1
|
Matsumura H, Friess M, Kouchi M, Tanijiri T, Stringer C, Garcia G, Hanihara T, Moiseyev V, Suzuki D. Bioclimatic and masticatory influences on human cranial diversity verified by analysis of 3D morphometric homologous models. Sci Rep 2024; 14:26663. [PMID: 39496664 PMCID: PMC11535542 DOI: 10.1038/s41598-024-76715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
This study analyzes the effects of bioclimate and masticatory factors on the regional variability of human cranial forms across 150 ethnic groups worldwide. Morphometric variables were generated using principal component analysis applied to 3D homologous models. Relationships between cranial form and bioclimate (temperature and precipitation) and masticatory factors (infratemporal space) were tested considering sampling bias due to past population movements during the late Pleistocene and/or early- to mid-Holocene. Cranial size correlated with thermal conditions, consistent with Bergmann's rule. The length/breadth proportion of the neurocranium aligned with Allen's rule for thermal adaptation, while no relationship with masticatory stress was found. Facial form responded to either climate or masticatory conditions, although the primary factor was unclear due to the high correlation between stresses. However, masticatory stress was identified as an equally significant factor behind facial flatness in cold regions, else than the effect of Allen's rule. High narrowness of nasal and orbital openings correlated significantly with cold temperatures and cranial size, suggesting not only functional but also allometric effect. This study demonstrated the complexity of environmental influences on cranial form diversity, nonetheless suggested reduction of selective pressure on cranial form caused by natural environmental stress due to the development of civilization.
Collapse
Affiliation(s)
- Hirofumi Matsumura
- School of Health Sciences, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Martin Friess
- Département Homme et Environnement, Musée de l'Homme, Paris, 75116, France
| | - Makiko Kouchi
- National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064, Japan
| | | | - Chris Stringer
- Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Gisselle Garcia
- Department of Anthropology, American Museum of Natural History, New York, NY, 10024, USA
| | | | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography, Russian Federation, St Petersburg, 199034, Russia
| | - Daisuke Suzuki
- Department of Health Sciences, Hokkaido Chitose College of Rehabilitation, Chitose, 066-0055, Japan
| |
Collapse
|
2
|
Yu Y, Yang X, Liu D, Du P, Meng H, Huang Z, Xiong J, Ding Y, Ren X, Allen E, Wang H, Han S, Jin L, Wang CC, Wen S. Ancient genomic analysis of a Chinese hereditary elite from the Northern and Southern Dynasties. J Genet Genomics 2024:S1673-8527(24)00184-X. [PMID: 39009302 DOI: 10.1016/j.jgg.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
China's Northern and Southern Dynasties period (3rd-6th centuries AD) marked a significant era of ethnic integration in northern China. However, previous ancient DNA studies have primarily focused on northern ethnic groups, with limited research on the genetic formation of the hereditary elite family, especially considering their abundant archaeological record and clear material identity. In this study, we obtained the ancient genome of a hereditary elite family, Gao Bin (, 503 AD-572 AD), at 0.6473-fold coverage with 475,132 single-nucleotide polymorphisms (SNPs) on the 1240k panel. His mitochondrial haplogroup belonged to Z4 and Y-haplogroup to O1a1a2b-F2444∗. The genetic profile of Gao Bin was most similar to that of the northern Han Chinese. He could be modeled as deriving all his ancestry from Late Neolithic to Iron Age Yellow River farmers without influence from Northeast Asia, Korea, or the Mongolian Plateau. Our study sheds light on the genetic formation of hereditary elite families in the context of the Southern and Northern Dynasties ethnic integration.
Collapse
Affiliation(s)
- Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Department of History, Fudan University, Shanghai 200433, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Daiyun Liu
- Shaanxi Academy of Archaeology, Xi'an, Shaanxi 710054, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zixiao Huang
- Department of History, Fudan University, Shanghai 200433, China
| | - Jianxue Xiong
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yi Ding
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xiaoying Ren
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Hui Wang
- Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China
| | - Sheng Han
- Department of History, Fudan University, Shanghai 200433, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361005, China.
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Ao H, Ruan J, Martinón-Torres M, Krapp M, Liebrand D, Dekkers MJ, Caley T, Jonell TN, Zhu Z, Huang C, Li X, Zhang Z, Sun Q, Yang P, Jiang J, Li X, Xie X, Song Y, Qiang X, Zhang P, An Z. Concurrent Asian monsoon strengthening and early modern human dispersal to East Asia during the last interglacial. Proc Natl Acad Sci U S A 2024; 121:e2308994121. [PMID: 38190536 PMCID: PMC10801887 DOI: 10.1073/pnas.2308994121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/19/2023] [Indexed: 01/10/2024] Open
Abstract
The relationship between initial Homo sapiens dispersal from Africa to East Asia and the orbitally paced evolution of the Asian summer monsoon (ASM)-currently the largest monsoon system-remains underexplored due to lack of coordinated synthesis of both Asian paleoanthropological and paleoclimatic data. Here, we investigate orbital-scale ASM dynamics during the last 280 thousand years (kyr) and their likely influences on early H. sapiens dispersal to East Asia, through a unique integration of i) new centennial-resolution ASM records from the Chinese Loess Plateau, ii) model-based East Asian hydroclimatic reconstructions, iii) paleoanthropological data compilations, and iv) global H. sapiens habitat suitability simulations. Our combined proxy- and model-based reconstructions suggest that ASM precipitation responded to a combination of Northern Hemisphere ice volume, greenhouse gas, and regional summer insolation forcing, with cooccurring primary orbital cycles of ~100-kyr, 41-kyr, and ~20-kyr. Between ~125 and 70 kyr ago, summer monsoon rains and temperatures increased in vast areas across Asia. This episode coincides with the earliest H. sapiens fossil occurrence at multiple localities in East Asia. Following the transcontinental increase in simulated habitat suitability, we suggest that ASM strengthening together with Southeast African climate deterioration may have promoted the initial H. sapiens dispersal from their African homeland to remote East Asia during the last interglacial.
