1
|
Yu G, Ge X, Li W, Ji L, Yang S. Interspecific cross-talk: The catalyst driving microbial biosynthesis of secondary metabolites. Biotechnol Adv 2024; 76:108420. [PMID: 39128577 DOI: 10.1016/j.biotechadv.2024.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Microorganisms co-exist and co-evolve in nature, forming intricate ecological communities. The interspecies cross-talk within these communities creates and sustains their great biosynthetic potential, making them an important source of natural medicines and high-value-added chemicals. However, conventional investigations into microbial metabolites are typically carried out in pure cultures, resulting in the absence of specific activating factors and consequently causing a substantial number of biosynthetic gene clusters to remain silent. This, in turn, hampers the in-depth exploration of microbial biosynthetic potential and frequently presents researchers with the challenge of rediscovering compounds. In response to this challenge, the coculture strategy has emerged to explore microbial biosynthetic capabilities and has shed light on the study of cross-talk mechanisms. These elucidated mechanisms will contribute to a better understanding of complex biosynthetic regulations and offer valuable insights to guide the mining of secondary metabolites. This review summarizes the research advances in microbial cross-talk mechanisms, with a particular focus on the mechanisms that activate the biosynthesis of secondary metabolites. Additionally, the instructive value of these mechanisms for developing strategies to activate biosynthetic pathways is discussed. Moreover, challenges and recommendations for conducting in-depth studies on the cross-talk mechanisms are presented.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| | - Xiaoxuan Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Wanting Li
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Linwei Ji
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Rissi DV, Ijaz M, Baschien C. Comparative Genomics of Fungi in Nectriaceae Reveals Their Environmental Adaptation and Conservation Strategies. J Fungi (Basel) 2024; 10:632. [PMID: 39330392 PMCID: PMC11433043 DOI: 10.3390/jof10090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This study presents the first genome assembly of the freshwater saprobe fungus Neonectria lugdunensis and a comprehensive phylogenomics analysis of the Nectriaceae family, examining genomic traits according to fungal lifestyles. The Nectriaceae family, one of the largest in Hypocreales, includes fungi with significant ecological roles and economic importance as plant pathogens, endophytes, and saprobes. The phylogenomics analysis identified 2684 single-copy orthologs, providing a robust evolutionary framework for the Nectriaceae family. We analyzed the genomic characteristics of 17 Nectriaceae genomes, focusing on their carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), and adaptations to environmental temperatures. Our results highlight the adaptation mechanisms of N. lugdunensis, emphasizing its capabilities for plant litter degradation and enzyme activity in varying temperatures. The comparative genomics of different Nectriaceae lifestyles revealed significant differences in genome size, gene content, repetitive elements, and secondary metabolite production. Endophytes exhibited larger genomes, more effector proteins, and BGCs, while plant pathogens had higher thermo-adapted protein counts, suggesting greater resilience to global warming. In contrast, the freshwater saprobe shows less adaptation to warmer temperatures and is important for conservation goals. This study underscores the importance of understanding fungal genomic adaptations to predict ecosystem impacts and conservation targets in the face of climate change.
Collapse
Affiliation(s)
- Daniel Vasconcelos Rissi
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Maham Ijaz
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Christiane Baschien
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| |
Collapse
|
3
|
Dolan SK, Duong AT, Whiteley M. Convergent evolution in toxin detection and resistance provides evidence for conserved bacterial-fungal interactions. Proc Natl Acad Sci U S A 2024; 121:e2304382121. [PMID: 39088389 PMCID: PMC11317636 DOI: 10.1073/pnas.2304382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
Microbes rarely exist in isolation and instead form complex polymicrobial communities. As a result, microbes have developed intricate offensive and defensive strategies that enhance their fitness in these complex communities. Thus, identifying and understanding the molecular mechanisms controlling polymicrobial interactions is critical for understanding the function of microbial communities. In this study, we show that the gram-negative opportunistic human pathogen Pseudomonas aeruginosa, which frequently causes infection alongside a plethora of other microbes including fungi, encodes a genetic network which can detect and defend against gliotoxin, a potent, disulfide-containing antimicrobial produced by the ubiquitous filamentous fungus Aspergillus fumigatus. We show that gliotoxin exposure disrupts P. aeruginosa zinc homeostasis, leading to transcriptional activation of a gene encoding a previously uncharacterized dithiol oxidase (herein named as DnoP), which detoxifies gliotoxin and structurally related toxins. Despite sharing little homology to the A. fumigatus gliotoxin resistance protein (GliT), the enzymatic mechanism of DnoP from P. aeruginosa appears to be identical that used by A. fumigatus. Thus, DnoP and its transcriptional induction by low zinc represent a rare example of both convergent evolution of toxin defense and environmental cue sensing across kingdoms. Collectively, these data provide compelling evidence that P. aeruginosa has evolved to survive exposure to an A. fumigatus disulfide-containing toxin in the natural environment.
Collapse
Affiliation(s)
- Stephen K. Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC29634
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| | - Ashley T. Duong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| |
Collapse
|
4
|
Geißler A, Junca H, Kany AM, Daumann LJ, Hirsch AKH, Pieper DH, Sieber SA. Isocyanides inhibit bacterial pathogens by covalent targeting of essential metabolic enzymes. Chem Sci 2024; 15:11946-11955. [PMID: 39092115 PMCID: PMC11290450 DOI: 10.1039/d4sc01940g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/23/2024] [Indexed: 08/04/2024] Open
Abstract
Isonitrile natural products, also known as isocyanides, demonstrate potent antimicrobial activities, yet our understanding of their molecular targets remains limited. Here, we focus on the so far neglected group of monoisonitriles to gain further insights into their antimicrobial mode of action (MoA). Screening a focused monoisonitrile library revealed a potent S. aureus growth inhibitor with a different MoA compared to previously described isonitrile antibiotics. Chemical proteomics via competitive cysteine reactivity profiling, uncovered covalent modifications of two essential metabolic enzymes involved in the fatty acid biosynthetic process (FabF) and the hexosamine pathway (GlmS) at their active site cysteines. In-depth studies with the recombinant enzymes demonstrated concentration-dependent labeling, covalent binding to the catalytic site and corresponding functional inhibition by the isocyanide. Thermal proteome profiling and full proteome studies of compound-treated S. aureus further highlighted the destabilization and dysregulation of proteins related to the targeted pathways. Cytotoxicity and the inhibition of cytochrome P450 enzymes require optimization of the hit molecule prior to therapeutic application. The here described novel, covalent isocyanide MoA highlights the versatility of the functional group, making it a useful tool and out-of-the-box starting point for the development of innovative antibiotics.
