1
|
Wang S, Jiménez-Gracia L, De Amaral AA, Vlachos IS, Plummer J, Heyn H, Martelotto LG. FixNCut: A Practical Guide to Sample Preservation by Reversible Fixation for Single Cell Assays. Bio Protoc 2024; 14:e5063. [PMID: 39315321 PMCID: PMC11417608 DOI: 10.21769/bioprotoc.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
The quality of standard single-cell experiments often depends on the immediate processing of cells or tissues post-harvest to preserve fragile and vulnerable cell populations, unless the samples are adequately fixed and stored. Despite the recent rise in popularity of probe-based and aldehyde-fixed RNA assays, these methods face limitations in species and target availability and are not suitable for immunoprofiling or assessing chromatin accessibility. Recently, a reversible fixation strategy known as FixNCut has been successfully deployed to separate sampling from downstream applications in a reproducible and robust manner, avoiding stress or necrosis-related artifacts. In this article, we present an optimized and robust practical guide to the FixNCut protocol to aid the end-to-end adaptation of this versatile method. This protocol not only decouples tissue or cell harvesting from single-cell assays but also enables a flexible and decentralized workflow that unlocks the potential for single-cell analysis as well as unconventional study designs that were previously considered unfeasible. Key features • Reversible fixation: Preserves cellular and molecular structures with the option to later reverse the fixation for downstream applications, maintaining cell integrity • Compatibility with single-cell assays: Supports single-cell genomic assays such as scRNA-seq and ATAC-seq, essential for high-resolution analysis of cell function and gene expression • Flexibility in sample handling: Allows immediate fixation post-collection, decoupling sample processing from analysis, beneficial in settings where immediate processing is impractical • Preservation of RNA and DNA integrity: Effectively preserves RNA and DNA, reducing degradation to ensure accurate transcriptomic and genomic profiling • Suitability for various biological samples: Applicable to a wide range of biological samples, including tissues and cell suspensions, whether freshly isolated or post-dissociated • Enables multi-center studies: Facilitates collaborative research across multiple centers by allowing sample fixation at the point of collection, enhancing research scale and diversity • Avoidance of artifacts: Minimizes stress or necrosis-related artifacts, preserving the natural cellular physiology for accurate genomic and transcriptomic analysis.
Collapse
Affiliation(s)
- Shuoshuo Wang
- Spatial Technologies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Jiménez-Gracia
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Antonella Arruda De Amaral
- Spatial Technologies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ioannis S. Vlachos
- Spatial Technologies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jasmine Plummer
- Center for Spatial Omics, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Cellular and Molecular Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Comprehensive Cancer Center, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- Omniscope, Barcelona, Spain
| | - Luciano G. Martelotto
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Koo D, Mao Z, Dimatteo R, Noguchi M, Tsubamoto N, McLaughlin J, Tran W, Lee S, Cheng D, de Rutte J, Burton Sojo G, Witte ON, Di Carlo D. Defining T cell receptor repertoires using nanovial-based binding and functional screening. Proc Natl Acad Sci U S A 2024; 121:e2320442121. [PMID: 38536748 PMCID: PMC10998554 DOI: 10.1073/pnas.2320442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
The ability to selectively bind to antigenic peptides and secrete effector molecules can define rare and low-affinity populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs inducing the secretion of effector molecules including IFN-γ and granzyme B that are accumulated on nanovials, allowing sorting based on both binding and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αβ-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes and secretions with oligo-barcoded detection antibodies, we could accurately link TCR sequences to specific targets and rank each TCR based on the corresponding cell's secretion level. Using the technique, we identified an expanded repertoire of functional TCRs targeting viral antigens with high specificity and found rare TCRs with activity against cancer-specific splicing-enhanced epitopes.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Miyako Noguchi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Jami McLaughlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Partillion Bioscience, Pasadena, CA91107
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Partillion Bioscience, Pasadena, CA91107
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA90095
- California NanoSystems Institute, Los Angeles, CA90095
| |
Collapse
|
3
|
Jiménez-Gracia L, Marchese D, Nieto JC, Caratù G, Melón-Ardanaz E, Gudiño V, Roth S, Wise K, Ryan NK, Jensen KB, Hernando-Momblona X, Bernardes JP, Tran F, Sievers LK, Schreiber S, van den Berge M, Kole T, van der Velde PL, Nawijn MC, Rosenstiel P, Batlle E, Butler LM, Parish IA, Plummer J, Gut I, Salas A, Heyn H, Martelotto LG. FixNCut: single-cell genomics through reversible tissue fixation and dissociation. Genome Biol 2024; 25:81. [PMID: 38553769 PMCID: PMC10979608 DOI: 10.1186/s13059-024-03219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.