Collapse
Affiliation(s)
- Hong Ao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
- Laoshan Laboratory, Qingdao266237, China
| | - Jiaoyang Ruan
- Center for Climate Physics, Institute for Basic Science, Busan46241, South Korea
- Pusan National University, Busan46241, South Korea
| | - María Martinón-Torres
- Dental Anthropology Group, National Research Center on Human Evolution, Burgos09002, Spain
- Department of Anthropology, University College London, LondonWC1H 0BW, United Kingdom
| | - Mario Krapp
- Department of Zoology, University of Cambridge, CambridgeCB2 1TN, United Kingdom
| | - Diederik Liebrand
- Department of Earth and Environmental Sciences, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Mark J. Dekkers
- Palaeomagnetic Laboratory ‘Fort Hoofddijk’, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht3584 CD, The Netherlands
| | - Thibaut Caley
- Bordeaux Institut National Polytechnique, Environnements et Paléoenvironnements Océaniques et Continentaux, University of Bordeaux, Centre national de la recherche scientifique, UMR 5805, PessacF-33600, France
| | - Tara N. Jonell
- School of Geographical and Earth Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Zongmin Zhu
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Chunju Huang
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Xinxia Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Ziyun Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Qiang Sun
- College of Geology and Environment, University of Science and Technology, Xi’an710054, China
| | - Pingguo Yang
- College of Life Science, Shanxi Normal University, Taiyuan030031, China
| | - Jiali Jiang
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Xinzhou Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Xiaoxun Xie
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Yougui Song
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Xiaoke Qiang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
| | - Peng Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
- Laoshan Laboratory, Qingdao266237, China
| | - Zhisheng An
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an710061, China
- Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an710049, China
- Interdisciplinary Research Center of Earth Science Frontier, Beijing Normal University, Beijing100875, China
| |
Collapse
|
4
|
Teng SN, Svenning JC, Xu C. Large mammals and trees in eastern monsoonal China: anthropogenic losses since the Late Pleistocene and restoration prospects in the Anthropocene. Biol Rev Camb Philos Soc 2023; 98:1607-1632. [PMID: 37102332 DOI: 10.1111/brv.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Massive human-induced declines of large-sized animals and trees (megabiota) from the Late Pleistocene to the Anthropocene have resulted in downsized ecosystems across the globe, in which components and functions have been greatly simplified. In response, active restoration projects of extant large-sized species or functional substitutes are needed at large scales to promote ecological processes that are important for ecosystem self-regulation and biodiversity maintenance. Despite the desired global scope of such projects, they have received little attention in East Asia. Here, we synthesise the biogeographical and ecological knowledge of megabiota in ancient and modern China, with relevant data mostly located in eastern monsoonal China (EMC), aiming to assess its potential for restoring functionally intact ecosystems modulated by megabiota. We found that during the Late Pleistocene, 12 mammalian megafaunal (carnivores ≥15 kg and herbivores ≥500 kg) species disappeared from EMC: one carnivore Crocuta ultima (East Asian spotted hyena) and 11 herbivores including six megaherbivores (≥1000 kg). The relative importance of climate change and humans in driving these losses remains debated, despite accumulating evidence in favour of the latter. Later massive depletion of megafauna and large-sized (45-500 kg) herbivores has been closely associated with agricultural expansion and societal development, especially during the late Holocene. While forests rich in large timber trees (33 taxa in written records) were common in the region 2000-3000 years ago, millennial-long logging has resulted in considerable range contractions and at least 39 threatened species. The wide distribution of C. ultima, which likely favoured open or semi-open habitats (like extant spotted hyenas), suggests the existence of mosaic open and closed vegetation in the Late Pleistocene across EMC, in line with a few pollen-based vegetation reconstructions and potentially, or at least partially, reflecting herbivory by herbivorous megafauna. The widespread loss of megaherbivores may have strongly compromised seed dispersal for both megafruit (fleshy fruits with widths ≥40 mm) and non-megafruit plant species in EMC, especially in terms of extra-long-distance (>10 km) dispersal, which is critical for plant species that rely on effective biotic agents to track rapid climate change. The former occurrence of large mammals and trees have translated into rich material and non-material heritages passed down across generations. Several reintroduction projects have been implemented or are under consideration, with the case of Elaphurus davidianus a notable success in recovering wild populations in the middle reaches of the Yangtze River, although trophic interactions with native carnivorous megafauna have not yet been restored. Lessons of dealing with human-wildlife conflicts are key to public support for maintaining landscapes shared with megafauna and large herbivores in the human-dominated Anthropocene. Meanwhile, potential human-wildlife conflicts, e.g. public health risks, need to be scientifically informed and effectively reduced. The Chinese government's strong commitment to improved policies of ecological protection and restoration (e.g. ecological redlines and national parks) provides a solid foundation for a scaling-up contribution to the global scope needed for solving the crisis of biotic downsizing and ecosystem degradation.
Collapse
Affiliation(s)
- Shuqing N Teng
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, 8000, Denmark
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Freidline SE, Westaway KE, Joannes-Boyau R, Duringer P, Ponche JL, Morley MW, Hernandez VC, McAllister-Hayward MS, McColl H, Zanolli C, Gunz P, Bergmann I, Sichanthongtip P, Sihanam D, Boualaphane S, Luangkhoth T, Souksavatdy V, Dosseto A, Boesch Q, Patole-Edoumba E, Aubaile F, Crozier F, Suzzoni E, Frangeul S, Bourgon N, Zachwieja A, Dunn TE, Bacon AM, Hublin JJ, Shackelford L, Demeter F. Early presence of Homo sapiens in Southeast Asia by 86-68 kyr at Tam Pà Ling, Northern Laos. Nat Commun 2023; 14:3193. [PMID: 37311788 DOI: 10.1038/s41467-023-38715-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
The timing of the first arrival of Homo sapiens in East Asia from Africa and the degree to which they interbred with or replaced local archaic populations is controversial. Previous discoveries from Tam Pà Ling cave (Laos) identified H. sapiens in Southeast Asia by at least 46 kyr. We report on a recently discovered frontal bone (TPL 6) and tibial fragment (TPL 7) found in the deepest layers of TPL. Bayesian modeling of luminescence dating of sediments and U-series and combined U-series-ESR dating of mammalian teeth reveals a depositional sequence spanning ~86 kyr. TPL 6 confirms the presence of H. sapiens by 70 ± 3 kyr, and TPL 7 extends this range to 77 ± 9 kyr, supporting an early dispersal of H. sapiens into Southeast Asia. Geometric morphometric analyses of TPL 6 suggest descent from a gracile immigrant population rather than evolution from or admixture with local archaic populations.