Collapse
Affiliation(s)
- Alexandra Geißler
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V. 38124 Braunschweig Germany
| | - Lena J Daumann
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
- Saarland University, Department of Pharmacy 66123 Saarbrücken Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V. 38124 Braunschweig Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus E8.1 66123 Saarbrücken Germany
| |
Collapse
|
5
|
Elnagar RM. Cross interaction between bacterial and fungal microbiota and their relevance to human health and disease: mechanistic pathways and prospective therapy. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:309-320. [PMID: 39364131 PMCID: PMC11444862 DOI: 10.12938/bmfh.2024-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/27/2024] [Indexed: 10/05/2024]
Abstract
Diverse bacterial and fungal microbiota communities inhabit the human body, and their presence is essential for maintaining host homeostasis. The oral cavity, lung, gut, and vagina are just a few of the bodily cavities where these microorganisms communicate with one another, either directly or indirectly. The effects of this interaction can be either useful or detrimental to the host. When the healthy microbial diversity is disturbed, for instance, as a result of prolonged treatment with broad spectrum antibiotics, this allows the growth of specific microbes at the expense of others and alters their pathogenicity, causing a switch of commensal germs into pathogenic germs, which could promote tissue invasion and damage, as occurs in immunocompromised patients. Consequently, antimicrobials that specifically target pathogens may help in minimizing secondary issues that result from the disruption of useful bacterial/fungal interactions (BFIs). The interface between Candida albicans and Aspergillus fumigatus with bacteria at various body sites is emphasized in the majority of the medically important BFIs that have been reported thus far. This interface either supports or inhibits growth, or it enhances or blocks the generation of virulence factors. The aim of this review is to draw attention to the link between the bacterial and fungal microbiota and how they contribute to both normal homeostasis and disease development. Additionally, recent research that has studied microbiota as novel antimicrobials is summarized.
Collapse
Affiliation(s)
- Rasha Mokhtar Elnagar
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Seo HW, Wassano NS, Amir Rawa MS, Nickles GR, Damasio A, Keller NP. A Timeline of Biosynthetic Gene Cluster Discovery in Aspergillus fumigatus: From Characterization to Future Perspectives. J Fungi (Basel) 2024; 10:266. [PMID: 38667937 PMCID: PMC11051388 DOI: 10.3390/jof10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of A. fumigatus BGC discovery and find that initial advances centered around the commonly expressed SMs where chemical structure informed rationale identification of the producing BGC (e.g., gliotoxin, fumigaclavine, fumitremorgin, pseurotin A, helvolic acid, fumiquinazoline). Further advances followed the transcriptional profiling of a ΔlaeA mutant, which aided in the identification of endocrocin, fumagillin, hexadehydroastechrome, trypacidin, and fumisoquin BGCs. These SMs and their precursors are the commonly produced metabolites in most A. fumigatus studies. Characterization of other BGC/SM pairs required additional efforts, such as induction treatments, including co-culture with bacteria (fumicycline/neosartoricin, fumigermin) or growth under copper starvation (fumivaline, fumicicolin). Finally, four BGC/SM pairs were discovered via overexpression technologies, including the use of heterologous hosts (fumicycline/neosartoricin, fumihopaside, sphingofungin, and sartorypyrone). Initial analysis of the two most studied A. fumigatus isolates, Af293 and A1160, suggested that both harbored ca. 34-36 BGCs. However, an examination of 264 available genomes of A. fumigatus shows up to 20 additional BGCs, with some strains showing considerable variations in BGC number and composition. These new BGCs present a new frontier in the future of secondary metabolism characterization in this important species.
Collapse
Affiliation(s)
- Hye-Won Seo
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Natalia S. Wassano
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Mira Syahfriena Amir Rawa
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Grant R. Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
7
|
Matsuda K, Maruyama H, Imachi K, Ikeda H, Wakimoto T. Actinobacterial chalkophores: the biosynthesis of hazimycins. J Antibiot (Tokyo) 2024; 77:228-237. [PMID: 38378905 DOI: 10.1038/s41429-024-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Copper is a transition metal element with significant effects on the morphological development and secondary metabolism of actinobacteria. In some microorganisms, copper-binding natural products are employed to modulate copper homeostasis, although their significance in actinobacteria remains largely unknown. Here, we identified the biosynthetic genes of the diisocyanide natural product hazimycin in Kitasatospora purpeofusca HV058, through gene knock-out and heterologous expression. Biochemical analyses revealed that hazimycin A specifically binds to copper, which diminishes its antimicrobial activity. The presence of a set of putative importer/exporter genes surrounding the biosynthetic genes suggested that hazimycin is a chalkophore that modulates the intracellular copper level. A bioinformatic survey of homologous gene cassettes, as well as the identification of two previously unknown hazimycin-producing Streptomyces strains, indicated that the isocyanide-based mechanism of copper homeostasis is prevalent in actinobacteria.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Hiroto Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kumiko Imachi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Haruo Ikeda
- Technology Research Association for Next generation natural products chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
8
|
Smith N, Dasgupta M, Wych DC, Dolamore C, Sierra RG, Lisova S, Marchany-Rivera D, Cohen AE, Boutet S, Hunter MS, Kupitz C, Poitevin F, Moss FR, Mittan-Moreau DW, Brewster AS, Sauter NK, Young ID, Wolff AM, Tiwari VK, Kumar N, Berkowitz DB, Hadt RG, Thompson MC, Follmer AH, Wall ME, Wilson MA. Changes in an enzyme ensemble during catalysis observed by high-resolution XFEL crystallography. SCIENCE ADVANCES 2024; 10:eadk7201. [PMID: 38536910 PMCID: PMC10971408 DOI: 10.1126/sciadv.adk7201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/21/2024] [Indexed: 04/01/2024]
Abstract
Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Medhanjali Dasgupta
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cole Dolamore
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Darya Marchany-Rivera
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - David W. Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander M. Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95340, USA
| | - Virendra K. Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nivesh Kumar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95340, USA
| | - Alec H. Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405, USA
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
9
|
Alexander LT, Durairaj J, Kryshtafovych A, Abriata LA, Bayo Y, Bhabha G, Breyton C, Caulton SG, Chen J, Degroux S, Ekiert DC, Erlandsen BS, Freddolino PL, Gilzer D, Greening C, Grimes JM, Grinter R, Gurusaran M, Hartmann MD, Hitchman CJ, Keown JR, Kropp A, Kursula P, Lovering AL, Lemaitre B, Lia A, Liu S, Logotheti M, Lu S, Markússon S, Miller MD, Minasov G, Niemann HH, Opazo F, Phillips GN, Davies OR, Rommelaere S, Rosas‐Lemus M, Roversi P, Satchell K, Smith N, Wilson MA, Wu K, Xia X, Xiao H, Zhang W, Zhou ZH, Fidelis K, Topf M, Moult J, Schwede T. Protein target highlights in CASP15: Analysis of models by structure providers. Proteins 2023; 91:1571-1599. [PMID: 37493353 PMCID: PMC10792529 DOI: 10.1002/prot.26545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.
