivity in the medial amygdala and had sex-specific effects in the nucleus accumbens, bed nucleus of the stria terminalis, and lateral hypothalamic area. We also found that MIA reduced ultrasonic vocalizations in neonates and increased the stereotypical nature of self-grooming behavior. Overall, these findings suggest that there may be sex-specific mechanisms underlying MIA-induced behavioral impairment and underscore OT and AVP as ideal candidates for future mechanistic studies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Habib E Akouri
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sophia Costantine
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Claire M Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Nolan McGovern
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
15
|
Neumann ID. Monitoring oxytocin signaling in the brain: More than a love story. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100206. [PMID: 38108033 PMCID: PMC10724740 DOI: 10.1016/j.cpnec.2023.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 12/19/2023] Open
Abstract
More than any other neuropeptide, oxytocin (OXT) is attracting the attention of neurobiologists, psychologists, psychiatrists, evolutionary biologists and even economists. It is often called a "love hormone" due to its many prosocial functions described in vertebrates including mammals and humans, especially its ability to support "bonding behaviour". Oxytocin plays an important role in female reproduction, as it promotes labour during parturition, enables milk ejection in lactation and is essential for related reproductive behaviours. Therefore, it particularly attracts the interest of many female researchers. In this short narrative review I was invited to provide a personal overview on my scientific journey closely linked to my research on the brain OXT system and the adventures associated with starting my research career behind the Iron Curtain.
Collapse
Affiliation(s)
- Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Centre of Neurosciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Gruber T, Lechner F, Murat C, Contreras RE, Sanchez-Quant E, Miok V, Makris K, Le Thuc O, González-García I, García-Clave E, Althammer F, Krabichler Q, DeCamp LM, Jones RG, Lutter D, Williams RH, Pfluger PT, Müller TD, Woods SC, Pospisilik JA, Martinez-Jimenez CP, Tschöp MH, Grinevich V, García-Cáceres C. High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-brain satiation pathway via κ-opioid signaling. Cell Rep 2023; 42:113305. [PMID: 37864798 PMCID: PMC10636643 DOI: 10.1016/j.celrep.2023.113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.
Collapse
Affiliation(s)
- Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA.
| | - Franziska Lechner
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Cahuê Murat
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Eva Sanchez-Quant
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Viktorian Miok
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Konstantinos Makris
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clave
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lisa M DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Dominik Lutter
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rhiannan H Williams
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Neurogenomics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Neurobiology of Diabetes, TUM School of Medicine, Technical University Munich, 80333 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls Hospitals and Clinics, Tübingen, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - John Andrew Pospisilik
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA
| | - Celia P Martinez-Jimenez
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
17
|
Wright EC, Luo PX, Zakharenkov HC, Serna Godoy A, Lake AA, Prince ZD, Sekar S, Culkin HI, Ramirez AV, Dwyer T, Kapoor A, Corbett C, Tian L, Fox AS, Trainor BC. Sexual differentiation of neural mechanisms of stress sensitivity during puberty. Proc Natl Acad Sci U S A 2023; 120:e2306475120. [PMID: 37847733 PMCID: PMC10614610 DOI: 10.1073/pnas.2306475120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Anxiety disorders are a major public health concern and current treatments are inadequate for many individuals. Anxiety is more common in women than men and this difference arises during puberty. Sex differences in physiological stress responses may contribute to this variability. During puberty, gonadal hormones shape brain structure and function, but the extent to which these changes affect stress sensitivity is unknown. We examined how pubertal androgens shape behavioral and neural responses to social stress in California mice (Peromyscus californicus), a model species for studying sex differences in stress responses. In adults, social defeat reduces social approach and increases social vigilance in females but not males. We show this sex difference is absent in juveniles, and that prepubertal castration sensitizes adult males to social defeat. Adult gonadectomy does not alter behavioral responses to defeat, indicating that gonadal hormones act during puberty to program behavioral responses to stress in adulthood. Calcium imaging in the medioventral bed nucleus of the stria terminalis (BNST) showed that social threats increased neural activity and that prepubertal castration generalized these responses to less threatening social contexts. These results support recent hypotheses that the BNST responds to immediate threats. Prepubertal treatment with the nonaromatizable androgen dihydrotestosterone acts in males and females to reduce the effects of defeat on social approach and vigilance in adults. These data indicate that activation of androgen receptors during puberty is critical for programming behavioral responses to stress in adulthood.