Collapse
Affiliation(s)
- Sarah E Freidline
- Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Howard Phillips Hall, Orlando, FL, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Kira E Westaway
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, Lismore, NSW, Australia
- Centre for Anthropological Research, University of Johannesburg, Johannesburg, Gauteng Province, South Africa
| | - Philippe Duringer
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- Université de Strasbourg, Laboratoire Image, Ville Environnement, UMR, 7362, UdS CNRS, Strasbourg, France
| | - Mike W Morley
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Vito C Hernandez
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Meghan S McAllister-Hayward
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600, Pessac, France
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Inga Bergmann
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | | | - Daovee Sihanam
- Ministry of Information, Culture and Tourism, Vientiane, PDR, Laos
| | | | | | | | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric & Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Quentin Boesch
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Françoise Aubaile
- Eco-anthropologie (EA), Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France
| | | | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Nicolas Bourgon
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Alexandra Zachwieja
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Tyler E Dunn
- Anatomical Sciences Education Center, Oregon Health & Sciences University, Portland, OR, USA
| | | | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France. 11, Place Marcelin-Berthelot, 75231, Paris, Cedex 05, France
| | - Laura Shackelford
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Eco-anthropologie (EA), Dpt ABBA, Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France.
| |
Collapse
|
6
|
Tobler R, Souilmi Y, Huber CD, Bean N, Turney CSM, Grey ST, Cooper A. The role of genetic selection and climatic factors in the dispersal of anatomically modern humans out of Africa. Proc Natl Acad Sci U S A 2023; 120:e2213061120. [PMID: 37220274 PMCID: PMC10235988 DOI: 10.1073/pnas.2213061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/14/2023] [Indexed: 05/25/2023] Open
Abstract
The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.
Collapse
Affiliation(s)
- Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Environment Institute, The University of Adelaide, Adelaide, SA5005, Australia
| | - Christian D. Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Nigel Bean
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA5005, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Chris S. M. Turney
- Division of Research, University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Shane T. Grey
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW2052, Australia
- Transplantation Immunology Group, Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Blue Sky Genetics, Ashton, SA5137, Australia
| |
Collapse
|
7
|
Wang Y, Zhang X, Sun X, Yi S, Min K, Liu D, Yan W, Cai H, Wang X, Curnoe D, Lu H. A new chronological framework for Chuandong Cave and its implications for the appearance of modern humans in southern China. J Hum Evol 2023; 178:103344. [PMID: 36947893 DOI: 10.1016/j.jhevol.2023.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/24/2023]
Abstract
Chuandong Cave is an important Late Paleolithic site because it documents the early appearance of bone tools in southern China. We used the single-aliquot regenerative-dose protocol for optically stimulated luminescence dating to improve the precision of the chronology for the Chuandong Cave sedimentary sequence. The age of each layer was determined using a Bayesian modeling approach which combined optically stimulated luminescence ages with published AMS 14C dates. The results showed that Layer 10 began accumulating since 56 ± 14 ka and provides the upper age limit for all artifacts from the sequence. Bone awl tools from Layer 8, the earliest grinding bone tools in this site, were recovered within sediments between 40 ± 7 ka and 30 ± 4 ka. Layer 8 also indicates the appearance of modern humans in the Chuandong Cave sequence. Layers 4-2, ranging from 15 ± 3 ka until 11 ± 1 ka and including the Younger Dryas period, contain a few bone awls and an eyed bone needle. The shift from bone awls to eyed bone needles in the Chuandong Cave sequence indicates that modern humans adapted to the changing climate of southern China. We conclude that modern human behavior in bone tools appeared in southern China as early as 40 ± 7 ka, became more sophisticated during the Last Glacial Maximum, and spread more widely across southern China during the Younger Dryas.
Collapse
Affiliation(s)
- Yanan Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Xinglong Zhang
- Guizhou Provincial Institute of Cultural Relics and Archaeology, Guiyang 550003, China
| | - Xuefeng Sun
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| | - Shuangwen Yi
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Kai Min
- Guizhou Provincial Institute of Cultural Relics and Archaeology, Guiyang 550003, China
| | - Dengke Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Wenxuan Yan
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Huiyang Cai
- Guizhou Provincial Museum, Guiyang 550081, China
| | - Xinjin Wang
- Guizhou Provincial Institute of Cultural Relics and Archaeology, Guiyang 550003, China
| | - Darren Curnoe
- Australia Museum Research Institute, 1 William Street, Darlinghurst, NSW 2010, Australia
| | - Huayu Lu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Zhu K, Du P, Li J, Zhang J, Hu X, Meng H, Chen L, Zhou B, Yang X, Xiong J, Allen E, Ren X, Ding Y, Xu Y, Chang X, Yu Y, Han S, Dong G, Wang CC, Wen S. Cultural and demic co-diffusion of Tubo Empire on Tibetan Plateau. iScience 2022; 25:105636. [PMID: 36582485 PMCID: PMC9792914 DOI: 10.1016/j.isci.2022.105636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A high point of Tibetan Plateau (TP) civilization, the expansive Tubo Empire (618-842 AD) wielded great influence across ancient western China. However, whether the Tubo expansion was cultural or demic remains unclear due to sparse ancient DNA sampling. Here, we reported ten ancient genomes at 0.017- to 0.867-fold coverages from the Dulan site with typical Tubo archaeological culture dating to 1308-1130 BP. Nine individuals from three different grave types have close relationship with previously reported ancient highlanders from the southwestern Himalayas and modern core-Tibetan populations. A Dulan-related Tubo ancestry contributed overwhelmingly (95%-100%) to the formation of modern Tibetans. A genetic outlier with dominant Eurasian steppe-related ancestry suggesting a potential population movement into the Tubo-controlled regions from Central Asia. Together with archeological evidence from burial styles and customs, our study suggested the impact of the Tubo empire on the northeast edge of the TP involved both cultural and demic diffusion.