Collapse
Affiliation(s)
- Laura Jiménez-Gracia
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Domenica Marchese
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan C Nieto
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Ginevra Caratù
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisa Melón-Ardanaz
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Sara Roth
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Monash University Department of Surgery, Alfred Hospital, Melbourne, VIC, Australia
| | - Kellie Wise
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Research Facility, Adelaide, South Australia, Australia
| | - Natalie K Ryan
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kirk B Jensen
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Research Facility, Adelaide, South Australia, Australia
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tessa Kole
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Petra L van der Velde
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Lisa M Butler
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jasmine Plummer
- St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), 08028, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
- Omniscope, Barcelona, Spain.
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia.
- Omniscope, Barcelona, Spain.
| |
Collapse
|
4
|
Jayaraman S, Montagne JM, Nirschl TR, Marcisak E, Johnson J, Huff A, Hsiao MH, Nauroth J, Heumann T, Zarif JC, Jaffee EM, Azad N, Fertig EJ, Zaidi N, Larman HB. Barcoding intracellular reverse transcription enables high-throughput phenotype-coupled T cell receptor analyses. CELL REPORTS METHODS 2023; 3:100600. [PMID: 37776855 PMCID: PMC10626196 DOI: 10.1016/j.crmeth.2023.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Assays linking cellular phenotypes with T cell or B cell antigen receptor sequences are crucial for characterizing adaptive immune responses. Existing methodologies are limited by low sample throughput and high cost. Here, we present INtraCEllular Reverse Transcription with Sorting and sequencing (INCERTS), an approach that combines molecular indexing of receptor repertoires within intact cells and fluorescence-activated cell sorting (FACS). We demonstrate that INCERTS enables efficient processing of millions of cells from pooled human peripheral blood mononuclear cell (PBMC) samples while retaining robust association between T cell receptor (TCR) sequences and cellular phenotypes. We used INCERTS to discover antigen-specific TCRs from patients with cancer immunized with a novel mutant KRAS peptide vaccine. After ex vivo stimulation, 28 uniquely barcoded samples were pooled prior to FACS into peptide-reactive and non-reactive CD4+ and CD8+ populations. Combining complementary patient-matched single-cell RNA sequencing (scRNA-seq) data enabled retrieval of full-length, paired TCR alpha and beta chain sequences for future validation of therapeutic utility.
Collapse
Affiliation(s)
- Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janelle M Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Quantitative Sciences, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas R Nirschl
- Pathobiology Graduate Program, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA
| | - Emily Marcisak
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanette Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda Huff
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meng-Hsuan Hsiao
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Julie Nauroth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thatcher Heumann
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Hematology Oncology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jelani C Zarif
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21205, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nilo Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Quantitative Sciences, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Pan Y, Phillips JW, Zhang BD, Noguchi M, Kutschera E, McLaughlin J, Nesterenko PA, Mao Z, Bangayan NJ, Wang R, Tran W, Yang HT, Wang Y, Xu Y, Obusan MB, Cheng D, Lee AH, Kadash-Edmondson KE, Champhekar A, Puig-Saus C, Ribas A, Prins RM, Seet CS, Crooks GM, Witte ON, Xing Y. IRIS: Discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. Proc Natl Acad Sci U S A 2023; 120:e2221116120. [PMID: 37192158 PMCID: PMC10214192 DOI: 10.1073/pnas.2221116120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/05/2023] [Indexed: 05/18/2023] Open
Abstract
Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.
Collapse
Affiliation(s)
- Yang Pan
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA90095
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - John W. Phillips
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Beatrice D. Zhang
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Miyako Noguchi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Eric Kutschera
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jami McLaughlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | | | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Nathanael J. Bangayan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Robert Wang
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Wendy Tran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Harry T. Yang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA90095
| | - Yuanyuan Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA90095
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yang Xu
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Matthew B. Obusan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
| | - Alex H. Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Kathryn E. Kadash-Edmondson
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Ameya Champhekar
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Robert M. Prins
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Christopher S. Seet
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
| | - Gay M. Crooks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Owen N. Witte
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| |
Collapse
|
6
|
Fahad AS, Chung CY, López Acevedo SN, Boyle N, Madan B, Gutiérrez-González MF, Matus-Nicodemos R, Laflin AD, Ladi RR, Zhou J, Wolfe J, Llewellyn-Lacey S, Koup RA, Douek DC, Balfour HH, Price DA, DeKosky BJ. Cell activation-based screening of natively paired human T cell receptor repertoires. Sci Rep 2023; 13:8011. [PMID: 37198258 PMCID: PMC10192375 DOI: 10.1038/s41598-023-31858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/20/2023] [Indexed: 05/19/2023] Open
Abstract
Adoptive immune therapies based on the transfer of antigen-specific T cells have been used successfully to treat various cancers and viral infections, but improved techniques are needed to identify optimally protective human T cell receptors (TCRs). Here we present a high-throughput approach to the identification of natively paired human TCRα and TCRβ (TCRα:β) genes encoding heterodimeric TCRs that recognize specific peptide antigens bound to major histocompatibility complex molecules (pMHCs). We first captured and cloned TCRα:β genes from individual cells, ensuring fidelity using a suppression PCR. We then screened TCRα:β libraries expressed in an immortalized cell line using peptide-pulsed antigen-presenting cells and sequenced activated clones to identify the cognate TCRs. Our results validated an experimental pipeline that allows large-scale repertoire datasets to be annotated with functional specificity information, facilitating the discovery of therapeutically relevant TCRs.