Collapse
Affiliation(s)
- Emily C. Wright
- Department of Psychology, University of California, Davis, CA95616
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA95616
| | - Pei X. Luo
- Department of Psychology, University of California, Davis, CA95616
| | | | | | - Alyssa A. Lake
- Department of Psychology, University of California, Davis, CA95616
| | - Zhana D. Prince
- Department of Psychology, University of California, Davis, CA95616
| | - Shwetha Sekar
- Department of Psychology, University of California, Davis, CA95616
| | - Hannah I. Culkin
- Department of Psychology, University of California, Davis, CA95616
| | | | - Tjien Dwyer
- Department of Psychology, University of California, Davis, CA95616
| | - Amita Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| | - Cody Corbett
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA95616
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA95616
- California National Primate Research Center, University of California, Davis, CA95616
| | - Brian C. Trainor
- Department of Psychology, University of California, Davis, CA95616
| |
Collapse
|
18
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
19
|
Nisbett KE, Gonzalez LA, Teruel M, Carter CS, Vendruscolo LF, Ragozzino ME, Koob GF. Sex and hormonal status influence the anxiolytic-like effect of oxytocin in mice. Neurobiol Stress 2023; 26:100567. [PMID: 37706061 PMCID: PMC10495655 DOI: 10.1016/j.ynstr.2023.100567] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Anxiety and depression are highly prevalent psychiatric disorders, affecting approximately 18% of the United States population. Evidence indicates that central oxytocin mediates social cognition, social bonding, and social anxiety. Although it is well-established that oxytocin ameliorates social deficits, less is known about the therapeutic effects of oxytocin in non-social contexts. We hypothesized that positive effects of oxytocin in social contexts are attributable to intrinsic effects of oxytocin on neural systems that are related to emotion regulation. The present study investigated the effect of intracerebroventricular (ICV) oxytocin administration (i.e., central action) on anxiety- and depression-like behavior in C57Bl/6J mice using non-social tests. Male and female mice received an ICV infusion of vehicle or oxytocin (100, 200, or 500 ng), then were tested in the elevated zero maze (for anxiety-like behavior) and the tail suspension test (for depression-like behavior). Oxytocin dose-dependently increased open zone occupancy and entries in the elevated zero maze and reduced immobility duration in the tail suspension test in both sexes. Oxytocin decreased anxiety and depression-like behavior in male and female mice. The observed effect of oxytocin on anxiolytic-like behavior appeared to be driven by the males. Given the smaller anxiolytic-like effect of oxytocin in the female mice and the established interaction between oxytocin and reproductive hormones (estrogen and progesterone), we also explored whether oxytocin sensitivity in females varies across estrous cycle phases and in ovariectomized females that were or were not supplemented with estrogen or progesterone. Oxytocin reduced anxiety-like behavior in female mice in proestrus/estrus, ovariectomized females (supplemented or not with estrogen or progesterone), but not females in metestrus/diestrus. Additionally, oxytocin reduced depression-like behavior in all groups tested with slight differences across the various hormonal statuses. These results suggest that the effect of oxytocin in depression- and anxiety-like behavior in mice can be influenced by sex and hormonal status.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL 60607, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luis A. Gonzalez
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marina Teruel
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - C. Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Leandro F. Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael E. Ragozzino
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
20
|
Zhu KW, Tao GJ, Huang ZL, Qu WM, Wang L. Whole-brain connectivity to the bed nucleus of the stria terminalis calretinin-expressing interneurons in male mice. Eur J Neurosci 2023; 58:2807-2823. [PMID: 37452644 DOI: 10.1111/ejn.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a neuropeptide-enriched brain region that modulates a wide variety of emotional behaviours and states, including stress, anxiety, reward and social interaction. The BNST consists of diverse subregions and neuronal ensembles; however, because of the high molecular heterogeneity within BNST neurons, the mechanisms through which the BNST regulates distinct emotional behaviours remain largely unclear. Prior studies have identified BNST calretinin (CR)-expressing neurons, which lack neuropeptides. Here, employing virus-based cell-type-specific retrograde and anterograde tracing systems, we mapped the whole-brain monosynaptic inputs and axonal projections of BNST CR-expressing neurons in male mice. We found that BNST CR-expressing neurons received inputs mainly from the amygdalopiriform transition area, central amygdala and hippocampus and moderately from the medial preoptic area, basolateral amygdala, paraventricular thalamus and lateral hypothalamus. Within the BNST, plenty of input neurons were primarily located in the oval and interfascicular subregions. Furthermore, numerous BNST CR-expressing neuronal boutons were observed within the BNST but not in other brain regions, thus suggesting that these neurons are a type of interneuron. These results will help further elucidate the neuronal circuits underlying the elaborate and distinct functions of the BNST.
Collapse
Affiliation(s)
- Ke-Wei Zhu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Gui-Jin Tao
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Wang
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
21
|
Jin Y, Song D, Yan Y, Quan Z, Qing H. The Role of Oxytocin in Early-Life-Stress-Related Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:10430. [PMID: 37445607 DOI: 10.3390/ijms241310430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Early-life stress during critical periods of brain development can have long-term effects on physical and mental health. Oxytocin is a critical social regulator and anti-inflammatory hormone that modulates stress-related functions and social behaviors and alleviates diseases. Oxytocin-related neural systems show high plasticity in early postpartum and adolescent periods. Early-life stress can influence the oxytocin system long term by altering the expression and signaling of oxytocin receptors. Deficits in social behavior, emotional control, and stress responses may result, thus increasing the risk of anxiety, depression, and other stress-related neuropsychiatric diseases. Oxytocin is regarded as an important target for the treatment of stress-related neuropsychiatric disorders. Here, we describe the history of oxytocin and its role in neural circuits and related behaviors. We then review abnormalities in the oxytocin system in early-life stress and the functions of oxytocin in treating stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Boender AJ, Boon M, Albers HE, Eck SR, Fricker BA, Kelly AM, LeDoux JE, Motta SC, Shrestha P, Taylor JH, Trainor BC, Triana-Del Rio R, Young LJ. An AAV-CRISPR/Cas9 strategy for gene editing across divergent rodent species: Targeting neural oxytocin receptors as a proof of concept. SCIENCE ADVANCES 2023; 9:eadf4950. [PMID: 37256960 PMCID: PMC10413677 DOI: 10.1126/sciadv.adf4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in >80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n = 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.