Collapse
Affiliation(s)
- Kongyang Zhu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Jiyuan Li
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining 810007, China
| | | | - Xiaojun Hu
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining 810007, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Liang Chen
- China-Central Asia Human Environmental “the Belt and Road” Joint Laboratory, Northwest University, Xi’an 710127, China
| | - Boyan Zhou
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY 10016, USA
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Jianxue Xiong
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xiaoying Ren
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yi Ding
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Sheng Han
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guanghui Dong
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China,Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China,Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China,Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China,Corresponding author
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China,Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China,MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China,Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China,Corresponding author
| |
Collapse
|
9
|
Wu Y, Tao D, Wu X, Liu W, Cai Y. Diet of the earliest modern humans in East Asia. FRONTIERS IN PLANT SCIENCE 2022; 13:989308. [PMID: 36119583 PMCID: PMC9471156 DOI: 10.3389/fpls.2022.989308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Reconstructing diet can offer an improved understanding toward the origin and evolution of modern humans. However, the diet of early modern humans in East Asia is poorly understood. Starch analysis of dental calculus is harmless to precious fossil hominins and provides the most direct evidence of plant food sources in early modern human dietary records. In this paper, we examined the starch grains in dental calculus from Fuyan Cave hominins in Daoxian (South China), which were the earliest modern humans in East Asia. Our results reveal the earliest direct evidence of a hominin diet made of acorns, roots, tubers, grass seeds, and other yet-unidentified plants in marine isotope stage 5 between 120 and 80 ka. Our study also provides the earliest evidence that acorns may have played an important role in subsistence strategies. There may have been a long-lasting tradition of using these plants during the Late Pleistocene in China. Plant foods would have been a plentiful source of carbohydrates that greatly increased energy availability to human tissues with high glucose demands. Our study provides the earliest direct consumption of carbohydrates-rich plant resources from modern humans in China for the first time. In addition, it also helps elucidate the evolutionary advantages of early modern humans in the late Middle and early Upper Pleistocene.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Dawei Tao
- Department of Archaeology, School of History, Zhengzhou University, Zhengzhou, China
| | - Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Allen E, Yu Y, Yang X, Xu Y, Du P, Xiong J, Chen D, Tian X, Wu Y, Qin X, Sheng P, Wang CC, Wen S. Multidisciplinary lines of evidence reveal East/Northeast Asian origins of agriculturalist/pastoralist residents at a Han dynasty military outpost in ancient Xinjiang. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Han/non-Han interactions were engrained among the border regions of ancient Imperial China. Yet, little is known about either the genetic origins or the lifeways of these border peoples. Our study applies tools from ancient deoxyribonucleic acid (DNA) and stable isotope analysis to the study of a Han dynasty population at the Shichengzi site in modern-day Xinjiang. Isotopic analysis (δ13C and δ15N) of human (n = 8), animal (n = 26), and crop remains (n = 23) from Shichengzi indicated that dietary patterns among site inhabitants could be split among agro-pastoral and agricultural groups based on differences in the collagen 15N ratios. DNA analysis divided the four Shichengzi samples into two groups, with one group primarily harboring the ancient Northeast Asian (ANA) related ancestry, while the other showed a dominant Late Neolithic Yellow River (YR_LN) related ancestry. Both ancient DNA and stable isotope evidence point to the Northeast Asian origins of pastoralists and East Asian origins of Han agriculturalists, who, nonetheless, shared a single burial space at Shichengzi. This study thus provides clear evidence for the multiple origins and identities of populations across the porous border represented by the Han Empire and surrounding regions and proposes a new model for the interpretation of border culture in early Imperial China.
Collapse
|
11
|
Zhang X, Ji X, Li C, Yang T, Huang J, Zhao Y, Wu Y, Ma S, Pang Y, Huang Y, He Y, Su B. A Late Pleistocene human genome from Southwest China. Curr Biol 2022; 32:3095-3109.e5. [PMID: 35839766 DOI: 10.1016/j.cub.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Southern East Asia is the dispersal center regarding the prehistoric settlement and migrations of modern humans in Asia-Pacific regions. However, the settlement pattern and population structure of paleolithic humans in this region remain elusive, and ancient DNA can provide direct information. Here, we sequenced the genome of a Late Pleistocene hominin (MZR), dated ∼14.0 thousand years ago from Red Deer Cave located in Southwest China, which was previously reported possessing mosaic features of modern and archaic hominins. MZR is the first Late Pleistocene genome from southern East Asia. Our results indicate that MZR is a modern human who represents an early diversified lineage in East Asia. The mtDNA of MZR belongs to an extinct basal lineage of the M9 haplogroup, reflecting a rich matrilineal diversity in southern East Asia during the Late Pleistocene. Combined with the published data, we detected clear genetic stratification in ancient southern populations of East/Southeast Asia and some degree of south-versus-north divergency during the Late Pleistocene, and MZR was identified as a southern East Asian who exhibits genetic continuity to present day populations. Markedly, MZR is linked deeply to the East Asian ancestry that contributed to First Americans.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xueping Ji
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China.
| | - Chunmei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Tingyu Yang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jiahui Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhui Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wu
- Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; School of History, Wuhan University, Wuhan 430072, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Shiwu Ma
- Mengzi Institute of Cultural Relics, Mengzi, Yunnan Province 661100, China
| | - Yuhong Pang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
12
|
Xiong J, Tao Y, Ben M, Yang Y, Du P, Allen E, Wang H, Xu Y, Yu Y, Meng H, Bao H, Zhou B, Chen G, Li H, Wen S. Uniparental Genetic Analyses Reveal Multi-Ethnic Background of Dunhuang Foyemiaowan Population (220–907 CE) With Typical Han Chinese Archaological Culture. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.901295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The relationship between archeological culture and ethnicity is invariably complex. This is especially the case for periods of national division and rapid inter-ethnic exchange, such as China’s Sixteen Kingdoms (304–439 CE) and Northern and Southern Dynasties (420–589 CE). Going by tomb shape and grave goods, the Foyemiaowan cemetery at Dunhuang exhibits a typical third–tenth century Han style. Despite this, the ethnic makeup of the Foyemiaowan population has remained unclear. We therefore analyzed 485 Y-chromosomal SNPs and entire mitochondrial genomes of 34 Foyemiaowan samples. Our study yielded the following discoveries: (1) principal component analysis revealed that the Foyemiaowan population was closely clustered with Tibeto-Burman populations on the paternal side and close to Mongolic-speaking populations on the maternal side; (2) lineage comparisons at the individual level showed that the Foyemiaowan population consisted of primarily Tibeto-Burman and Han Chinese related lineages (Oα-M117, 25%;Oβ-F46, 18.75%), partially Altaic speaking North Eurasian lineages (N-F1206, 18.75%) and a slight admixture of southern East Asian lineages (O1b1a2-Page59, 6.25%; O1b1a1-PK4, 3.13%). Similarly, the maternal gene pool of Foyemiaowan contained northern East Asian (A, 4.17%; CZ, 16.67%; D, 20.83%; G, 4.17%; M9, 4.17%), southern East Asian (B, 12.51%; F, 20.83%) and western Eurasian (H, 4.17%; J, 4.17%) related lineages; (3) we discovered a relatively high genetic diversity among the Foyemiaowan population (0.891) in our ancient reference populations, indicating a complex history of population admixture. Archeological findings, stable isotope analysis and historical documents further corroborated our results. Although in this period China’s central government had relinquished control of the Hexi Corridor and regional non-Han regimes became the dominant regional power, Foyemiaowan’s inhabitants remained strongly influenced by Han culture.