Collapse
Affiliation(s)
- Leila T. Alexander
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | - Janani Durairaj
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | | | - Luciano A. Abriata
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yusupha Bayo
- Department of BiosciencesUniversity of MilanoMilanItaly
- IBBA‐CNR Unit of MilanoInstitute of Agricultural Biology and BiotechnologyMilanItaly
| | - Gira Bhabha
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
| | | | | | - James Chen
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
| | | | - Damian C. Ekiert
- Department of Cell BiologyNew York University School of MedicineNew YorkNew YorkUSA
- Department of MicrobiologyNew York University School of MedicineNew YorkNew YorkUSA
| | - Benedikte S. Erlandsen
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Peter L. Freddolino
- Department of Biological Chemistry, Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Dominic Gilzer
- Department of ChemistryBielefeld UniversityBielefeldGermany
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Securing Antarctica's Environmental FutureMonash UniversityClaytonVictoriaAustralia
- Centre to Impact AMRMonash UniversityClaytonVictoriaAustralia
- ARC Research Hub for Carbon Utilisation and RecyclingMonash UniversityClaytonVictoriaAustralia
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Centre for Electron Microscopy of Membrane ProteinsMonash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Manickam Gurusaran
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Marcus D. Hartmann
- Max Planck Institute for BiologyTübingenGermany
- Interfaculty Institute of Biochemistry, University of TübingenTübingenGermany
| | - Charlie J. Hitchman
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
| | - Jeremy R. Keown
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Ashleigh Kropp
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Petri Kursula
- Department of BiomedicineUniversity of BergenBergenNorway
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | | | - Bruno Lemaitre
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Andrea Lia
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
- ISPA‐CNR Unit of LecceInstitute of Sciences of Food ProductionLecceItaly
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Maria Logotheti
- Max Planck Institute for BiologyTübingenGermany
- Interfaculty Institute of Biochemistry, University of TübingenTübingenGermany
- Present address:
Institute of BiochemistryUniversity of GreifswaldGreifswaldGermany
| | - Shuze Lu
- Lanzhou University School of Life SciencesLanzhouChina
| | | | | | - George Minasov
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Felipe Opazo
- NanoTag Biotechnologies GmbHGöttingenGermany
- Institute of Neuro‐ and Sensory PhysiologyUniversity of Göttingen Medical CenterGöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration (BIN)University of Göttingen Medical CenterGöttingenGermany
| | - George N. Phillips
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Owen R. Davies
- Wellcome Centre for Cell BiologyInstitute of Cell Biology, University of EdinburghEdinburghUK
| | - Samuel Rommelaere
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Monica Rosas‐Lemus
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
- Present address:
Department of Molecular Genetics and MicrobiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Pietro Roversi
- IBBA‐CNR Unit of MilanoInstitute of Agricultural Biology and BiotechnologyMilanItaly
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
| | - Karla Satchell
- Department of Microbiology‐ImmunologyNorthwestern Feinberg School of MedicineChicagoIllinoisUSA
| | - Nathan Smith
- Department of Biochemistry and the Redox Biology CenterUniversity of NebraskaLincolnNebraskaUSA
| | - Mark A. Wilson
- Department of Biochemistry and the Redox Biology CenterUniversity of NebraskaLincolnNebraskaUSA
| | - Kuan‐Lin Wu
- Department of ChemistryRice UniversityHoustonTexasUSA
| | - Xian Xia
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Han Xiao
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
- Department of BioengineeringRice UniversityHoustonTexasUSA
| | - Wenhua Zhang
- Lanzhou University School of Life SciencesLanzhouChina
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Maya Topf
- University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- Centre for Structural Systems BiologyLeibniz‐Institut für Virologie (LIV)HamburgGermany
| | - John Moult
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Torsten Schwede
- BiozentrumUniversity of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
10
|
Firouzjaei AA, Aghaee-Bakhtiari SH, Tafti A, Sharifi K, Abadi MHJN, Rezaei S, Mohammadi-Yeganeh S. Impact of curcumin on ferroptosis-related genes in colorectal cancer: Insights from in-silico and in-vitro studies. Cell Biochem Funct 2023; 41:1488-1502. [PMID: 38014635 DOI: 10.1002/cbf.3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Colorectal cancer (CRC) is responsible for a significant number of cancer-related fatalities worldwide. Researchers are investigating the therapeutic potential of ferroptosis, a type of iron-dependent controlled cell death, in the context of CRC. Curcumin, a natural compound found in turmeric, exhibits anticancer properties. This study explores the effects of curcumin on genes related to ferroptosis (FRGs) in CRC. To gather CRC data, we used the Gene Expression Profiling Interactive Analysis (GEPIA) and Gene Expression Omnibus (GEO) databases, while FRGs were obtained from the FerrDb database and PubMed. We identified 739 CRC differentially expressed genes (DEGs) in CRC and discovered 39 genes that were common genes between FRGs and CRC DEGs. The DEGs related to ferroptosis were enriched with various biological processes and molecular functions, including the regulation of signal transduction and glucose metabolism. Using the Drug Gene Interaction Database (DGIdb), we predicted drugs targeting CRC-DEGs and identified 17 potential drug targets. Additionally, we identified eight essential proteins related to ferroptosis in CRC, including MYC, IL1B, and SLC1A5. Survival analysis revealed that alterations in gene expression of CDC25A, DDR2, FABP4, IL1B, SNCA, and TFAM were associated with prognosis in CRC patients. In SW480 human CRC cells, treatment with curcumin decreased the expression of MYC, IL1B, and EZH2 mRNA, while simultaneously increasing the expression of SLCA5 and CAV1. The findings of this study suggest that curcumin could regulate FRGs in CRC and have the potential to be utilized as a therapeutic agent for treating CRC.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Tafti
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samaneh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Smith N, Dasgupta M, Wych DC, Dolamore C, Sierra RG, Lisova S, Marchany-Rivera D, Cohen AE, Boutet S, Hunter MS, Kupitz C, Poitevin F, Moss FR, Brewster AS, Sauter NK, Young ID, Wolff AM, Tiwari VK, Kumar N, Berkowitz DB, Hadt RG, Thompson MC, Follmer AH, Wall ME, Wilson MA. Changes in an Enzyme Ensemble During Catalysis Observed by High Resolution XFEL Crystallography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553460. [PMID: 37645800 PMCID: PMC10462001 DOI: 10.1101/2023.08.15.553460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Medhanjali Dasgupta
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - David C. Wych
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Cole Dolamore
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Darya Marchany-Rivera
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Alexander M. Wolff
- Department of Chemistry and Biochemistry, University of California, Merced, CA, 93540
| | - Virendra K. Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Nivesh Kumar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA USA
| | - Michael C. Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, CA, 93540
| | - Alec H. Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
12
|
Nickles GR, Oestereicher B, Keller NP, Drott M. Mining for a new class of fungal natural products: the evolution, diversity, and distribution of isocyanide synthase biosynthetic gene clusters. Nucleic Acids Res 2023; 51:7220-7235. [PMID: 37427794 PMCID: PMC10415135 DOI: 10.1093/nar/gkad573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
The products of non-canonical isocyanide synthase (ICS) biosynthetic gene clusters (BGCs) mediate pathogenesis, microbial competition, and metal-homeostasis through metal-associated chemistry. We sought to enable research into this class of compounds by characterizing the biosynthetic potential and evolutionary history of these BGCs across the Fungal Kingdom. We amalgamated a pipeline of tools to predict BGCs based on shared promoter motifs and located 3800 ICS BGCs in 3300 genomes, making ICS BGCs the fifth largest class of specialized metabolites compared to canonical classes found by antiSMASH. ICS BGCs are not evenly distributed across fungi, with evidence of gene-family expansions in several Ascomycete families. We show that the ICS dit1/2 gene cluster family (GCF), which was prior only studied in yeast, is present in ∼30% of all Ascomycetes. The dit variety ICS exhibits greater similarity to bacterial ICS than other fungal ICS, suggesting a potential convergence of the ICS backbone domain. The evolutionary origins of the dit GCF in Ascomycota are ancient and these genes are diversifying in some lineages. Our results create a roadmap for future research into ICS BGCs. We developed a website (https://isocyanides.fungi.wisc.edu/) that facilitates the exploration and downloading of all identified fungal ICS BGCs and GCFs.