Collapse
Affiliation(s)
- Arjen J. Boender
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Marina Boon
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - H. Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Samantha R. Eck
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | | | - Aubrey M. Kelly
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Joseph E. LeDoux
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychiatry and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, USA
| | - Simone C. Motta
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, São Paulo, SP, Brazil
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jack H. Taylor
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Brian C. Trainor
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | | | - Larry J. Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Wallace KJ, Chun EK, Manns JR, Ophir AG, Kelly AM. A test of the social behavior network reveals differential patterns of neural responses to social novelty in bonded, but not non-bonded, male prairie voles. Horm Behav 2023; 152:105362. [PMID: 37086574 PMCID: PMC10291480 DOI: 10.1016/j.yhbeh.2023.105362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/02/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
The social behavior network (SBN) has provided a framework for understanding the neural control of social behavior. The original SBN hypothesis proposed this network modulates social behavior and should exhibit distinct patterns of neural activity across nodes, which correspond to distinct social contexts. Despite its tremendous impact on the field of social neuroscience, no study has directly tested this hypothesis. Thus, we assessed Fos responses across the SBN of male prairie voles (Microtus ochrogaster). Virgin/non-bonded and pair bonded subjects were exposed to a sibling cagemate or pair bonded partner, novel female, novel male, novel meadow vole, novel object, or no stimulus. Inconsistent with the original SBN hypothesis, we did not find profoundly different patterns of neural responses across the SBN for different contexts, but instead found that the SBN generated significantly different patterns of activity in response to social novelty in pair bonded, but not non-bonded males. These findings suggest that non-bonded male prairie voles may perceive social novelty differently from pair bonded males or that SBN functionality undergoes substantial changes after pair bonding. This study reveals novel information about bond-dependent, context-specific neural responsivity in male prairie voles and suggests that the SBN may be particularly important for processing social salience. Further, our study suggests there is a need to reconceptualize the framework of how the SBN modulates social behavior.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Eileen K Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Joseph R Manns
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Guoynes CD, Marler CA. Acute intranasal oxytocin dose enhances social preference for parents over peers in male but not female peri-adolescent California mice (Peromyscus californicus). Gen Comp Endocrinol 2023; 335:114230. [PMID: 36781024 DOI: 10.1016/j.ygcen.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Peri-adolescence is a critical developmental stage marked by profound changes in the valence of social interactions with parents and peers. We hypothesized that the oxytocin (OXT) and vasopressin (AVP) systems, known for influencing social behavior, would be involved in the maintenance and breaking of bonding behavior expressed by very early peri-adolescent males and females. In rodents, OXT is associated with mother-pup bonding and may promote social attachment to members of the natal territory. AVP, on the other hand, can act in contrasting ways to OXT and has been associated with aggression and territoriality. Specifically, we predicted that in peri-adolescent male and female juveniles of the biparental and territorial California mouse (Peromyscus californicus), a) OXT would increase the social preferences for the parents over unfamiliar age-matched peers (one male and one female), and b) AVP would break the parent-offspring bond and either increase time in the neutral chamber and/or approach to their unfamiliar and novel peers. We examined anxiety and exploratory behavior using an elevated plus maze and a novel object task as a control. Peri-adolescent mice were administered an acute intranasal (IN) treatment of 0.5 IU/kg IN AVP, 0.5 IU/kg IN OXT, or saline control; five minutes later, the behavioral tests were conducted. As predicted, we found that IN OXT enhanced social preference for parents; however, this was only in male and not female peri-adolescent mice. IN AVP did not influence social preference in either sex. These effects appear specific to social behavior and not anxiety, as neither IN OXT nor AVP influenced behavior during the elevated plus maze or novel object tasks. To our knowledge, this is the first evidence indicating that OXT may play a role in promoting peri-adolescent social preferences for parents and delaying weaning in males.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Fricker BA, Roshko VC, Jiang J, Kelly AM. Partner separation rescues pair bond-induced decreases in hypothalamic oxytocin neural densities. Sci Rep 2023; 13:4835. [PMID: 36964221 PMCID: PMC10037388 DOI: 10.1038/s41598-023-32076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Studies in prairie voles (Microtus ochrogaster) have shown that although formation of the pair bond is accompanied by a suite of behavioral changes, a bond between two voles can dissolve and individuals can form new pair bonds with other conspecifics. However, the neural mechanisms underlying this behavioral flexibility have not been well-studied. Here we examine plasticity of nonapeptide, vasopressin (VP) and oxytocin (OT), neuronal populations in relation to bonding and the dissolution of bonds. Using adult male and female prairie voles, animals were either pair bonded, co-housed with a same-sex sibling, separated from their pair bond partner, or separated from their sibling. We examined neural densities of VP and OT cell groups and observed plasticity in the nonapeptide populations of the paraventricular nucleus of the hypothalamus (PVN). Voles that were pair bonded had fewer PVN OT neurons, suggesting that PVN OT neural densities decrease with pair bonding, but increase and return to a pre-pair bonded baseline after the dissolution of a pair bond. Our findings suggest that the PVN nonapeptide cell groups are particularly plastic in adulthood, providing a mechanism by which voles can exhibit context-appropriate behavior related to bond status.
Collapse
Affiliation(s)
- Brandon A Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Venezia C Roshko
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Jinrun Jiang
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| |
Collapse
|
26
|
Arakawa H, Higuchi Y, Ozawa A. Oxytocin neurons in the paraventricular nucleus of the hypothalamus circuit-dependently regulates social behavior, which malfunctions in BTBR mouse model of autism. RESEARCH SQUARE 2023:rs.3.rs-2621359. [PMID: 36909537 PMCID: PMC10002846 DOI: 10.21203/rs.3.rs-2621359/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Oxytocin (OXT) a neuropeptide synthesized in the hypothalamic nuclei has a variety of function including socio-emotional processes in mammals. While the neural circuits and signaling pathways in central OXT converge in the paraventricular nucleus of the hypothalamus (PVN), we illuminate specific function of discrete PVN OXT circuits, which connect to the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BnST) in mouse models. The OXTPVN→BnST projections are innervated from entire portions of the PVN, while those OXTPVN→MeA projections are asymmetrically innervated from the posterior portion of the PVN. Compared with OXT neurons in B6 wild type mice, BTBR mice that are recognized as a behavior-based autism model exhibited defect in the OXTPVN→BnST projection. We demonstrate that chemogenetic activation of OXTPVN→MeA circuit enhances anxiety-like behavior and facilitates social approach behavior, while activation of OXTPVN→BnST circuit suppresses anxiety-like behavior along with inhibiting social approach. This chemogenetic manipulation on the OXTPVN→BnST circuit proves ineffective in BTBR mice. Accordingly, chemogenetic activation of OXTPVN neurons that stimulate both OXT circuits induces OXT receptor expressions in both MeA and BnST as with those by social encounter in B6 mice. The induction of OXT receptor genes in the BnST was not observed in BTBR mice. These data support the hypothesis that OXT circuits serve as a regulator for OXT signaling in PVN to control socio-emotional approach/avoidance behavior, and a defect of OXTPVN→BnST circuit contributes to autism-like social phenotypes in BTBR mice.