Collapse
|
13
|
Xiong J, Du P, Chen G, Tao Y, Zhou B, Yang Y, Wang H, Yu Y, Chang X, Allen E, Sun C, Zhou J, Zou Y, Xu Y, Meng H, Tan J, Li H, Wen S. Sex-Biased Population Admixture Mediated Subsistence Strategy Transition of Heishuiguo People in Han Dynasty Hexi Corridor. Front Genet 2022; 13:827277. [PMID: 35356424 PMCID: PMC8960071 DOI: 10.3389/fgene.2022.827277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 01/12/2023] Open
Abstract
The Hexi Corridor was an important arena for culture exchange and human migration between ancient China and Central and Western Asia. During the Han Dynasty (202 BCE–220 CE), subsistence strategy along the corridor shifted from pastoralism to a mixed pastoralist-agriculturalist economy. Yet the drivers of this transition remain poorly understood. In this study, we analyze the Y-chromosome and mtDNA of 31 Han Dynasty individuals from the Heishuiguo site, located in the center of the Hexi Corridor. A high-resolution analysis of 485 Y-SNPs and mitogenomes was performed, with the Heishuiguo population classified into Early Han and Late Han groups. It is revealed that (1) when dissecting genetic lineages, the Yellow River Basin origin haplogroups (i.e., Oα-M117, Oβ-F46, Oγ-IMS-JST002611, and O2-P164+, M134-) reached relatively high frequencies for the paternal gene pools, while haplogroups of north East Asian origin (e.g., D4 and D5) dominated on the maternal side; (2) in interpopulation comparison using PCA and Fst heatmap, the Heishuiguo population shifted from Southern-Northern Han cline to Northern-Northwestern Han/Hui cline with time, indicating genetic admixture between Yellow River immigrants and natives. By comparison, in maternal mtDNA views, the Heishuiguo population was closely clustered with certain Mongolic-speaking and Northwestern Han populations and exhibited genetic continuity through the Han Dynasty, which suggests that Heishuiguo females originated from local or neighboring regions. Therefore, a sex-biased admixture pattern is observed in the Heishuiguo population. Additionally, genetic contour maps also reveal the same male-dominated migration from the East to Hexi Corridor during the Han Dynasty. This is also consistent with historical records, especially excavated bamboo slips. Combining historical records, archeological findings, stable isotope analysis, and paleoenvironmental studies, our uniparental genetic investigation on the Heishuiguo population reveals how male-dominated migration accompanied with lifestyle adjustments brought by these eastern groups may be the main factor affecting the subsistence strategy transition along the Han Dynasty Hexi Corridor.
Collapse
Affiliation(s)
- Jianxue Xiong
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Guoke Chen
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou, China
| | - Yichen Tao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Boyan Zhou
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY, United States
| | - Yishi Yang
- Institute of Cultural Relics and Archaeology in Gansu Province, Lanzhou, China
| | - Hui Wang
- Institute of Archaeological Science, Fudan University, Shanghai, China
- Center for the Belt and Road Archaeology and Ancient Civilizations (BRAAC), Fudan University, Shanghai, China
| | - Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Chang Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Juanjuan Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yetao Zou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
- Center for the Belt and Road Archaeology and Ancient Civilizations (BRAAC), Fudan University, Shanghai, China
- *Correspondence: Jingze Tan, ; Hui Li, ; Shaoqing Wen,
| |
Collapse
|
14
|
Kaifu Y, Kurniawan I, Yurnaldi D, Setiawan R, Setiyabudi E, Insani H, Takai M, Nishioka Y, Takahashi A, Aziz F, Yoneda M. Modern human teeth unearthed from below the ∼128,000-year-old level at Punung, Java: A case highlighting the problem of recent intrusion in cave sediments. J Hum Evol 2022; 163:103122. [PMID: 35016125 DOI: 10.1016/j.jhevol.2021.103122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
The emergence of modern humans in the eastern edge of the Eurasian Continent is debated between two major models: early (∼130-70 ka) and late (∼50 ka) dispersal models. The former view is grounded mainly on the claims that several cave sites in Southeast Asia and southern China yielded modern human fossils of those early ages, but such reports have been disputed for the lack of direct dating of the human remains and insufficient documentation of stratigraphy and taphonomy. By tracing possible burial process and conducting direct dating for an early Late Pleistocene paleontological site of Punung III, East Java, we here report a case that demonstrates how unexpected intrusion of recent human remains into older stratigraphic levels could occur in cave sediments. This further highlights the need of direct dating and taphonomic assessment before accepting either model. We also emphasize that the state of fossilization of bones and teeth is a useful guide for initial screening of recent intrusion and should be reported particularly when direct dating is unavailable. Additionally, we provide a revised stratigraphy and faunal list of Punung III, a key site that defines the tropical rainforest Punung Fauna during the early Late Pleistocene of the region.
Collapse
Affiliation(s)
- Yousuke Kaifu
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan.
| | - Iwan Kurniawan
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Dida Yurnaldi
- Geological Survey Institute, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java 40122, Indonesia
| | - Ruly Setiawan
- Geological Survey Institute, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java 40122, Indonesia
| | - Erick Setiyabudi
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Halmi Insani
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Masanaru Takai
- Systematics and Phylogeny Section, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi, Japan
| | - Yuichiro Nishioka
- Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga-ku, Shizuoka City, Shizuoka, Japan
| | - Akio Takahashi
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Ridaicho 1-1, Kitaku, Okayama, Japan
| | - Fachroel Aziz
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
15
|
Zhang DD, Bennett MR, Cheng H, Wang L, Zhang H, Reynolds SC, Zhang S, Wang X, Li T, Urban T, Pei Q, Wu Z, Zhang P, Liu C, Wang Y, Wang C, Zhang D, Lawrence Edwards R. Earliest parietal art: hominin hand and foot traces from the middle Pleistocene of Tibet. Sci Bull (Beijing) 2021; 66:2506-2515. [PMID: 36654210 DOI: 10.1016/j.scib.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/03/2023]
Abstract
At Quesang on the Tibetan Plateau we report a series of hand and foot impressions that appear to have been intentionally placed on the surface of a unit of soft travertine. The travertine was deposited by water from a hot spring which is now inactive and as the travertine lithified it preserved the traces. On the basis of the sizes of the hand and foot traces, we suggest that two track-makers were involved and were likely children. We interpret this event as a deliberate artistic act that created a work of parietal art. The travertine unit on which the traces were imprinted dates to between ∼169 and 226 ka BP. This would make the site the earliest currently known example of parietal art in the world and would also provide the earliest evidence discovered to date for hominins on the High Tibetan Plateau (above 4000 m a.s.l.). This remarkable discovery adds to the body of research that identifies children as some of the earliest artists within the genus Homo.
