1
|
Sun X, Moreno Caceres S, Yegambaram M, Lu Q, Pokharel MD, Boehme JT, Datar SA, Aggarwal S, Wang T, Fineman JR, Black SM. The mitochondrial redistribution of ENOS is regulated by AKT1 and dimer status. Nitric Oxide 2024; 152:90-100. [PMID: 39332480 DOI: 10.1016/j.niox.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Previously, we have shown that endothelial nitric-oxide synthase (eNOS) dimer levels directly correlate with the interaction of eNOS with hsp90 (heat shock protein 90). Further, the disruption of eNOS dimerization correlates with its redistribution to the mitochondria. However, the causal link between these events has yet to be investigated and was the focus of this study. Our data demonstrates that simvastatin, which decreases the mitochondrial redistribution of eNOS, increased eNOS-hsp90 interactions and enhanced eNOS dimerization in cultured pulmonary arterial endothelial cells (PAEC) from a lamb model of pulmonary hypertension (PH). Our data also show that the dimerization of a monomeric fraction of human recombinant eNOS was stimulated in the presence of hsp90 and ATP. The over-expression of a dominant negative mutant of hsp90 (DNHsp90) decreased eNOS dimer levels and enhanced its mitochondrial redistribution. We also found that the peroxynitrite donor3-morpholinosydnonimine (SIN-1) increased the mitochondrial redistribution of eNOS in PAEC and this was again associated with decreased eNOS dimer levels. Our data also show in COS-7 cells, the SIN-1 mediated mitochondrial redistribution of wildtype eNOS (WT-eNOS) is significantly higher than a dimer stable eNOS mutant protein (C94R/C99R-eNOS). Conversely, the mitochondrial redistribution of a monomeric eNOS mutant protein (C96A-eNOS) was enhanced. Finally, we linked the SIN-1-mediated mitochondrial redistribution of eNOS to the Akt1-mediated phosphorylation of eNOS at Serine(S)617 and showed that the accessibility of this residue to phosphorylation is regulated by dimerization status. Thus, our data reveal a novel mechanism of pulmonary endothelial dysfunction mediated by mitochondrial redistribution of eNOS, regulated by dimerization status and the phosphorylation of S617.
Collapse
Affiliation(s)
- Xutong Sun
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Santiago Moreno Caceres
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Marissa D Pokharel
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA
| | - Jason T Boehme
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sanjeev A Datar
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Jeffrey R Fineman
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; The Department of Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
2
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Strobel RJ, Ta HQ, Young AM, Wisniewski AM, Norman AV, Rotar EP, Stoler MH, Kron IL, Sonkusare SK, Roeser ME, Laubach VE. Transient receptor potential vanilloid 4 channel inhibition attenuates lung ischemia-reperfusion injury in a porcine lung transplant model. J Thorac Cardiovasc Surg 2024; 168:e121-e132. [PMID: 38678474 PMCID: PMC11416340 DOI: 10.1016/j.jtcvs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel important in many physiological and pathophysiological processes, including pulmonary disease. Using a murine model, we previously demonstrated that TRPV4 mediates lung ischemia-reperfusion injury, the major cause of primary graft dysfunction after transplant. The current study tests the hypothesis that treatment with a TRPV4 inhibitor will attenuate lung ischemia-reperfusion injury in a clinically relevant porcine lung transplant model. METHODS A porcine left-lung transplant model was used. Animals were randomized to 2 treatment groups (n = 5/group): vehicle or GSK2193874 (selective TRPV4 inhibitor). Donor lungs underwent 30 minutes of warm ischemia and 24 hours of cold preservation before left lung allotransplantation and 4 hours of reperfusion. Vehicle or GSK2193874 (1 mg/kg) was administered to the recipient as a systemic infusion after recipient lung explant. Lung function, injury, and inflammatory biomarkers were compared. RESULTS After transplant, left lung oxygenation was significantly improved in the TRPV4 inhibitor group after 3 and 4 hours of reperfusion. Lung histology scores and edema were significantly improved, and neutrophil infiltration was significantly reduced in the TRPV4 inhibitor group. TRPV4 inhibitor-treated recipients had significantly reduced expression of interleukin-8, high mobility group box 1, P-selectin, and tight junction proteins (occludin, claudin-5, and zonula occludens-1) in bronchoalveolar lavage fluid as well as reduced angiopoietin-2 in plasma, all indicative of preservation of endothelial barrier function. CONCLUSIONS Treatment of lung transplant recipients with TRPV4 inhibitor significantly improves lung function and attenuates ischemia-reperfusion injury. Thus, selective TRPV4 inhibition may be a promising therapeutic strategy to prevent primary graft dysfunction after transplant.