Collapse
|
27
|
Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: Lifelong socioemotional consequences. Neuropharmacology 2023; 225:109404. [PMID: 36572178 PMCID: PMC9926961 DOI: 10.1016/j.neuropharm.2022.109404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - Steven M Herron
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
28
|
Powell JM, Inoue K, Wallace KJ, Seifert AW, Young LJ, Kelly AM. Distribution of vasopressin 1a and oxytocin receptor protein and mRNA in the basal forebrain and midbrain of the spiny mouse (Acomys cahirinus). Brain Struct Funct 2023; 228:413-431. [PMID: 36271259 PMCID: PMC9974677 DOI: 10.1007/s00429-022-02581-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
The nonapeptide system modulates numerous social behaviors through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin receptor (AVPR1A) in the brain. OXTRs and AVPR1As are widely distributed throughout the brain and binding densities exhibit substantial variation within and across species. Although OXTR and AVPR1A binding distributions have been mapped for several rodents, this system has yet to be characterized in the spiny mouse (Acomys cahirinus). Here we conducted receptor autoradiography and in situ hybridization to map distributions of OXTR and AVPR1A binding and Oxtr and Avpr1a mRNA expression throughout the basal forebrain and midbrain of male and female spiny mice. We found that nonapeptide receptor mRNA is diffuse throughout the forebrain and midbrain and does not always align with OXTR and AVPR1A binding. Analyses of sex differences in brain regions involved in social behavior and reward revealed that males exhibit higher OXTR binding densities in the lateral septum, bed nucleus of the stria terminalis, and anterior hypothalamus. However, no association with gonadal sex was observed for AVPR1A binding. Hierarchical clustering analysis further revealed that co-expression patterns of OXTR and AVPR1A binding across brain regions involved in social behavior and reward differ between males and females. These findings provide mapping distributions and sex differences in nonapeptide receptors in spiny mice. Spiny mice are an excellent organism for studying grouping behaviors such as cooperation and prosociality, and the nonapeptide receptor mapping here can inform the study of nonapeptide-mediated behavior in a highly social, large group-living rodent.
Collapse
Affiliation(s)
- Jeanne M Powell
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Kelly J Wallace
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, KY, 40506, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| |
Collapse
|
29
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
30
|
Inoue K, Ford CL, Horie K, Young LJ. Oxytocin receptors are widely distributed in the prairie vole (Microtus ochrogaster) brain: Relation to social behavior, genetic polymorphisms, and the dopamine system. J Comp Neurol 2022; 530:2881-2900. [PMID: 35763609 PMCID: PMC9474670 DOI: 10.1002/cne.25382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022]
Abstract
Oxytocin regulates social behavior via direct modulation of neurons, regulation of neural network activity, and interaction with other neurotransmitter systems. The behavioral effects of oxytocin signaling are determined by the species-specific distribution of brain oxytocin receptors. The socially monogamous prairie vole has been a useful model organism for elucidating the role of oxytocin in social behaviors, including pair bonding, response to social loss, and consoling. However, there has been no comprehensive mapping of oxytocin receptor-expressing cells throughout the prairie vole brain. Here, we employed a highly sensitive in situ hybridization, RNAscope, to construct an exhaustive, brain-wide map of oxytocin receptor mRNA-expressing cells. We found that oxytocin receptor mRNA expression was widespread and diffused throughout the brain, with specific areas displaying a particularly robust expression. Comparing receptor binding with mRNA revealed that regions of the hippocampus and substantia nigra contained oxytocin receptor protein but lacked mRNA, indicating that oxytocin receptors can be transported to distal neuronal processes, consistent with presynaptic oxytocin receptor functions. In the nucleus accumbens, a region involved in oxytocin-dependent social bonding, oxytocin receptor mRNA expression was detected in both the D1 and D2 dopamine receptor-expressing subtypes of cells. Furthermore, natural genetic polymorphisms robustly influenced oxytocin receptor expression in both D1 and D2 receptor cell types in the nucleus accumbens. Collectively, our findings further elucidate the extent to which oxytocin signaling is capable of influencing brain-wide neural activity, responses to social stimuli, and social behavior. KEY POINTS: Oxytocin receptor mRNA is diffusely expressed throughout the brain, with strong expression concentrated in certain areas involved in social behavior. Oxytocin receptor mRNA expression and protein localization are misaligned in some areas, indicating that the receptor protein may be transported to distal processes. In the nucleus accumbens, oxytocin receptors are expressed on cells expressing both D1 and D2 dopamine receptor subtypes, and the majority of variation in oxytocin receptor expression between animals is attributable to polymorphisms in the oxytocin receptor gene.