Collapse
Affiliation(s)
- Grant R Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Milton T Drott
- USDA-ARS Cereal Disease Lab (CDL), St. Paul, MN 55108, USA
| |
Collapse
|
13
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
14
|
Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. MASS SPECTROMETRY REVIEWS 2023; 42:1221-1243. [PMID: 34854486 DOI: 10.1002/mas.21755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/07/2023]
Abstract
Infection metallomics is a mass spectrometry (MS) platform we established based on the central concept that microbial metallophores are specific, sensitive, noninvasive, and promising biomarkers of invasive infectious diseases. Here we review the in vitro, in vivo, and clinical applications of metallophores from historical and functional perspectives, and identify under-studied and emerging application areas with high diagnostic potential for the post-COVID era. MS with isotope data filtering is fundamental to infection metallomics; it has been used to study the interplay between "frenemies" in hosts and to monitor the dynamic response of the microbiome to antibiotic and antimycotic therapies. During infection in critically ill patients, the hostile environment of the host's body activates secondary bacterial, mycobacterial, and fungal metabolism, leading to the production of metallophores that increase the pathogen's chance of survival in the host. MS can reveal the structures, stability, and threshold concentrations of these metal-containing microbial biomarkers of infection in humans and model organisms, and can discriminate invasive disease from benign colonization based on well-defined thresholds distinguishing proliferation from the colonization steady state.
Collapse
Affiliation(s)
- Rutuja H Patil
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
15
|
Drott MT, Park SC, Wang YW, Harrow L, Keller NP, Pringle A. Pangenomics of the death cap mushroom Amanita phalloides, and of Agaricales, reveals dynamic evolution of toxin genes in an invasive range. THE ISME JOURNAL 2023:10.1038/s41396-023-01432-x. [PMID: 37221394 DOI: 10.1038/s41396-023-01432-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023]
Abstract
The poisonous European mushroom Amanita phalloides (the "death cap") is invading California. Whether the death caps' toxic secondary metabolites are evolving as it invades is unknown. We developed a bioinformatic pipeline to identify the MSDIN genes underpinning toxicity and probed 88 death cap genomes from an invasive Californian population and from the European range, discovering a previously unsuspected diversity of MSDINs made up of both core and accessory elements. Each death cap individual possesses a unique suite of MSDINs, and toxin genes are significantly differentiated between Californian and European samples. MSDIN genes are maintained by strong natural selection, and chemical profiling confirms MSDIN genes are expressed and result in distinct phenotypes; our chemical profiling also identified a new MSDIN peptide. Toxin genes are physically clustered within genomes. We contextualize our discoveries by probing for MSDINs in genomes from across the order Agaricales, revealing MSDIN diversity originated in independent gene family expansions among genera. We also report the discovery of an MSDIN in an Amanita outside the "lethal Amanitas" clade. Finally, the identification of an MSDIN gene and its associated processing gene (POPB) in Clavaria fumosa suggest the origin of MSDINs is older than previously suspected. The dynamic evolution of MSDINs underscores their potential to mediate ecological interactions, implicating MSDINs in the ongoing invasion. Our data change the understanding of the evolutionary history of poisonous mushrooms, emphasizing striking parallels to convergently evolved animal toxins. Our pipeline provides a roadmap for exploring secondary metabolites in other basidiomycetes and will enable drug prospecting.
Collapse
Affiliation(s)
- Milton T Drott
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA.