Collapse
Affiliation(s)
- Raymond J Strobel
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Huy Q Ta
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Andrew M Young
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Alex M Wisniewski
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Anthony V Norman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Evan P Rotar
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Mark H Stoler
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center and the Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Va
| | - Mark E Roeser
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
4
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Hu XQ, Zhang L. Role of transient receptor potential channels in the regulation of vascular tone. Drug Discov Today 2024; 29:104051. [PMID: 38838960 DOI: 10.1016/j.drudis.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
6
|
Prolo C, Piacenza L, Radi R. Peroxynitrite: a multifaceted oxidizing and nitrating metabolite. Curr Opin Chem Biol 2024; 80:102459. [PMID: 38723343 DOI: 10.1016/j.cbpa.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 06/12/2024]
Abstract
Peroxynitrite, a short-lived and reactive oxidant, emerges from the diffusion-controlled reaction between the superoxide radical and nitric oxide. Evidence shows that peroxynitrite is a critical mediator in physiological and pathological processes such as the immune response, inflammation, cancer, neurodegeneration, vascular dysfunction, and aging. The biochemistry of peroxynitrite is multifaceted, involving one- or two-electron oxidations and nitration reactions. This minireview highlights recent findings of peroxynitrite acting as a metabolic mediator in processes ranging from oxidative killing to redox signaling. Selected examples of nitrated proteins (i.e., 3-nitrotyrosine) are surveyed to underscore the role of this post-translational modification on cell homeostasis. While accumulated evidence shows that large amounts of peroxynitrite participates of broad oxidation and nitration events in invading pathogens and host tissues, a closer look supports that low to moderate levels selectively trigger signal transduction cascades. Peroxynitrite probes and redox-based pharmacology are instrumental to further understand the biological actions of this reactive metabolite.
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
7
|
Hong SG, Ashby JW, Kennelly JP, Wu M, Steel M, Chattopadhyay E, Foreman R, Tontonoz P, Tarling EJ, Turowski P, Gallagher-Jones M, Mack JJ. Mechanosensitive membrane domains regulate calcium entry in arterial endothelial cells to protect against inflammation. J Clin Invest 2024; 134:e175057. [PMID: 38771648 PMCID: PMC11213468 DOI: 10.1172/jci175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
Endothelial cells (ECs) in the descending aorta are exposed to high laminar shear stress, and this supports an antiinflammatory phenotype. High laminar shear stress also induces flow-aligned cell elongation and front-rear polarity, but whether these are required for the antiinflammatory phenotype is unclear. Here, we showed that caveolin-1-rich microdomains polarize to the downstream end of ECs that are exposed to continuous high laminar flow. These microdomains were characterized by high membrane rigidity, filamentous actin (F-actin), and raft-associated lipids. Transient receptor potential vanilloid (TRPV4) ion channels were ubiquitously expressed on the plasma membrane but mediated localized Ca2+ entry only at these microdomains where they physically interacted with clustered caveolin-1. These focal Ca2+ bursts activated endothelial nitric oxide synthase within the confines of these domains. Importantly, we found that signaling at these domains required both cell body elongation and sustained flow. Finally, TRPV4 signaling at these domains was necessary and sufficient to suppress inflammatory gene expression and exogenous activation of TRPV4 channels ameliorated the inflammatory response to stimuli both in vitro and in vivo. Our work revealed a polarized mechanosensitive signaling hub in arterial ECs that dampened inflammatory gene expression and promoted cell resilience.