Collapse
Affiliation(s)
- Kiyoshi Inoue
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
31
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
32
|
Rigney N, de Vries GJ, Petrulis A, Young LJ. Oxytocin, Vasopressin, and Social Behavior: From Neural Circuits to Clinical Opportunities. Endocrinology 2022; 163:bqac111. [PMID: 35863332 PMCID: PMC9337272 DOI: 10.1210/endocr/bqac111] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/19/2022]
Abstract
Oxytocin and vasopressin are peptide hormones secreted from the pituitary that are well known for their peripheral endocrine effects on childbirth/nursing and blood pressure/urine concentration, respectively. However, both peptides are also released in the brain, where they modulate several aspects of social behaviors. Oxytocin promotes maternal nurturing and bonding, enhances social reward, and increases the salience of social stimuli. Vasopressin modulates social communication, social investigation, territorial behavior, and aggression, predominantly in males. Both peptides facilitate social memory and pair bonding behaviors in monogamous species. Here we review the latest research delineating the neural circuitry of the brain oxytocin and vasopressin systems and summarize recent investigations into the circuit-based mechanisms modulating social behaviors. We highlight research using modern molecular genetic technologies to map, monitor activity of, or manipulate neuropeptide circuits. Species diversity in oxytocin and vasopressin effects on social behaviors are also discussed. We conclude with a discussion of the translational implications of oxytocin and vasopressin for improving social functioning in disorders with social impairments, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
| | - Geert J de Vries
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Aras Petrulis
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30329, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
33
|
Hoglen NEG, Manoli DS. Cupid's quiver: Integrating sensory cues in rodent mating systems. Front Neural Circuits 2022; 16:944895. [PMID: 35958042 PMCID: PMC9358210 DOI: 10.3389/fncir.2022.944895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
In many animal species, males and females exploit different mating strategies, display sex-typical behaviors, and use distinct systems to recognize ethologically relevant cues. Mate selection thus requires mutual recognition across diverse social interactions based on distinct sensory signals. These sex differences in courtship and mating behaviors correspond to differences in sensory systems and downstream neural substrates engaged to recognize and respond to courtship signals. In many rodents, males tend to rely heavily on volatile olfactory and pheromone cues, while females appear to be guided more by a combination of these chemosensory signals with acoustic cues in the form of ultrasonic vocalizations. The mechanisms by which chemical and acoustic cues are integrated to control behavior are understudied in mating but are known to be important in the control of maternal behaviors. Socially monogamous species constitute a behaviorally distinct group of rodents. In these species, anatomic differences between males and females outside the nervous system are less prominent than in species with non-monogamous mating systems, and both sexes engage in more symmetric social behaviors and form attachments. Nevertheless, despite the apparent similarities in behaviors displayed by monogamous males and females, the circuitry supporting social, mating, and attachment behaviors in these species is increasingly thought to differ between the sexes. Sex differences in sensory modalities most important for mate recognition in across species are of particular interest and present a wealth of questions yet to be answered. Here, we discuss how distinct sensory cues may be integrated to drive social and attachment behaviors in rodents, and the differing roles of specific sensory systems in eliciting displays of behavior by females or males.
Collapse
Affiliation(s)
- Nerissa E G Hoglen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
34
|
Salahinejad A, Attaran A, Meuthen D, Rachamalla M, Chivers DP, Niyogi S. Maternal exposure to bisphenol S induces neuropeptide signaling dysfunction and oxidative stress in the brain, and abnormal social behaviors in zebrafish (Danio rerio) offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154794. [PMID: 35341835 DOI: 10.1016/j.scitotenv.2022.154794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Recent studies show that bisphenol S (BPS) induces multiple adverse effects in exposed organisms; however, the maternal effects of BPS exposure remain poorly understood. Here, we expose adult female zebrafish to environmentally relevant concentrations of BPS (0, 1, 10, 30 μg/L) and 1 μg/L of 17-β-estradiol (E2) as a positive control for 60 days. Females were then paired with BPS-unexposed males and their offspring were raised in control water for 6 months. Maternal exposure to BPS was found to alter social behavior and anxiety response in a dose-specific manner in male offspring. Group preferences and social cohesion were significantly reduced by maternal exposure to 1 and 10 μg/L BPS, respectively. Additionally, maternal exposure to 1 and 30 μg/L BPS and E2 decreased offspring stress responses during the novel tank test. The impaired social behavior was associated with elevated arginine-vasotocin (AVT) level as well as with the altered expression of genes involved in AVT signaling pathway (AVT, avpr1aa) and enzymatic antioxidant genes (cat and Mn-sod) in the brain. Collectively, these results suggest that maternal exposure to environmentally relevant concentrations of BPS alters social behavior in zebrafish offspring, which is likely mediated by oxidative stress and disruption of neuropeptide signaling pathways in the brain.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
35
|
DeRosa H, Caradonna SG, Tran H, Marrocco J, Kentner AC. Milking It for All It's Worth: The Effects of Environmental Enrichment on Maternal Nurturance, Lactation Quality, and Offspring Social Behavior. eNeuro 2022; 9:ENEURO.0148-22.2022. [PMID: 35995560 PMCID: PMC9417599 DOI: 10.1523/eneuro.0148-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/17/2022] Open
Abstract
Breastfeeding confers robust benefits to offspring development in terms of growth, immunity, and neurophysiology. Similarly, improving environmental complexity, i.e., environmental enrichment (EE), contributes developmental advantages to both humans and laboratory animal models. However, the impact of environmental context on maternal care and milk quality has not been thoroughly evaluated, nor are the biological underpinnings of EE on offspring development understood. Here, Sprague Dawley rats were housed and bred in either EE or standard-housed (SD) conditions. EE dams gave birth to a larger number of pups, and litters were standardized and cross-fostered across groups on postnatal day (P)1. Maternal milk samples were then collected on P1 (transitional milk phase) and P10 (mature milk phase) for analysis. While EE dams spent less time nursing, postnatal enrichment exposure was associated with heavier offspring bodyweights. Milk from EE mothers had increased triglyceride levels, a greater microbiome diversity, and a significantly higher abundance of bacterial families related to bodyweight and energy metabolism. These differences reflected comparable transcriptomic changes at the genome-wide level. In addition to changes in lactational quality, we observed elevated levels of cannabinoid receptor 1 in the hypothalamus of EE dams, and sex-dependent and time-dependent effects of EE on offspring social behavior. Together, these results underscore the multidimensional impact of the combined neonatal and maternal environments on offspring development and maternal health. Moreover, they highlight potential deficiencies in the use of "gold standard" laboratory housing in the attempt to design translationally relevant animal models in biomedical research.