Collapse
Affiliation(s)
- David D Zhang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China; Center for Excellence in Tibetan Plateau Earth Sciences and Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Matthew R Bennett
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK.
| | - Hai Cheng
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Leibin Wang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China; Department of Earth Sciences, University of Hong Kong, Hong Kong, China
| | - Haiwei Zhang
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710054, China
| | - Sally C Reynolds
- Department of Archaeology and Anthropology, Bournemouth University, Fern Barrow, Poole BH12 5BB, UK
| | - Shengda Zhang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Xiaoqing Wang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Teng Li
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Tommy Urban
- Department of Classics, Tree-ring Laboratory, Cornell University, Ithaca, NY 14853-3201, USA
| | - Qing Pei
- Department of Social Sciences, Education University of Hong Kong, Hong Kong, China
| | - Zhifeng Wu
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Pu Zhang
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710054, China
| | - Chunru Liu
- State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
| | - Yafeng Wang
- Center for Excellence in Tibetan Plateau Earth Sciences and Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong Wang
- School of Economics, Jinan University, Guangzhou 510006, China
| | - Dongju Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - R Lawrence Edwards
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
d'Errico F, Pitarch Martí A, Wei Y, Gao X, Vanhaeren M, Doyon L. Zhoukoudian Upper Cave personal ornaments and ochre: Rediscovery and reevaluation. J Hum Evol 2021; 161:103088. [PMID: 34837740 DOI: 10.1016/j.jhevol.2021.103088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Personal ornaments have become a key cultural proxy to investigate cognitive evolution, modern human dispersal, and population dynamics. Here, we reassess personal ornaments found at Zhoukoudian Upper Cave and compare them with those from other Late Paleolithic Northern Chinese sites. We reappraise the information provided by Pei Wen Chung on Upper Cave personal ornaments lost during World War II and analyze casts of 17 of them, along with two unpublished objects displayed at the Zhoukoudian Site Museum and three original perforated teeth rediscovered at the Zhoukoudian Site Museum. We apply archeozoological, technological and use-wear analyses to document variation in ornamental practices and their change throughout the site stratigraphy. Badger, fox, red deer, sika deer, marten, and tiger teeth as well as carp bone, bird bone, Anadara shell, limestone beads, and perforated pebble appear to have been the preferred objects used as ornaments by Upper Cave visitors. Multivariate analysis of technological data highlights a correspondence between cultural layers and perforation techniques, with radial incising being typical of layer L2 and bidirectional incising of L4. The three rediscovered badger canines display features suggesting they were sewed on clothing rather than suspended from necklaces or bracelets. Elemental scanning electron microscopy coupled with energy dispersive X-ray spectromety and mineralogical (μ-Raman) analyses of red residues adhering to the rediscovered teeth indicate these objects were originally coated with ochre and identify variations that match differences in technology. The two ornaments exhibited at the Zhoukoudian Site Museum are ancient teeth that were recently perforated and should be excluded from the Upper Cave assemblage. A seriation of Late Paleolithic ornaments found at Northern Chinese sites identifies a clear-cut difference in preferred ornament types between western and eastern sites, interpreted as reflecting two long-lasting traditions in garment symbolic codes.
Collapse
Affiliation(s)
- Francesco d'Errico
- CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, CEDEX, France; SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway.
| | - Africa Pitarch Martí
- CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, CEDEX, France; Departament d'Arts I Conservació-Restauració, Facultat de Belles Arts, Universitat de Barcelona, Barcelona, Spain
| | - Yi Wei
- Centre for Excellence in Life and Paleoenvironment (CAS), Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; Department of Scientific Research, Beijing Museum of Natural History, Beijing, China
| | - Xing Gao
- Centre for Excellence in Life and Paleoenvironment (CAS), Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Marian Vanhaeren
- CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, CEDEX, France
| | - Luc Doyon
- CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, CEDEX, France; Institute of Cultural Heritage, Shandong University, Qingdao, China
| |
Collapse
|
17
|
Bacon AM, Bourgon N, Welker F, Cappellini E, Fiorillo D, Tombret O, Thi Mai Huong N, Anh Tuan N, Sayavonkhamdy T, Souksavatdy V, Sichanthongtip P, Antoine PO, Duringer P, Ponche JL, Westaway K, Joannes-Boyau R, Boesch Q, Suzzoni E, Frangeul S, Patole-Edoumba E, Zachwieja A, Shackelford L, Demeter F, Hublin JJ, Dufour É. A multi-proxy approach to exploring Homo sapiens' arrival, environments and adaptations in Southeast Asia. Sci Rep 2021; 11:21080. [PMID: 34702921 PMCID: PMC8548499 DOI: 10.1038/s41598-021-99931-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 01/29/2023] Open
Abstract
The capability of Pleistocene hominins to successfully adapt to different types of tropical forested environments has long been debated. In order to investigate environmental changes in Southeast Asia during a critical period for the turnover of hominin species, we analysed palaeoenvironmental proxies from five late Middle to Late Pleistocene faunas. Human teeth discoveries have been reported at Duoi U'Oi, Vietnam (70-60 ka) and Nam Lot, Laos (86-72 ka). However, the use of palaeoproteomics allowed us to discard the latter, and, to date, no human remains older than ~ 70 ka are documented in the area. Our findings indicate that tropical rainforests were highly sensitive to climatic changes over that period, with significant fluctuations of the canopy forests. Locally, large-bodied faunas were resilient to these fluctuations until the cooling period of the Marine Isotope Stage 4 (MIS 4; 74-59 ka) that transformed the overall biotope. Then, under strong selective pressures, populations with new phenotypic characteristics emerged while some other species disappeared. We argue that this climate-driven shift offered new foraging opportunities for hominins in a novel rainforest environment and was most likely a key factor in the settlement and dispersal of our species during MIS 4 in SE Asia.