| | - Sung Chul Park
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Yen-Wen Wang
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Lynn Harrow
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| | - Anne Pringle
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
16
|
Zhao S, Chen S, Liu W, Wei S, Wu X, Cui D, Jiang L, Chen S, Wang J. Integrated machine learning and bioinformatic analyses used to construct a copper-induced cell death-related classifier for prognosis and immunotherapeutic response of hepatocellular carcinoma patients. Front Pharmacol 2023; 14:1188725. [PMID: 37266152 PMCID: PMC10229845 DOI: 10.3389/fphar.2023.1188725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Background: Copper as phytonutrient has powerful activity against health diseases. A newly discovered mechanism of cell death that affects energy metabolism by copper ("cuproptosis") can induce multiple cuproptosis-related genes. Hepatocellular carcinoma (HCC) is a poorly prognosed widespread cancer having danger of advanced metastasis. Therefore, earlier diagnosis followed by the specific targeted therapy are required for improved prognosis. The work herein constructed scoring system built on ten cuproptosis-related genes (CRGs) to predict progression of tumor and metastasis more accurately and test patient reaction toward immunotherapy. Methods: A comprehensive assessment of cuproptosis patterns in HCC samples from two databases and a real-world cohort was performed on ten CRGs, that were linked to immune cell infiltration signatures of TME (tumor microenvironment). Risk signatures were created for quantifying effect of cuproptosis on HCC, and the effects of related genes on cellular function of HCC were investigated, in addition to the effects of immunotherapy and targeted therapy drugs. Results: Two distinct cuproptosis-associated mutational patterns were identified, with distinct immune cell infiltration characteristics and survival likelihood. Studies have shown that assessment of cuproptosis-induced tumor mutational patterns can help predict tumor stage, phenotype, stromal activity, genetic diversity, and patient prognosis. High risk scores are characterized by lower survival and worse treatment with anti-PD-L1/CTAL4 immunotherapy and first-line targeted drugs. Cytological functional assays show that CDKN2A and GLS promote proliferation, migration and inhibit copper-dependent death of HCC cells. Conclusion: HCC patients with high-risk scores exhibit significant treatment disadvantage and survival rates. Cuproptosis plays a non-negligible role in the development of HCC. Quantifying cuproptosis-related designs of tumors will aid in phenotypic categorization, leading to efficient personalized and targeted therapeutics and precise prediction of prognosis and metastasis.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Transplantation, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian Chen
- Department of Oncology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xinrui Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Cui
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Jiang
- Department of Gastroenterology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Siyu Chen
- Department of Oncology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Transplantation, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
18
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
19
|
Nickles GR, Oestereicher B, Keller NP, Drott MT. Mining for a New Class of Fungal Natural Products: The Evolution, Diversity, and Distribution of Isocyanide Synthase Biosynthetic Gene Clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537281. [PMID: 37131656 PMCID: PMC10153163 DOI: 10.1101/2023.04.17.537281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The products of non-canonical isocyanide synthase (ICS) biosynthetic gene clusters (BGCs) have notable bioactivities that mediate pathogenesis, microbial competition, and metal-homeostasis through metal-associated chemistry. We sought to enable research into this class of compounds by characterizing the biosynthetic potential and evolutionary history of these BGCs across the Fungal Kingdom. We developed the first genome-mining pipeline to identify ICS BGCs, locating 3,800 ICS BGCs in 3,300 genomes. Genes in these clusters share promoter motifs and are maintained in contiguous groupings by natural selection. ICS BGCs are not evenly distributed across fungi, with evidence of gene-family expansions in several Ascomycete families. We show that the ICS dit1 / 2 gene cluster family (GCF), which was thought to only exist in yeast, is present in ∼30% of all Ascomycetes, including many filamentous fungi. The evolutionary history of the dit GCF is marked by deep divergences and phylogenetic incompatibilities that raise questions about convergent evolution and suggest selection or horizontal gene transfers have shaped the evolution of this cluster in some yeast and dimorphic fungi. Our results create a roadmap for future research into ICS BGCs. We developed a website ( www.isocyanides.fungi.wisc.edu ) that facilitates the exploration, filtering, and downloading of all identified fungal ICS BGCs and GCFs.
Collapse
Affiliation(s)
- Grant R. Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | | | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | | |
Collapse
|
20
|
Jiao X, Huang W, Wang A, Wu B, Kang Q, Luo X, Bai L, Deng Z. Crystallographic Deciphering of Spontaneous Self-Assembly of Achiral Calciphores to Chiral Complexes. Chemistry 2023; 29:e202203127. [PMID: 36408990 DOI: 10.1002/chem.202203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Thiapyricins (TPC-A/B, 1 and 2), which are new metallophore scaffolds exhibiting selective divalent cation binding property, were produced in response to metal-deprived conditions by Saccharothrix sp. TRM_47004 isolated from the Lop Nor Salt Lake. TPCs represent a thiazolyl-pyridine skeleton of a calcium-binding natural product, calciphore, owing to the selectivity to calcium ions among diverse metal ions. The thiapyricins exhibited notable co-crystalline characteristics of the apo- and holo-forms with racemic enantiomers comprising a pair of space isomers in a Δ/Λ-form. Therefore, we postulated a mechanism for the four-hierarchical self-assembly of achiral natural products into chiral complexes. Furthermore, their metal-chelating trait aided the adaptation of the host during metal starvation by increasing the production of TPCs. This study presents a structural paradigm of a new calciphore, provides insight into the mechanism of natural product assembly, and highlights the causality between the production of the metallophore and metallic habitats.
Collapse
Affiliation(s)
- Xingzhi Jiao
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wei Huang
- College of Life Science, Tarim University, 843300, Alar, Xinjiang, P. R. China
| | - Anqi Wang
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Banghao Wu
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Qianjin Kang
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiaoxia Luo
- College of Life Science, Tarim University, 843300, Alar, Xinjiang, P. R. China
| | - Linquan Bai
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,College of Life Science, Tarim University, 843300, Alar, Xinjiang, P. R. China
| | - Zixin Deng
- State Key Laboratory of, Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
21
|
Current and Future Pathways in Aspergillus Diagnosis. Antibiotics (Basel) 2023; 12:antibiotics12020385. [PMID: 36830296 PMCID: PMC9952630 DOI: 10.3390/antibiotics12020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores.
Collapse
|
22
|
Cao F, Ma LF, Hu LS, Xu CX, Chen X, Zhan ZJ, Zhao QW, Mao XM. Coordination of Polyketide Release and Multiple Detoxification Pathways for Tolerable Production of Fungal Mycotoxins. Angew Chem Int Ed Engl 2023; 62:e202214814. [PMID: 36461785 DOI: 10.1002/anie.202214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Efficient biosynthesis of microbial bioactive natural products (NPs) is beneficial for the survival of producers, while self-protection is necessary to avoid self-harm resulting from over-accumulation of NPs. The underlying mechanisms for the effective but tolerable production of bioactive NPs are not well understood. Herein, in the biosynthesis of two fungal polyketide mycotoxins aurovertin E (1) and asteltoxin, we show that the cyclases in the gene clusters promote the release of the polyketide backbone, and reveal that a signal peptide is crucial for their subcellular localization and full activity. Meanwhile, the fungus adopts enzymatic acetylation as the major detoxification pathway of 1. If intermediates are over-produced, the non-enzymatic shunt pathways work as salvage pathways to avoid excessive accumulation of the toxic metabolites for self-protection. These findings provided new insight into the interplay of efficient backbone release and multiple detoxification strategies for the production of fungal bioactive NPs.
Collapse
Affiliation(s)
- Fei Cao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Long-Shuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Chu-Xuan Xu
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qing-Wei Zhao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Ming Mao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Invasive fungal diseases (IFDs) such as invasive aspergillosis continue to be associated with high morbidity and mortality while presenting significant diagnostic challenges. Siderophores are high-affinity Fe 3+ chelators produced by Aspergillus spp. and other fungi capable of causing IFD. Previously evaluated as a treatment target in mucormycosis, siderophores have recently emerged as new diagnostic targets for invasive aspergillosis and scedosporiosis. Here, we review the diagnostic potential of siderophores for diagnosing IFD, with a particular focus on invasive aspergillosis. RECENT FINDINGS The major secreted siderophore of A. fumigatus , triacetylfusarinine C (TAFC), has been successfully detected by mass spectrometry in serum, BALF and urine of patients with invasive aspergillosis, with promising sensitivities and specificities in single-centre studies. Intracellular uptake of siderophores has also been utilized for imaging, wherein fungal siderophores have been conjugated with the easy-to-produce radioactive isotope gallium-68 ( 68 Ga) to visualize infected body sites in PET. For the Scedosporium apiospermum complex, another siderophore N(α)-methyl coprogen B has been shown promising as a marker for airway colonization in early studies. SUMMARY Siderophores and particular TAFC have the potential to revolutionize diagnostic pathways for invasive aspergillosis and other mould infections. However, larger multicentre studies are needed to confirm these promising performances. Methods that allow rapid and cost-effective measurements in routine clinical practice need to be developed, particularly when TAFC is used as a biomarker in patient specimens.