Collapse
Affiliation(s)
- Holly DeRosa
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| | | | - Hieu Tran
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
- Department of Biology, Touro University, New York, NY 10023
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| |
Collapse
|
36
|
Luo PX, Zakharenkov HC, Torres LY, Rios RA, Gegenhuber B, Black AM, Xu CK, Minie VA, Tran AM, Tollkuhn J, Trainor BC. Oxytocin receptor behavioral effects and cell types in the bed nucleus of the stria terminalis. Horm Behav 2022; 143:105203. [PMID: 35636023 PMCID: PMC9827713 DOI: 10.1016/j.yhbeh.2022.105203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/12/2023]
Abstract
Oxytocin is a neuropeptide that can produce anxiolytic effects and promote social approach. However, emerging evidence shows that under some conditions, oxytocin can instead induce anxiety-related behaviors. These diverse effects of oxytocin appear to be mediated by circuit-specific actions. Recent data showed that inhibition of oxytocin receptors (OTRs) in the bed nucleus of the stria terminalis (BNST) was sufficient to increase social approach and decrease social vigilance in female California mice (Peromyscus californicus) exposed to social defeat stress. As a member of the G-protein coupled receptor family, OTRs can induce distinct downstream pathways by coupling to different G-protein isoforms. We show that infusion of carbetocin, a biased OTR-Gq agonist, in the BNST reduced social approach in both female and male California mice. In both females and males, carbetocin also increased social vigilance. To gain insight into cell types that could be mediating this effect, we analyzed previously published single-cell RNAseq data from the BNST and nucleus accumbens (NAc). In the NAc, we and others showed that OTR activation promotes social approach behaviors. In the BNST, Oxtr was expressed in over 40 cell types, that span both posterior and anterior subregions of the BNST. The majority of Oxtr-expressing neurons were GABAergic. In the anterior regions of BNST targeted in our carbetocin experiments, Cyp26b1-expressing neurons had high average Oxtr expression. In the NAc, most Oxtr+ cells were D1 dopamine receptor-expressing neurons and interneurons. These differences in Oxtr cell type distribution may help explain how activation of OTR in BNST versus NAc can have different effects on social approach and social vigilance.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | - Lisette Y Torres
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Roberto A Rios
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Bruno Gegenhuber
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Alexis M Black
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Christine K Xu
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Vanessa A Minie
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Amy M Tran
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Brian C Trainor
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
37
|
Pagliusi M, Franco D, Cole S, Morais-Silva G, Chandra R, Fox ME, Iñiguez SD, Sartori CR, Lobo MK. The BDNF-TrkB Pathway Acts Through Nucleus Accumbens D2 Expressing Neurons to Mediate Stress Susceptible Outcomes. Front Psychiatry 2022; 13:854494. [PMID: 35722560 PMCID: PMC9200970 DOI: 10.3389/fpsyt.2022.854494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a critical role in stress response including neuropsychiatric disorders that are precipitated by stress, such as major depressive disorder (MDD). BDNF acts through its full-length BDNF receptor tyrosine kinase B (TrkB) to trigger a pro-plasticity effect. In contrast, the truncated isoform of the BDNF receptor (TrkB.t1) triggers an anti-plasticity effect. In stress outcomes, BDNF acting in the hippocampus has a stress resilience effect, and, inversely, in the nucleus accumbens (NAc), BDNF acts as a stress susceptible molecule. It is unknown if BDNF-TrkB acts on a specific NAc projection neuron, i.e., medium spiny neuron (MSN or spiny projection neuron), a subtype in stress outcomes. To determine this, we performed chronic social or vicarious witness defeat stress (CSDS or CWDS) in mice expressing TrkB.t1 in dopamine receptor 1 or 2 containing MSNs (D1- or D2-MSNs). Our results showed that TrkB.t1 overexpression in NAc D2-MSNs prevented the CSDS-induced social avoidance or other stress susceptible behaviors in male and female mice. We further showed that this overexpression in D2-MSNs blocked stress susceptible behavior induced by intra-NAc BDNF infusion. In contrast, our results demonstrate that overexpression of TrkB.t1 on NAc D1-MSNs facilitates the SDS susceptible behaviors. Our study provides enhanced details into the NAc cell subtype role of BDNF-TrkB signaling in stress outcomes.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil
| | - Daniela Franco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shannon Cole
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gessynger Morais-Silva
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Megan E. Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sergio D. Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, TX, United States
| | - Cesar R. Sartori
- Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Social anxiety is associated with greater peripheral oxytocin reactivity to psychosocial stress. Psychoneuroendocrinology 2022; 140:105712. [PMID: 35306471 DOI: 10.1016/j.psyneuen.2022.105712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
To date, it has been difficult to establish reliable biomarkers associated with specific forms of psychopathology. Social anxiety, for example, is associated with inconsistent biological responses to psychosocial stress on markers including cortisol and salivary alpha-amylase. Thus, it is critical that studies identify more reliable biomarkers that index patterns associated with social anxiety. Two potential candidates are the neuropeptides oxytocin and vasopressin, which have been implicated in stress responsivity across species. Studies have demonstrated a reliable increase in oxytocin, and a surrogate marker for vasopressin, following engagement in the most widely used lab-based psychosocial stress paradigm: the Trier Social Stress Test (TSST). However, no study has examined whether social anxiety moderates peripheral oxytocin or vasopressin reactivity to psychosocial stress. In 101 young adult participants, dimensionally assessed social anxiety was associated with greater plasma oxytocin, but not vasopressin, reactivity to the TSST. Results were maintained following the inclusion of depression as a covariate. Findings suggest that studying changes in peripheral oxytocin concentrations may be a method of differentiating individuals with higher levels of social anxiety.