Collapse
Affiliation(s)
- Soon-Gook Hong
- Department of Medicine, Division of Cardiology
- Molecular Biology Institute
| | | | - John P. Kennelly
- Molecular Biology Institute
- Department of Pathology and Laboratory Medicine, and
| | - Meigan Wu
- Department of Medicine, Division of Cardiology
- Molecular Biology Institute
| | | | | | - Rob Foreman
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California, USA
| | - Peter Tontonoz
- Molecular Biology Institute
- Department of Pathology and Laboratory Medicine, and
| | | | - Patric Turowski
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Marcus Gallagher-Jones
- Correlated Imaging, Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Julia J. Mack
- Department of Medicine, Division of Cardiology
- Molecular Biology Institute
| |
Collapse
|
8
|
Salvagno M, Sterchele ED, Zaccarelli M, Mrakic-Sposta S, Welsby IJ, Balestra C, Taccone FS. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2024; 25:3007. [PMID: 38474253 DOI: 10.3390/ijms25053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Mario Zaccarelli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20133 Milan, Italy
| | - Ian James Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1050 Elsene, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1000 Brussels, Belgium
| |
Collapse
|
9
|
Mao A, Zhang K, Kan H, Gao M, Wang Z, Zhou T, Shao J, He D. Single-Cell RNA-Seq Reveals Coronary Heterogeneity and Identifies CD133 +TRPV4 high Endothelial Subpopulation in Regulating Flow-Induced Vascular Tone in Mice. Arterioscler Thromb Vasc Biol 2024; 44:653-665. [PMID: 38269590 PMCID: PMC10880935 DOI: 10.1161/atvbaha.123.319516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Single-cell RNA-Seq analysis can determine the heterogeneity of cells between different tissues at a single-cell level. Coronary artery endothelial cells (ECs) are important to coronary blood flow. However, little is known about the heterogeneity of coronary artery ECs, and cellular identity responses to flow. Identifying endothelial subpopulations will contribute to the precise localization of vascular endothelial subpopulations, thus enabling the precision of vascular injury treatment. METHODS Here, we performed a single-cell RNA sequencing of 31 962 cells and functional assays of 3 branches of the coronary arteries (right coronary artery/circumflex left coronary artery/anterior descending left coronary artery) in wild-type mice. RESULTS We found a compendium of 7 distinct cell types in mouse coronary arteries, mainly ECs, granulocytes, cardiac myocytes, smooth muscle cells, lymphocytes, myeloid cells, and fibroblast cells, and showed spatial heterogeneity between arterial branches. Furthermore, we revealed a subpopulation of coronary artery ECs, CD133+TRPV4high ECs. TRPV4 (transient receptor potential vanilloid 4) in CD133+TRPV4high ECs is important for regulating vasodilation and coronary blood flow. CONCLUSIONS Our study elucidates the nature and range of coronary arterial cell diversity and highlights the importance of coronary CD133+TRPV4high ECs in regulating coronary vascular tone.
Collapse
Affiliation(s)
- Aiqin Mao
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
- School of Food Science and Technology (A.M., D.H.), Jiangnan University, China
| | - Ka Zhang
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Hao Kan
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Mengru Gao
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Zhiwei Wang
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Tingting Zhou
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Jing Shao
- Wuxi School of Medicine (A.M., K.Z., H.K., M.G., Z.W., T.Z., J.S.), Jiangnan University, China
| | - Dongxu He
- School of Food Science and Technology (A.M., D.H.), Jiangnan University, China
| |
Collapse
|
10
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
11
|
Zheng M, Borkar NA, Yao Y, Ye X, Vogel ER, Pabelick CM, Prakash YS. Mechanosensitive channels in lung disease. Front Physiol 2023; 14:1302631. [PMID: 38033335 PMCID: PMC10684786 DOI: 10.3389/fphys.2023.1302631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Mechanosensitive channels (MS channels) are membrane proteins capable of responding to mechanical stress over a wide dynamic range of external mechanical stimuli. In recent years, it has been found that MS channels play an important role as "sentinels" in the process of cell sensing and response to extracellular and intracellular force signals. There is growing appreciation for mechanical activation of ion channels and their subsequent initiation of downstream signaling pathways. Members of the transient receptor potential (TRP) superfamily and Piezo channels are broadly expressed in human tissues and contribute to multiple cellular functions. Both TRP and Piezo channels are thought to play key roles in physiological homeostasis and pathophysiology of disease states including in the lung. Here, we review the current state of knowledge on the expression, regulation, and function of TRP and Piezo channels in the context of the adult lung across the age spectrum, and in lung diseases such as asthma, COPD and pulmonary fibrosis where mechanical forces likely play varied roles in the structural and functional changes characteristic of these diseases. Understanding of TRP and Piezo in the lung can provide insights into new targets for treatment of pulmonary disease.