Collapse
Affiliation(s)
- Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Cheng Yu Chung
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Sheila N López Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Nicoleen Boyle
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | | | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Rukmini R Ladi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - John Zhou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Jacy Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, CF14 4XN, UK
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Henry H Balfour
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, CF14 4XN, UK
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66044, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, 66044, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Koo D, Mao Z, Dimatteo R, Tsubamoto N, Noguchi M, McLaughlin J, Tran W, Lee S, Cheng D, de Rutte J, Sojo GB, Witte ON, Di Carlo D. Defining T cell receptor repertoires using nanovial-based affinity and functional screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524440. [PMID: 36711524 PMCID: PMC9882161 DOI: 10.1101/2023.01.17.524440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to selectively bind to antigenic peptides and secrete cytokines can define populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with millions of peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs and secrete cytokines on nanovials, allowing sorting based on both affinity and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αβ-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes we could link TCR sequence to targets with 100% accuracy. We identified with high specificity an expanded repertoire of functional TCRs targeting viral antigens compared to standard techniques.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jami McLaughlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Wendy Tran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Partillion Bioscience; Los Angeles, CA 90095, USA
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Partillion Bioscience; Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- California NanoSystems Institute; Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Hong CH, Pyo HS, Baek IC, Kim TG. Rapid identification of CMV-specific TCRs via reverse TCR cloning system based on bulk TCR repertoire data. Front Immunol 2022; 13:1021067. [PMID: 36466875 PMCID: PMC9716090 DOI: 10.3389/fimmu.2022.1021067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Advances in next-generation sequencing (NGS) have improved the resolution of T-cell receptor (TCR) repertoire analysis, and recent single-cell sequencing has made it possible to obtain information about TCR pairs. In our previous study, cytomegalovirus (CMV) pp65-specific T-cell response restricted by a single human leukocyte antigen (HLA) class I allotype was observed in an individual. Therefore, to effectively clone an antigen-specific TCR from these T cells, we developed a TCR cloning system that does not require a single cell level. First, we established the improved Jurkat reporter cell line, which was TCRαβ double knock-out and expressed CD8αβ molecules. Furthermore, functional TCRs were directly obtained by reverse TCR cloning using unique CDR3-specific PCR primers after bulk TCR sequencing of activation marker-positive CD8 T cells by NGS. A total of 15 TCRα and 14 TCRβ strands were successfully amplified by PCR from cDNA of 4-1BB-positive CD8 T cells restricted by HLA-A*02:01, HLA-A*02:06, HLA-B*07:02, and HLA-B*40:06. The panels with combinations of TCRα and TCRβ genes were investigated using Jurkat reporter cell line and artificial antigen-presenting cells (APCs). In two TCR pairs restricted by HLA-A*02:01, one TCR pair by HLA-A*02:06, four TCR pairs by HLA-B*07:02, and one TCR pair by HLA-B*40:06, their specificity and affinity were confirmed. The TCR pair of A*02:01/1-1 showed alloreactivity to HLA-A*02:06. The one TCR pair showed a higher response to the naturally processed antigen than that of the peptide pool. This reverse TCR cloning system will not only provide functional information to TCR repertoire analysis by NGS but also help in the development of TCR-T therapy.