Collapse
|
39
|
Duque-Wilckens N, Trainor BC. Oxytocin release in stressful times. Psychoneuroendocrinology 2022; 140:105709. [PMID: 35272915 PMCID: PMC8885083 DOI: 10.1016/j.psyneuen.2022.105709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Natalia Duque-Wilckens
- Departments of Physiology and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Brian C. Trainor
- Department of Psychology, University of California, Davis, CA 95616 USA,Corresponding author
| |
Collapse
|
40
|
Trainor BC, Falkner AL. Quantifying Sex Differences in Behavior in the Era of "Big" Data. Cold Spring Harb Perspect Biol 2022; 14:a039164. [PMID: 34607831 PMCID: PMC9159265 DOI: 10.1101/cshperspect.a039164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex differences are commonly observed in behaviors that are closely linked to adaptive function, but sex differences can also be observed in behavioral "building blocks" such as locomotor activity and reward processing. Modern neuroscientific inquiry, in pursuit of generalizable principles of functioning across sexes, has often ignored these more subtle sex differences in behavioral building blocks that may result from differences in these behavioral building blocks. A frequent assumption is that there is a default (often male) way to perform a behavior. This approach misses fundamental drivers of individual variability within and between sexes. Incomplete behavioral descriptions of both sexes can lead to an overreliance on reduced "single-variable" readouts of complex behaviors, the design of which may be based on male-biased samples. Here, we advocate that the incorporation of new machine-learning tools for collecting and analyzing multimodal "big behavior" data allows for a more holistic and richer approach to the quantification of behavior in both sexes. These new tools make behavioral description more robust and replicable across laboratories and species, and may open up new lines of neuroscientific inquiry by facilitating the discovery of novel behavioral states. Having more accurate measures of behavioral diversity in males and females could serve as a hypothesis generator for where and when we should look in the brain for meaningful neural differences.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
41
|
Guoynes CD, Marler CA. Intranasal oxytocin reduces pre-courtship aggression and increases paternal response in California mice (Peromyscus californicus). Physiol Behav 2022; 249:113773. [PMID: 35248556 DOI: 10.1016/j.physbeh.2022.113773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/22/2023]
Abstract
Oxytocin (OXT) is a neuropeptide that can facilitate prosocial behavior and decrease social stress and anxiety but can also increase aggression in some contexts. We investigated whether acute pulses of intranasal (IN) OXT influenced social behavior during social challenges that are likely to occur throughout the lifespan of a wild mouse. To test this, we examined the acute effects of IN OXT in the male California mouse (Peromyscus californicus), a monogamous, biparental, and territorial rodent, using a within-subjects longitudinal design. Social challenges included a pre-courtship male-female encounter conducted during the (1) initial aggressive and not the following affiliative phase of courtship, (2) same-sex resident intruder test, and (3) parental care test. Consecutive tests and doses were separated by at least two weeks. Males were treated with intranasal infusions of 0.8 IU/kg OXT or saline controls 5-min before each behavioral test, receiving a total of three treatments of either IN OXT or saline control. We predicted that IN OXT would 1) decrease aggression and increase affiliation during the pre-courtship aggression phase, 2) increase aggression during resident intruder paradigms, and 3) increase paternal care and vocalizations during a paternal care test. As predicted, during pre-courtship aggression with a novel female, IN OXT males displayed less contact aggression than control males, although with no change in affiliative behavior. However, post-pairing, during the resident intruder test, IN OXT males did not differ from control males in contact aggression. During the paternal care test, IN OXT males were quicker to approach their pups than control males but did not differ in vocalizations produced, unlike our previous research demonstrating an effect on vocalizations in females. In summary, during pre-courtship aggression and the paternal care test, IN OXT reduced antisocial behavior; however, during the resident intruder test, IN OXT did not alter antisocial behavior. These data suggest that IN OXT promotes prosocial behavior specifically in social contexts that can lead to affiliation.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison - Madison, 1202 W Johnson Street, Madison, WI, 53703 USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison - Madison, 1202 W Johnson Street, Madison, WI, 53703 USA
| |
Collapse
|
42
|
Flanigan ME, Kash TL. Coordination of social behaviors by the bed nucleus of the stria terminalis. Eur J Neurosci 2022; 55:2404-2420. [PMID: 33006806 PMCID: PMC9906816 DOI: 10.1111/ejn.14991] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic, neuropeptide-rich node of the extended amygdala that has been implicated in responses to stress, drugs of abuse, and natural rewards. Its function is dysregulated in neuropsychiatric disorders that are characterized by stress- or drug-induced alterations in mood, arousal, motivation, and social behavior. However, compared to the BNST's role in mood, arousal, and motivation, its role in social behavior has remained relatively understudied. Moreover, the precise cell types and circuits underlying the BNST's role in social behavior have only recently begun to be explored using modern neuroscience techniques. Here, we systematically review the existing literature investigating the neurobiological substrates within the BNST that contribute to the coordination of various sex-dependent and sex-independent social behavioral repertoires, focusing largely on pharmacological and circuit-based behavioral studies in rodents. We suggest that the BNST coordinates social behavior by promoting appropriate assessment of social contexts to select relevant behavioral outputs and that disruption of socially relevant BNST systems by stress and drugs of abuse may be an important factor in the development of social dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC,Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC,Correspondence: Thomas L. Kash, John R. Andrews Distinguished Professor, Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA, , (919) 843-7867
| |
Collapse
|
43
|