Collapse
|
24
|
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 2022; 7:378. [PMID: 36414625 PMCID: PMC9681860 DOI: 10.1038/s41392-022-01229-y] [Citation(s) in RCA: 383] [Impact Index Per Article: 191.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
As an essential micronutrient, copper is required for a wide range of physiological processes in virtually all cell types. Because the accumulation of intracellular copper can induce oxidative stress and perturbing cellular function, copper homeostasis is tightly regulated. Recent studies identified a novel copper-dependent form of cell death called cuproptosis, which is distinct from all other known pathways underlying cell death. Cuproptosis occurs via copper binding to lipoylated enzymes in the tricarboxylic acid (TCA) cycle, which leads to subsequent protein aggregation, proteotoxic stress, and ultimately cell death. Here, we summarize our current knowledge regarding copper metabolism, copper-related disease, the characteristics of cuproptosis, and the mechanisms that regulate cuproptosis. In addition, we discuss the implications of cuproptosis in the pathogenesis of various disease conditions, including Wilson's disease, neurodegenerative diseases, and cancer, and we discuss the therapeutic potential of targeting cuproptosis.
Collapse
Affiliation(s)
- Liyun Chen
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China. .,The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
25
|
Villa F, Wu YL, Zerboni A, Cappitelli F. In Living Color: Pigment-Based Microbial Ecology At the Mineral-Air Interface. Bioscience 2022; 72:1156-1175. [PMID: 36451971 PMCID: PMC9699719 DOI: 10.1093/biosci/biac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pigment-based color is one of the most important phenotypic traits of biofilms at the mineral-air interface (subaerial biofilms, SABs), because it reflects the physiology of the microbial community. Because color is the hallmark of all SABs, we argue that pigment-based color could convey the mechanisms that drive microbial adaptation and coexistence across different terrestrial environments and link phenotypic traits to community fitness and ecological dynamics. Within this framework, we present the most relevant microbial pigments at the mineral-air interface and discuss some of the evolutionary landscapes that necessitate pigments as adaptive strategies for resource allocation and survivability. We report several pigment features that reflect SAB communities' structure and function, as well as pigment ecology in the context of microbial life-history strategies and coexistence theory. Finally, we conclude the study of pigment-based ecology by presenting its potential application and some of the key challenges in the research.
Collapse
|
26
|
Kim W, Chen TY, Cha L, Zhou G, Xing K, Canty NK, Zhang Y, Chang WC. Elucidation of divergent desaturation pathways in the formation of vinyl isonitrile and isocyanoacrylate. Nat Commun 2022; 13:5343. [PMID: 36097268 PMCID: PMC9467999 DOI: 10.1038/s41467-022-32870-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Two different types of desaturations are employed by iron- and 2-oxoglutarate-dependent (Fe/2OG) enzymes to construct vinyl isonitrile and isocyanoacrylate moieties found in isonitrile-containing natural products. A substrate-bound protein structure reveals a plausible strategy to affect desaturation and hints at substrate promiscuity of these enzymes. Analogs are synthesized and used as mechanistic probes to validate structural observations. Instead of proceeding through hydroxylated intermediate as previously proposed, a plausible carbocation species is utilized to trigger C=C bond installation. These Fe/2OG enzymes can also accommodate analogs with opposite chirality and different functional groups including isonitrile-(D)-tyrosine, N-formyl tyrosine, and phloretic acid, while maintaining the reaction selectivity.
Collapse
Affiliation(s)
- Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Tzu-Yu Chen
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Lide Cha
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Grace Zhou
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Kristi Xing
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Yan Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA.
| | - Wei-Chen Chang
- Department of Chemistry, NC State University, Raleigh, NC, USA.
| |
Collapse
|
27
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
28
|
Won TH, Bok JW, Nadig N, Venkatesh N, Nickles G, Greco C, Lim FY, González JB, Turgeon BG, Keller NP, Schroeder FC. Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi. Nat Commun 2022; 13:4828. [PMID: 35973982 PMCID: PMC9381783 DOI: 10.1038/s41467-022-32394-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 01/26/2023] Open
Abstract
The genomes of many filamentous fungi, such as Aspergillus spp., include diverse biosynthetic gene clusters of unknown function. We previously showed that low copper levels upregulate a gene cluster that includes crmA, encoding a putative isocyanide synthase. Here we show, using untargeted comparative metabolomics, that CrmA generates a valine-derived isocyanide that contributes to two distinct biosynthetic pathways under copper-limiting conditions. Reaction of the isocyanide with an ergot alkaloid precursor results in carbon-carbon bond formation analogous to Strecker amino-acid synthesis, producing a group of alkaloids we term fumivalines. In addition, valine isocyanide contributes to biosynthesis of a family of acylated sugar alcohols, the fumicicolins, which are related to brassicicolin A, a known isocyanide from Alternaria brassicicola. CrmA homologs are found in a wide range of pathogenic and non-pathogenic fungi, some of which produce fumicicolin and fumivaline. Extracts from A. fumigatus wild type (but not crmA-deleted strains), grown under copper starvation, inhibit growth of diverse bacteria and fungi, and synthetic valine isocyanide shows antibacterial activity. CrmA thus contributes to two biosynthetic pathways downstream of trace-metal sensing.
Collapse
Affiliation(s)
- Tae Hyung Won
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nischala Nadig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nandhitha Venkatesh
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Grant Nickles
- Department of Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jennifer B González
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
- 104 Peckham Hall, Nazareth College, 4245 East Avenue, Rochester, NY, USA
| | - B Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
29
|
Mei W, Liu X, Jia X, Jin L, Xin S, Sun X, Zhang J, Zhang B, Chen Y, Che J, Ma W, Ye L. A Cuproptosis-Related Gene Model For Predicting the Prognosis of Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:905518. [PMID: 36092880 PMCID: PMC9450221 DOI: 10.3389/fgene.2022.905518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Despite advances in its treatment, patients diagnosed with clear cell renal cell carcinoma (ccRCC) have a poor prognosis. The mechanism of cuproptosis has been found to differ from other mechanisms that regulate cell death, including apoptosis, iron poisoning, pyrophosphate poisoning, and necrosis. Cuproptosis is an essential component in the regulation of a wide variety of biological processes, such as cell wall remodeling and oxidative stress responses. However, cuproptosis-related genes’ expression in ccRCC patients and their association with the patient’s prognosis remain ambiguous. Evaluation of The Cancer Genome Atlas (TCGA) identified 11 genes associated with cuproptosis that were differently expressed in ccRCC and nearby nontumor tissue. To construct a multigene prognostic model, the prognostic value of 11 genes was assessed and quantified. A signature was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and this signature was used to separate ccRCC patients into different risk clusters, with low-risk patients having a much better prognosis. This five-gene signature, when combined with patients’ clinical characteristics, might serve as one independent predictor of overall survival (OS) in ccRCC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that cuproptosis-related genes were enriched in patients with ccRCC. Then, quantitative real-time PCR (qPCR) was employed to verify these genes’ expression. Generally, research has indicated that cuproptosis-related genes are important in tumor immunity and can predict OS of ccRCC patients.