Collapse
Affiliation(s)
- Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Niyati A. Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Yang Yao
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Xianwei Ye
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Elizabeth R. Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Mutgan AC, Jandl K, Radic N, Valzano F, Kolb D, Hoffmann J, Foris V, Wilhelm J, Boehm PM, Hoetzenecker K, Olschewski A, Olschewski H, Heinemann A, Wygrecka M, Marsh LM, Kwapiszewska G. Pentastatin, a matrikine of the collagen IVα5, is a novel endogenous mediator of pulmonary endothelial dysfunction. Am J Physiol Cell Physiol 2023; 325:C1294-C1312. [PMID: 37694286 DOI: 10.1152/ajpcell.00391.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to β1-integrin subunit clustering and Rho/ROCK activation. Blockage of the β1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the β1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Radic
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jochen Wilhelm
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
13
|
Kuppusamy M, Ta HQ, Davenport HN, Bazaz A, Kulshrestha A, Daneva Z, Chen YL, Carrott PW, Laubach VE, Sonkusare SK. Purinergic P2Y2 receptor-induced activation of endothelial TRPV4 channels mediates lung ischemia-reperfusion injury. Sci Signal 2023; 16:eadg1553. [PMID: 37874885 PMCID: PMC10683978 DOI: 10.1126/scisignal.adg1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
Lung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. Here, we investigated the cellular mechanisms underlying lung IR-induced activation of endothelial TRPV4 channels, which play a central role in lung edema and dysfunction after IR. In a left lung hilar-ligation model of IRI in mice, we found that lung IRI increased the efflux of ATP through pannexin 1 (Panx1) channels at the endothelial cell (EC) membrane. Elevated extracellular ATP activated Ca2+ influx through endothelial TRPV4 channels downstream of purinergic P2Y2 receptor (P2Y2R) signaling. P2Y2R-dependent activation of TRPV4 channels was also observed in human and mouse pulmonary microvascular endothelium in ex vivo and in vitro models of IR. Endothelium-specific deletion of P2Y2R, TRPV4, or Panx1 in mice substantially prevented lung IRI-induced activation of endothelial TRPV4 channels and lung edema, inflammation, and dysfunction. These results identify endothelial P2Y2R as a mediator of the pathological sequelae of IRI in the lung and show that disruption of the endothelial Panx1-P2Y2R-TRPV4 signaling pathway could be a promising therapeutic strategy for preventing lung IRI after transplantation.
Collapse
Affiliation(s)
- Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Huy Q. Ta
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Hannah N. Davenport
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Abhishek Bazaz
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Astha Kulshrestha
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Philip W. Carrott
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Victor E. Laubach
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
14
|
Luse MA, Jackson MG, Juśkiewicz ZJ, Isakson BE. Physiological functions of caveolae in endothelium. CURRENT OPINION IN PHYSIOLOGY 2023; 35:100701. [PMID: 37873030 PMCID: PMC10588508 DOI: 10.1016/j.cophys.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endothelial caveolae are essential for a wide range of physiological processes and have emerged as key players in vascular biology. Our understanding of caveolar biology in endothelial cells has expanded dramatically since their discovery revealing critical roles in mechanosensation, signal transduction, eNOS regulation, lymphatic transport, and metabolic disease progression. Furthermore, caveolae are involved in the organization of membrane domains, regulation of membrane fluidity, and endocytosis which contribute to endothelial function and integrity. Additionally, recent advances highlight the impact of caveolae-mediated signaling pathways on vascular homeostasis and pathology. Together, the diverse roles of caveolae discussed here represent a breadth of cellular functions presenting caveolae as a defining feature of endothelial form and function. In light of these new insights, targeting caveolae may hold potential for the development of novel therapeutic strategies to treat a range of vascular diseases.