Wang F, Yin XS, Lu J, Cen C, Wang Y. Phosphorylation-dependent positive feedback on the oxytocin receptor through the kinase PKD1 contributes to long-term social memory. Sci Signal 2022; 15:eabd0033. [PMID: 35104164 DOI: 10.1126/scisignal.abd0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Social memory enables one to recognize and distinguish specific individuals. It is fundamental to social behaviors that can be mediated by the oxytocin receptor (OXTR), such as forming relationships. We investigated the molecular regulation and function of OXTR in animal behavior involving social memory. We found that Ser261 in OXTR was phosphorylated by protein kinase D1 (PKD1). Neuronal Ca2+ signaling and behavior analyses revealed that rats expressing a mutated form of OXTR that cannot be phosphorylated at this residue (OXTR S261A) in the medial amygdala (MeA) exhibited impaired long-term social memory (LTSM). Blocking the phosphorylation of wild-type OXTR in the MeA using an interfering peptide in rats or through conditional knockout of Pkd1 in mice reduced social memory retention, whereas expression of a phosphomimetic mutant of OXTR rescued it. In HEK293A cells, the PKD1-mediated phosphorylation of OXTR promoted its binding to Gq protein and, in turn, OXTR-mediated phosphorylation of PKD1, indicating a positive feedback loop. In addition, OXTR with a single-nucleotide polymorphism found in humans (rs200362197), which has a mutation in the conserved recognition region in the PKD1 phosphorylation site, showed impaired activation and signaling in vitro and in HEK293A cells similar to that of the S216A mutant. Our findings describe a phosphoregulatory loop for OXTR and its critical role in social behavior that might be further explored in associated disorders.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiang-Sha Yin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Jie Lu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Cheng Cen
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Relationship between infantile mother preference and neural regions activated by maternal contact in C57BL/6 mice. Neurosci Res 2022; 178:69-77. [DOI: 10.1016/j.neures.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
|
45
|
Huang S, Zeng J, Sun R, Yu H, Zhang H, Su X, Yao P. Prenatal Progestin Exposure-Mediated Oxytocin Suppression Contributes to Social Deficits in Mouse Offspring. Front Endocrinol (Lausanne) 2022; 13:840398. [PMID: 35370982 PMCID: PMC8964973 DOI: 10.3389/fendo.2022.840398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have shown that maternal hormone exposure is associated with autism spectrum disorders (ASD). The hormone oxytocin (OXT) is a central nervous neuropeptide that plays an important role in social behaviors as well as ASD etiology, although the detailed mechanism remains largely unknown. In this study, we aim to investigate the potential role and contribution of OXT to prenatal progestin exposure-mediated mouse offspring. Our in vitro study in the hypothalamic neurons that isolated from paraventricular nuclei area of mice showed that transient progestin exposure causes persistent epigenetic changes on the OXT promoter, resulting in dissociation of estrogen receptor β (ERβ) and retinoic acid-related orphan receptor α (RORA) from the OXT promoter with subsequent persistent OXT suppression. Our in vivo study showed that prenatal exposure of medroxyprogesterone acetate (MPA) triggers social deficits in mouse offspring; prenatal OXT deficiency in OXT knockdown mouse partly mimics, while postnatal ERβ expression or postnatal OXT peptide injection partly ameliorates, prenatal MPA exposure-mediated social deficits, which include impaired social interaction and social abilities. On the other hand, OXT had no effect on prenatal MPA exposure-mediated anxiety-like behaviors. We conclude that prenatal MPA exposure-mediated oxytocin suppression contributes to social deficits in mouse offspring.
Collapse
Affiliation(s)
- Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Jiaying Zeng
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Ruoyu Sun
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Hong Yu
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xi Su
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| | - Paul Yao
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| |
Collapse
|
46
|
Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022; 135:105601. [PMID: 34837776 PMCID: PMC8605825 DOI: 10.1016/j.psyneuen.2021.105601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated social restrictions are accompanied by loss of an essential stress buffer and important parameter for general mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic-induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on possible short- and long-term consequences of social restrictions on mental health and the immune system, while discussion oxytocin as a possible treatment option.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
47
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
48
|
Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci 2021; 22:674-684. [PMID: 34545241 DOI: 10.1038/s41583-021-00513-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.
Collapse
|
49
|
Grinevich V, Ludwig M. The multiple faces of the oxytocin and vasopressin systems in the brain. J Neuroendocrinol 2021; 33:e13004. [PMID: 34218479 DOI: 10.1111/jne.13004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
Classically, hypothalamic neuroendocrine cells that synthesise oxytocin and vasopressin were categorised in two major cell types: the magnocellular and parvocellular neurones. It was assumed that magnocellular neurones project exclusively to the pituitary gland where they release oxytocin and vasopressin into the systemic circulation. The parvocellular neurones, on the other hand, project within the brain to regulate discrete brain circuitries and behaviours. Within the last few years, it has become evident that the classical view of these projections is outdated. It is now clear that oxytocin and vasopressin in the brain are released extrasynaptically from dendrites and from varicosities in distant axons. The peptides act principally to modulate information transfer through conventional synapses (such as glutamate synapses) by actions at respective receptors that may be preferentially localised to synaptic regions (on either side of the synapse) to alter the 'gain' of conventional synapses.
Collapse
Affiliation(s)
- Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Centre for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Neuroendocrinology, Department of Immunology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
50
|
Abstract
Coordinated responses to challenge are essential to survival for bonded monogamous animals and may depend on behavioral compatibility. Oxytocin (OT) context-dependently regulates social affiliation and vocal communication, but its role in pair members' decision to jointly respond to challenge is unclear. To test for OT effects, California mouse females received an intranasal dose of OT (IN-OT) or saline after bonding with males either matched or mismatched in their approach response to an aggressive vocal challenge. Pair mates were re-tested jointly for approach response, time spent together, and vocalizations. Females and males converged in their approach after pairing, but mismatched pairs with females given a single dose of IN-OT displayed a greater convergence that resulted from behavioral changes by both pair members. Unpaired females given IN-OT did not change their approach, indicating a social partner was necessary for effects to emerge. Moreover, IN-OT increased time spent approaching together, suggesting behavioral coordination beyond a further increase in bonding. This OT-induced increase in joint approach was associated with a decrease in the proportion of sustained vocalizations, a type of vocalization that can be associated with intra-pair conflict. Our results expand OT's effects on behavioral coordination and underscore the importance of emergent social context.
Collapse
|