Collapse
Affiliation(s)
- Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Putuo District People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuyang Jia
- Department of Metabolic Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaxin Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bihui Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yilai Chen
- Department of Urology, Karamay People’s Hospital, Xinjiang, China
| | - Jianping Che
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weiguo Ma
- Department of Urology, Tongxin People’s Hospital, Ningxia, China
- *Correspondence: Lin Ye, ; Weiguo Ma,
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Lin Ye, ; Weiguo Ma,
| |
Collapse
|
30
|
Yang M, Zheng H, Xu K, Yuan Q, Aihaiti Y, Cai Y, Xu P. A novel signature to guide osteosarcoma prognosis and immune microenvironment: Cuproptosis-related lncRNA. Front Immunol 2022; 13:919231. [PMID: 35967366 PMCID: PMC9373797 DOI: 10.3389/fimmu.2022.919231] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 01/08/2023] Open
Abstract
ObjectiveOsteosarcoma (OS) is a common bone malignancy with poor prognosis. We aimed to investigate the relationship between cuproptosis-related lncRNAs (CRLncs) and the survival outcomes of patients with OS.MethodsTranscriptome and clinical data of 86 patients with OS were downloaded from The Cancer Genome Atlas (TCGA). The GSE16088 dataset was downloaded from the Gene Expression Omnibus (GEO) database. The 10 cuproptosis-related genes (CRGs) were obtained from a recently published article on cuproptosis in Science. Combined analysis of OS transcriptome data and the GSE16088 dataset identified differentially expressed CRGs related to OS. Next, pathway enrichment analysis was performed. Co-expression analysis obtained CRLncs related to OS. Univariate COX regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were used to construct the risk prognostic model of CRLncs. The samples were divided evenly into training and test groups to verify the accuracy of the model. Risk curve, survival, receiver operating characteristic (ROC) curve, and independent prognostic analyses were performed. Next, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) analysis were performed. Single-sample gene set enrichment analysis (ssGSEA) was used to explore the correlation between the risk prognostic models and OS immune microenvironment. Drug sensitivity analysis identified drugs with potential efficacy in OS. Real-time quantitative PCR, Western blotting, and immunohistochemistry analyses verified the expression of CRGs in OS. Real-time quantitative PCR was used to verify the expression of CRLncs in OS.ResultsSix CRLncs that can guide OS prognosis and immune microenvironment were obtained, including three high-risk CRLncs (AL645608.6, AL591767.1, and UNC5B-AS1) and three low-risk CRLncs (CARD8-AS1, AC098487.1, and AC005041.3). Immune cells such as B cells, macrophages, T-helper type 2 (Th2) cells, regulatory T cells (Treg), and immune functions such as APC co-inhibition, checkpoint, and T-cell co-inhibition were significantly downregulated in high-risk groups. In addition, we obtained four drugs with potential efficacy for OS: AUY922, bortezomib, lenalidomide, and Z.LLNle.CHO. The expression of LIPT1, DLAT, and FDX1 at both mRNA and protein levels was significantly elevated in OS cell lines compared with normal osteoblast hFOB1.19. The mRNA expression level of AL591767.1 was decreased in OS, and that of AL645608.6, CARD8-AS1, AC005041.3, AC098487.1, and UNC5B-AS1 was upregulated in OS.ConclusionCRLncs that can guide OS prognosis and the immune microenvironment and drugs that may have a potential curative effect on OS obtained in this study provide a theoretical basis for OS survival research and clinical decision-making.
Collapse
|
31
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022; 375:1254-1261. [PMID: 35298263 DOI: 10.1126/science.abf0529] [Citation(s) in RCA: 1762] [Impact Index Per Article: 881.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms.
Collapse
Affiliation(s)
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Department of Systems Biology, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital, Boston, MA USA
| | | | - Ana Verma
- Laboratory of Systems Pharmacology, Department of Systems Biology, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Mai Abdusamad
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jordan Rossen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Ranad Humeidi
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - John K Eaton
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evgeni Frenkel
- Whitehead Institute and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mustafa Kocak
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Steven M Corsello
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital, Boston, MA USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Department of Systems Biology, Boston, MA, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
32
|
Nickles G, Ludwikoski I, Bok JW, Keller NP. Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with Aspergillus fumigatus as a Case Study. Curr Protoc 2021; 1:e321. [PMID: 34958718 DOI: 10.1002/cpz1.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fungal secondary metabolites (SMs) have captured the interest of natural products researchers in academia and industry for decades. In recent years, the high rediscovery rate of previously characterized metabolites is making it increasingly difficult to uncover novel compounds. Additionally, the vast majority of fungal SMs reside in genetically intractable fungi or are silent under normal laboratory conditions in genetically tractable fungi. The fungal natural products community has broadly overcome these barriers by altering the physical growth conditions of the fungus and heterologous/homologous expression of biosynthetic gene cluster regulators or proteins. The protocols described here summarize vital methodologies needed when researching SM production in fungi. We also summarize the growth conditions, genetic backgrounds, and extraction protocols for every published SM in Aspergillus fumigatus, enabling readers to easily replicate the production of previously characterized SMs. Readers will also be equipped with the tools for developing their own strategy for expressing and extracting SMs from their given fungus or a suitable heterologous model system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Making glycerol stocks from spore suspensions Alternate Protocol 1: Creating glycerol stocks from non-sporulating filamentous fungi Basic Protocol 2: Activating spore-suspension glycerol stocks Basic Protocol 3: Extracting secondary metabolites from Aspergillus spp grown on solid medium Alternate Protocol 2: Extracting secondary metabolites from Aspergillus spp using ethyl acetate Alternate Protocol 3: High-volume metabolite extraction using ethyl acetate Alternate Protocol 4: Extracting secondary metabolites from Aspergillus spp in liquid medium Support Protocol: Creating an overlay culture Basic Protocol 4: Extracting DNA from filamentous fungi Basic Protocol 5: Creating a DNA construct with double-joint PCR Alternate Protocol 5: Creating a DNA construct with yeast recombineering Basic Protocol 6: Transformation of Aspergillus spp Basic Protocol 7: Co-culturing fungi and bacteria for extraction of secondary metabolites.