Collapse
Affiliation(s)
- Cheol-Hwa Hong
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hong-Seon Pyo
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
9
|
An Innovative Approach to Tissue Processing and Cell Sorting of Fixed Cells for Subsequent Single-Cell RNA Sequencing. Int J Mol Sci 2022; 23:ijms231810233. [PMID: 36142141 PMCID: PMC9499188 DOI: 10.3390/ijms231810233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Although single-cell RNA sequencing (scRNA-seq) is currently the gold standard for the analysis of cell-specific expression profiles, the options for processing, staining, and preserving fresh cells remain very limited. Immediate and correct tissue processing is a critical determinant of scRNA-seq success. One major limitation is the restricted compatibility of fixation approaches, which must not destabilize or alter antibody labeling or RNA content or interfere with cell integrity. An additional limitation is the availability of expensive, high-demand cell-sorting equipment to exclude debris and dead or unwanted cells before proceeding with sample sequencing. The goal of this study was to develop a method that allows cells to be fixed and stored prior to FACS sorting for scRNA-seq without compromising the quality of the results. Finally, the challenge of preserving as many living cells as possible during tissue processing is another crucial issue addressed in this study. Our study focused on pancreatic ductal adenocarcinoma samples, where the number of live cells is rather limited, as in many other tumor tissues. Harsh tissue dissociation methods and sample preparation for analysis can negatively affect cell viability. Using the murine pancreatic cancer model Pan02, we evaluated the semi-automated mechanical/enzymatic digestion of solid tumors by gentleMACS Dissociator and compared it with mechanical dissociation of the same tissue. Moreover, we investigated a type of cell fixation that is successful in preserving cell RNA integrity yet compatible with FACS and subsequent scRNA-sequencing. Our protocol allows tissue to be dissociated and stained in one day and proceeds to cell sorting and scRNA-seq later, which is a great advantage for processing clinical patient material.
Collapse
|
10
|
Physical and in silico immunopeptidomic profiling of a cancer antigen prostatic acid phosphatase reveals targets enabling TCR isolation. Proc Natl Acad Sci U S A 2022; 119:e2203410119. [PMID: 35878026 PMCID: PMC9351518 DOI: 10.1073/pnas.2203410119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.
Collapse
|
11
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
12
|
Fahad AS, Chung CY, Lopez Acevedo SN, Boyle N, Madan B, Gutiérrez-González MF, Matus-Nicodemos R, Laflin AD, Ladi RR, Zhou J, Wolfe J, Llewellyn-Lacey S, Koup RA, Douek DC, Balfour Jr HH, Price DA, DeKosky BJ. Immortalization and functional screening of natively paired human T cell receptor repertoires. Protein Eng Des Sel 2022; 35:gzab034. [PMID: 35174859 PMCID: PMC9005053 DOI: 10.1093/protein/gzab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. We developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale, and to exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen-specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of disease-relevant antigen interactions with human TCRs.
Collapse
Affiliation(s)
- Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Cheng-Yu Chung
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sheila N Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Nicoleen Boyle
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | | | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Rukmini R Ladi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - John Zhou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Jacy Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry H Balfour Jr
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66044, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Nesterenko PA, McLaughlin J, Tsai BL, Burton Sojo G, Cheng D, Zhao D, Mao Z, Bangayan NJ, Obusan MB, Su Y, Ng RH, Chour W, Xie J, Li YR, Lee D, Noguchi M, Carmona C, Phillips JW, Kim JT, Yang L, Heath JR, Boutros PC, Witte ON. HLA-A ∗02:01 restricted T cell receptors against the highly conserved SARS-CoV-2 polymerase cross-react with human coronaviruses. Cell Rep 2021; 37:110167. [PMID: 34919800 PMCID: PMC8660260 DOI: 10.1016/j.celrep.2021.110167] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-reactivity and direct killing of target cells remain underexplored for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific CD8+ T cells. Isolation of T cell receptors (TCRs) and overexpression in allogeneic cells allows for extensive T cell reactivity profiling. We identify SARS-CoV-2 RNA-dependent RNA polymerase (RdRp/NSP12) as highly conserved, likely due to its critical role in the virus life cycle. We perform single-cell TCRαβ sequencing in human leukocyte antigen (HLA)-A∗02:01-restricted, RdRp-specific T cells from SARS-CoV-2-unexposed individuals. Human T cells expressing these TCRαβ constructs kill target cell lines engineered to express full-length RdRp. Three TCR constructs recognize homologous epitopes from common cold coronaviruses, indicating CD8+ T cells can recognize evolutionarily diverse coronaviruses. Analysis of individual TCR clones may help define vaccine epitopes that can induce long-term immunity against SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Pavlo A Nesterenko
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon L Tsai
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Zhao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathanael J Bangayan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Obusan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Rachel H Ng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - William Chour
- Institute for Systems Biology, Seattle, WA 98109, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingyi Xie
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Camille Carmona
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John W Phillips
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jocelyn T Kim
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA 98109, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Single-cell analysis of immune repertoires enabled. Proc Natl Acad Sci U S A 2021; 118:2100106118. [PMID: 33723008 DOI: 10.1073/pnas.2100106118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|