Collapse
Affiliation(s)
- Anne-Marie Bacon
- grid.508487.60000 0004 7885 7602UMR 8045 BABEL, CNRS, Université de Paris, Faculté de Chirurgie dentaire, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | - Nicolas Bourgon
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.5802.f0000 0001 1941 7111Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
| | - Frido Welker
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Denis Fiorillo
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Olivier Tombret
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Nguyen Thi Mai Huong
- Anthropological and Palaeoenvironmental Department, Institute of Archaeology, Hoan Kiem District, Ha Noi, Vietnam
| | - Nguyen Anh Tuan
- Anthropological and Palaeoenvironmental Department, Institute of Archaeology, Hoan Kiem District, Ha Noi, Vietnam
| | - Thongsa Sayavonkhamdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Laos
| | - Viengkeo Souksavatdy
- Department of Heritage, Ministry of Information, Culture and Tourism, Vientiane, Laos
| | | | - Pierre-Olivier Antoine
- grid.121334.60000 0001 2097 0141Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Duringer
- grid.11843.3f0000 0001 2157 9291Ecole et Observatoire des Sciences de la Terre (EOST Géologie), Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UMR 7516), Institut de Géologie, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- grid.463965.b0000 0004 0452 6077UMR 7362 Laboratoire Image Ville et Environnement, Institut de Géologie, Strasbourg, France
| | - Kira Westaway
- grid.1004.50000 0001 2158 5405Department of Earth and Environmental Sciences, Traps’ MQ Luminescence Dating Facility, Macquarie University, Sydney, Australia
| | - Renaud Joannes-Boyau
- grid.1031.30000000121532610Geoarchaeology & Archaeometry Research Group, Southern Cross University, Lismore, Australia ,grid.458456.e0000 0000 9404 3263Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences, Beijing, China
| | - Quentin Boesch
- grid.11843.3f0000 0001 2157 9291Ecole et Observatoire des Sciences de la Terre (EOST Géologie), Institut de Physique du Globe de Strasbourg (IPGS) (CNRS/UMR 7516), Institut de Géologie, Université de Strasbourg, Strasbourg, France
| | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle-en-Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle-en-Vercors, France
| | - Elise Patole-Edoumba
- grid.410350.30000 0001 2174 9334Muséum d’Histoire Naturelle, La Rochelle, France
| | - Alexandra Zachwieja
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN USA
| | - Laura Shackelford
- grid.35403.310000 0004 1936 9991Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Fabrice Demeter
- grid.452548.a0000 0000 9817 5300Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, Copenhagen, Denmark ,UMR 7206 Eco-Anthropologie, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Jean-Jacques Hublin
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.410533.00000 0001 2179 2236Collège de France, Chaire de Paléoanthropologie, Paris, France
| | - Élise Dufour
- UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques, Environnements, Muséum National d’Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
18
|
Zhu K, Du P, Xiong J, Ren X, Sun C, Tao Y, Ding Y, Xu Y, Meng H, Wang CC, Wen SQ. Comparative Performance of the MGISEQ-2000 and Illumina X-Ten Sequencing Platforms for Paleogenomics. Front Genet 2021; 12:745508. [PMID: 34671385 PMCID: PMC8521044 DOI: 10.3389/fgene.2021.745508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The MGISEQ-2000 sequencer is widely used in various omics studies, but the performance of this platform for paleogenomics has not been evaluated. We here compare the performance of MGISEQ-2000 with the Illumina X-Ten on ancient human DNA using four samples from 1750BCE to 60CE. We found there were only slight differences between the two platforms in most parameters (duplication rate, sequencing bias, θ, δS, and λ). MGISEQ-2000 performed well on endogenous rate and library complexity although X-Ten had a higher average base quality and lower error rate. Our results suggest that MGISEQ-2000 and X-Ten have comparable performance, and MGISEQ-2000 can be an alternative platform for paleogenomics sequencing.
Collapse
Affiliation(s)
- Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Panxin Du
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianxue Xiong
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoying Ren
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Chang Sun
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yichen Tao
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Ding
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Yiran Xu
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hailiang Meng
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science, Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Shao-Qing Wen
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Archaeological Science, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Abstract
We review the state of paleoanthropology research in Asia. We survey the fossil record, articulate the current understanding, and delineate the points of contention. Although Asia received less attention than Europe and Africa did in the second half of the twentieth century, an increase in reliably dated fossil materials and the advances in genetics have fueled new research. The long and complex evolutionary history of humans in Asia throughout the Pleistocene can be explained by a balance of mechanisms, between gene flow among different populations and continuity of regional ancestry. This pattern is reflected in fossil morphology and paleogenomics. Critical understanding of the sociocultural forces that shaped the history of hominin fossil research in Asia is important in charting the way forward.
Collapse
Affiliation(s)
- Sang-Hee Lee
- Department of Anthropology, University of California, Riverside, California 92521, USA
| | - Autumn Hudock
- Department of Anthropology, University of North Carolina, Charlotte, North Carolina 28223, USA
- Current affiliation: Department of Anthropology, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
20
|
Beyer RM, Krapp M, Eriksson A, Manica A. Climatic windows for human migration out of Africa in the past 300,000 years. Nat Commun 2021; 12:4889. [PMID: 34429408 PMCID: PMC8384873 DOI: 10.1038/s41467-021-24779-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Whilst an African origin of modern humans is well established, the timings and routes of their expansions into Eurasia are the subject of heated debate, due to the scarcity of fossils and the lack of suitably old ancient DNA. Here, we use high-resolution palaeoclimate reconstructions to estimate how difficult it would have been for humans in terms of rainfall availability to leave the African continent in the past 300k years. We then combine these results with an anthropologically and ecologically motivated estimate of the minimum level of rainfall required by hunter-gatherers to survive, allowing us to reconstruct when, and along which geographic paths, expansions out of Africa would have been climatically feasible. The estimated timings and routes of potential contact with Eurasia are compatible with archaeological and genetic evidence of human expansions out of Africa, highlighting the key role of palaeoclimate variability for modern human dispersals.
Collapse
Affiliation(s)
- Robert M Beyer
- Department of Zoology, University of Cambridge, Cambridge, UK.