Collapse
Affiliation(s)
- Grant Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Isabelle Ludwikoski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
33
|
Gong B, Bai E, Feng X, Yi L, Wang Y, Chen X, Zhu X, Duan Y, Huang Y. Characterization of Chalkophomycin, a Copper(II) Metallophore with an Unprecedented Molecular Architecture. J Am Chem Soc 2021; 143:20579-20584. [PMID: 34851100 DOI: 10.1021/jacs.1c09311] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metals play essential roles in life by coordination with small molecules, proteins, and nucleic acids. Although the coordination of copper ions in many proteins and methanobactins is known, the coordination chemistry of Cu(II) in natural products and their biological functions remain underexplored. Herein, we report the discovery of a Cu(II)-binding natural product, chalkophomycin (CHM, 1), from Streptomyces sp. CB00271, featuring an asymmetric square-coordination system of a bidentate diazeniumdiolate and a conjugated 1H-pyrrole 1-oxide-oxazoline. The structure of 1 may inspire the synthesis of Cu(II) chelators against neurodegenerative diseases or Cu(II)-based antitumor therapeutics.
Collapse
Affiliation(s)
- Bang Gong
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Enhe Bai
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Xueqiong Feng
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Liwei Yi
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Yeji Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Xin Chen
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410011, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, 410011, Changsha, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410011, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, 410011, Changsha, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, 410011, Changsha, Hunan, China
| |
Collapse
|
34
|
Patteson JB, Putz AT, Tao L, Simke WC, Bryant LH, Britt RD, Li B. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 2021; 374:1005-1009. [PMID: 34793213 PMCID: PMC8939262 DOI: 10.1126/science.abj6749] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-binding natural products contribute to metal acquisition and bacterial virulence, but their roles in metal stress response are underexplored. We show that a five-enzyme pathway in Pseudomonas aeruginosa synthesizes a small-molecule copper complex, fluopsin C, in response to elevated copper concentrations. Fluopsin C is a broad-spectrum antibiotic that contains a copper ion chelated by two minimal thiohydroxamates. Biosynthesis of the thiohydroxamate begins with cysteine and requires two lyases, two iron-dependent enzymes, and a methyltransferase. The iron-dependent enzymes remove the carboxyl group and the α carbon from cysteine through decarboxylation, N-hydroxylation, and methylene excision. Conservation of the pathway in P. aeruginosa and other bacteria suggests a common role for fluopsin C in the copper stress response, which involves fusing copper into an antibiotic against other microbes.
Collapse
Affiliation(s)
- Jon B. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew T. Putz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - William C. Simke
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L. Henry Bryant
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. David Britt
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Palmer JM, Wiemann P, Greco C, Chiang YM, Wang CCC, Lindner DL, Keller NP. The sexual spore pigment asperthecin is required for normal ascospore production and protection from UV light in Aspergillus nidulans. J Ind Microbiol Biotechnol 2021; 48:6355442. [PMID: 34415047 PMCID: PMC8762651 DOI: 10.1093/jimb/kuab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2022]
Abstract
Many fungi develop both asexual and sexual spores that serve as propagules for dissemination and/or recombination of genetic traits. Asexual spores are often heavily pigmented and this pigmentation provides protection from UV light. However, little is known about any purpose pigmentation may serve for sexual spores. The model Ascomycete Aspergillus nidulans produces both green pigmented asexual spores (conidia) and red pigmented sexual spores (ascospores). Here we find that the previously characterized red pigment, asperthecin, is the A. nidulans ascospore pigment. The asperthecin biosynthetic gene cluster is composed of three genes, aptA, aptB, and aptC where deletion of either aptA (encoding a polyketide synthase) or aptB (encoding a thioesterase) yields small, mishappen hyaline ascospores while deletion of aptC (encoding a monooxygenase) yields morphologically normal but purple ascospores. ∆aptA and ∆aptB but not ∆aptC or WT ascospores are extremely sensitive to UV light. We find that two historical ascospore color mutants, clA6 and clB1, possess mutations in aptA and aptB sequences respectively.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI 53726, USA
| | - Philipp Wiemann
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claudio Greco
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yi Ming Chiang
- Departments of Chemistry and Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Clay C C Wang
- Departments of Chemistry and Pharmacology & Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI 53726, USA
| | - Nancy P Keller
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
36
|
Abstract
The fungal kingdom has provided advances in our ability to identify biosynthetic gene clusters (BGCs) and to examine how gene composition of BGCs evolves across species and genera. However, little is known about the evolution of specific BGC regulators that mediate how BGCs produce secondary metabolites (SMs). A bioinformatics search for conservation of the Aspergillus fumigatus xanthocillin BGC revealed an evolutionary trail of xan-like BGCs across Eurotiales species. Although the critical regulatory and enzymatic genes were conserved in Penicillium expansum, overexpression (OE) of the conserved xan BGC transcription factor (TF) gene, PexanC, failed to activate the putative xan BGC transcription or xanthocillin production in P. expansum, in contrast to the role of AfXanC in A. fumigatus. Surprisingly, OE::PexanC was instead found to promote citrinin synthesis in P. expansum via trans induction of the cit pathway-specific TF, ctnA, as determined by cit BGC expression and chemical profiling of ctnA deletion and OE::PexanC single and double mutants. OE::AfxanC results in significant increases of xan gene expression and metabolite synthesis in A. fumigatus but had no effect on either xanthocillin or citrinin production in P. expansum. Bioinformatics and promoter mutation analysis led to the identification of an AfXanC binding site, 5'-AGTCAGCA-3', in promoter regions of the A. fumigatus xan BGC genes. This motif was not in the ctnA promoter, suggesting a different binding site of PeXanC. A compilation of a bioinformatics examination of XanC orthologs and the presence/absence of the 5'-AGTCAGCA-3' binding motif in xan BGCs in multiple Aspergillus and Penicillium spp. supports an evolutionary divergence of XanC regulatory targets that we speculate reflects an exaptation event in the Eurotiales. IMPORTANCE Fungal secondary metabolites (SMs) are an important source of pharmaceuticals on one hand and toxins on the other. Efforts to identify the biosynthetic gene clusters (BGCs) that synthesize SMs have yielded significant insights into how variation in the genes that compose BGCs may impact subsequent metabolite production within and between species. However, the role of regulatory genes in BGC activation is less well understood. Our finding that the bZIP transcription factor XanC, located in the xanthocillin BGC of both Aspergillus fumigatus and Penicillium expansum, has functionally diverged to regulate different BGCs in these two species emphasizes that the diversification of BGC regulatory elements may sometimes occur through exaptation, which is the co-option of a gene that evolved for one function to a novel function. Furthermore, this work suggests that the loss/gain of transcription factor binding site targets may be an important mediator in the evolution of secondary-metabolism regulatory elements.
Collapse
|