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany.
| | - Mario Krapp
- Department of Zoology, University of Cambridge, Cambridge, UK
- GNS Science, Lower Hutt, New Zealand
| | - Anders Eriksson
- cGEM, cGEM, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Reply to Martinón-Torres et al. and Higham and Douka: Refusal to acknowledge dating complexities of Fuyan Cave strengthens our case. Proc Natl Acad Sci U S A 2021; 118:2104818118. [PMID: 34031256 DOI: 10.1073/pnas.2104818118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Martinón-Torres M, Cai Y, Tong H, Pei S, Xing S, Bermúdez de Castro JM, Wu X, Liu W. On the misidentification and unreliable context of the new "human teeth" from Fuyan Cave (China). Proc Natl Acad Sci U S A 2021; 118:e2102961118. [PMID: 34031253 PMCID: PMC8179210 DOI: 10.1073/pnas.2102961118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- María Martinón-Torres
- Dental Anthropology Group, National Research Center on Human Evolution, 09002 Burgos, Spain
- Anthropology Department, University College London, London WC1H 0BW, United Kingdom
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haowen Tong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Shuwen Pei
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - José María Bermúdez de Castro
- Dental Anthropology Group, National Research Center on Human Evolution, 09002 Burgos, Spain
- Anthropology Department, University College London, London WC1H 0BW, United Kingdom
| | - Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| |
Collapse
|
23
|
The reliability of late radiocarbon dates from the Paleolithic of southern China. Proc Natl Acad Sci U S A 2021; 118:2103798118. [PMID: 34031254 DOI: 10.1073/pnas.2103798118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Yu X, Li H. Origin of ethnic groups, linguistic families, and civilizations in China viewed from the Y chromosome. Mol Genet Genomics 2021; 296:783-797. [PMID: 34037863 DOI: 10.1007/s00438-021-01794-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
East Asia, geographically extending to the Pamir Plateau in the west, to the Himalayan Mountains in the southwest, to Lake Baikal in the north and to the South China Sea in the south, harbors a variety of people, cultures, and languages. To reconstruct the natural history of East Asians is a mission of multiple disciplines, including genetics, archaeology, linguistics, and ethnology. Geneticists confirm the recent African origin of modern East Asians. Anatomically modern humans arose in Africa and immigrated into East Asia via a southern route approximately 50,000 years ago. Following the end of the Last Glacial Maximum approximately 12,000 years ago, rice and millet were domesticated in the south and north of East Asia, respectively, which allowed human populations to expand and linguistic families and ethnic groups to develop. These Neolithic populations produced a strong relation between the present genetic structures and linguistic families. The expansion of the Hongshan people from northeastern China relocated most of the ethnic populations on a large scale approximately 5300 years ago. Most of the ethnic groups migrated to remote regions, producing genetic structure differences between the edge and center of East Asia. In central China, pronounced population admixture occurred and accelerated over time, which subsequently formed the Han Chinese population and eventually the Chinese civilization. Population migration between the north and the south throughout history has left a smooth gradient in north-south changes in genetic structure. Observation of the process of shaping the genetic structure of East Asians may help in understanding the global natural history of modern humans.
Collapse
Affiliation(s)
- Xueer Yu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China.
| |
Collapse
|
25
|
Zhang Y, Lu H, Zhang X, Zhu M, He K, Yuan H, Xing S. An early Holocene human skull from Zhaoguo cave, Southwestern China. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:599-610. [PMID: 33931851 DOI: 10.1002/ajpa.24294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES In this study, we describe a newly excavated early Holocene human cranium from Guizhou, Southwestern China, namely the Zhaoguo M1 (ZG 1). We aim to evaluate its morphological resemblance with Late Pleistocene human, and Northern and Southern China Neolithic populations. We also aim to infer its position in the process of East Asian population regionalization. MATERIALS AND METHODS The ZG 1 skull is almost complete, only missing parts of the right parietal and the basicranium around the foramen magnum. Comparative samples include Late Pleistocene humans and Neolithic populations from Northern and Southern China. Univariate and multivariate analyses are carried out in the study. RESULTS ZG 1 has a dolichocephalic cranium, wide zygomatic breadth, moderate glabella and supraobtial projection, marked canine fossa, and thin cranial vault. The nasal floor, maximum cranial breadth position, and frontal arc proportion are all congruent with modern human. Statistical analysis suggests that ZG 1's measurements are most similar to those of Southern China Neolithic specimens, with some closer to Late Pleistocene humans. CONCLUSION ZG 1 shows a clear affinity with Southern China Neolithic populations, providing further support that regionalization of morphological variability patterns between Northern and Southern Neolithic populations could have originated at least 10,000 years ago.
Collapse
Affiliation(s)
- Yameng Zhang
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, China.,Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Hongliang Lu
- Department of Archaeology and Museology, Sichuan University, Chengdu, China.,National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu, China
| | - Xinglong Zhang
- Guizhou Municipal Institute of Cultural Relics and Archaeology, Guiyang, China
| | - Mei Zhu
- Department of Archaeology and Museology, Sichuan University, Chengdu, China
| | - Kunyu He
- Chengdu Municipal Institute of Cultural Relics and Archaeology, Chengdu, China
| | - Haibing Yuan
- Department of Archaeology and Museology, Sichuan University, Chengdu, China.,National Demonstration Center for Experimental Archaeology Education, Sichuan University, Chengdu, China
| | - Song Xing
- Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
| |
Collapse
|
26
|
Abstract
The Yangtze River Valley is an important economic region and one of the cradles of human civilization. It is also the site of frequent floods, droughts, and other natural disasters. Conducting Holocene environmental archaeology research in this region is of great importance when studying the evolution of the relationship between humans and the environment and the interactive effects humans had on the environment from 10.0 to 3.0 ka BP, for which no written records exist. This review provides a comprehensive summary of materials that have been published over the past several decades concerning Holocene environmental archaeology in the Yangtze River Valley, to further understand large-scale regional Holocene environmental and cultural interaction within this area. The results show that: (1) in recent years, Holocene envi-ronmental archaeology research in the Yangtze River Valley has primarily taken paleoflood and sea-level change stratigraphical events to be the foundational threads for study. This began with research on the spatiotemporal distribution of archaeological sites, typical archaeological site stratigraphy, and research on background features concerning environmental evolution recorded by the regional natural sedimentary strata. (2) Significant progress has been made at the upper, middle, and lower reaches of the Yangtze River, indicating that Holocene environmental ar-chaeology research along the Yangtze River Valley is deepening and broadening. (3) Dramatic changes to Neolithic cultures that occurred approximately 4.0 ka BP were influenced by climate change and associated consequences, although the impacts differed on the various Neolithic cultures in the Yangtze River Valley. Local topography, regional climate, and varying survival strategies may have contributed to these differences. (4) Newly-published research pays particular attention to the sedimentary records of the past with resolutions as high as one year to several months, the degree to which humans altered the quality of their natural environment, and human adjustments to settlement and subsistence practices during periods of Holocene climate change. The application of technologies such as remote sensing, geographic information systems (GIS), and molecular biological analysis are also gradually being extended into the research field of Holocene environmental archaeology in the Yangtze River Valley.
Collapse
|
27
|
|