Collapse
Affiliation(s)
- Melissa A. Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| | - Madeline G. Jackson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Zuzanna J. Juśkiewicz
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| |
Collapse
|
15
|
Wei BY, Hou JN, Yan CP, Wen SY, Shang XS, Guo YC, Feng T, Liu TF, Chen ZY, Chen XP. Shexiang Baoxin Pill treats acute myocardial infarction by promoting angiogenesis via GDF15-TRPV4 signaling. Biomed Pharmacother 2023; 165:115186. [PMID: 37481933 DOI: 10.1016/j.biopha.2023.115186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Angiogenesis has been considered a pivotal strategy for treating ischemic heart disease. One possible approach, the Shexiang Baoxin Pill (MUSKARDIA), has been noted to promote angiogenesis, but its underlying mechanism is still largely unknown. We aimed to determine the effects of MUSKARDIA on acute myocardial infarction (AMI), as well as the underlying mechanistic bases. AMI was induced in rats, using left anterior descending coronary arterial occlusion, and either 6 (low) or 12 (high-dose) mg/kg/day of MUSKARDIA was administered for 56 days. We found that MUSKARDIA improved cardiac function and counteracted against adverse remodeling among AMI rats, which most likely is due to it promoting angiogenesis. Transcriptome analysis by RNA-sequencing found that MUSKARDIA up-regulated cardiac pro-angiogenic genes, particularly growth differentiation factor 15 (GDF15), which was confirmed by RT-qPCR. This up-regulation was also correlated with elevated serum GDF15 levels. In vitro analyses with human umbilical vein endothelial cells found that increased GDF15, stimulated by MUSKARDIA, resulted in enhanced cell migration, proliferation, and tubular formation, all of which were reversed after GDF15 knockdown using a lentiviral vector. Gene Ontology, as well as Kyoto Genes and Genomes enrichment analyses identified calcium signaling pathway as a major contributor to these outcomes, which was verified by Western blot and Cal-590 AM loading showing that transient receptor potential cation channel subfamily V member 4 protein (TRPV4) and intracellular Ca2+ levels increased in accordance with MUSKARDIA-induced GDF15 up-regulation, and decreased with GDF15 knock-down. Therefore, MUSKARDIA may exert its cardioprotective effects via stimulating the GDF15/TRPV4/calcium signaling/angiogenesis axis.
Collapse
Affiliation(s)
- Bing-Yan Wei
- Shanxi Key Laboratory of Experimental Animals and Animal Models for Human Diseases, Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, China
| | - Jia-Nan Hou
- Shanxi Key Laboratory of Experimental Animals and Animal Models for Human Diseases, Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, China
| | - Chang-Ping Yan
- Department of gynecology of Shanxi Cancer Hospital, Taiyuan 030001, China
| | - Shi-Yuan Wen
- Basic Medical School, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Sen Shang
- Department of Cardiology of Taiyuan Central Hospital, Taiyuan 030001, China
| | - Yong-Chang Guo
- Shanxi Key Laboratory of Experimental Animals and Animal Models for Human Diseases, Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, China
| | - Tao Feng
- Department of Cardiology of Taiyuan Central Hospital, Taiyuan 030001, China
| | - Tian-Fu Liu
- Shanxi Key Laboratory of Experimental Animals and Animal Models for Human Diseases, Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, China.
| | - Zhao-Yang Chen
- Shanxi Key Laboratory of Experimental Animals and Animal Models for Human Diseases, Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, China.
| | - Xiao-Ping Chen
- Department of Cardiology of Taiyuan Central Hospital, Taiyuan 030001, China.
| |
Collapse
|
16
|
Chen X, Yuan S, Mi L, Long Y, He H. Pannexin1: insight into inflammatory conditions and its potential involvement in multiple organ dysfunction syndrome. Front Immunol 2023; 14:1217366. [PMID: 37711629 PMCID: PMC10498923 DOI: 10.3389/fimmu.2023.1217366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Sepsis represents a global health concern, and patients with severe sepsis are at risk of experiencing MODS (multiple organ dysfunction syndrome), which is associated with elevated mortality rates and a poorer prognosis. The development of sepsis involves hyperactive inflammation, immune disorder, and disrupted microcirculation. It is crucial to identify targets within these processes to develop therapeutic interventions. One such potential target is Panx1 (pannexin-1), a widely expressed transmembrane protein that facilitates the passage of molecules smaller than 1 KDa, such as ATP. Accumulating evidence has implicated the involvement of Panx1 in sepsis-associated MODS. It attracts immune cells via the purinergic signaling pathway, mediates immune responses via the Panx1-IL-33 axis, promotes immune cell apoptosis, regulates blood flow by modulating VSMCs' and vascular endothelial cells' tension, and disrupts microcirculation by elevating endothelial permeability and promoting microthrombosis. At the level of organs, Panx1 contributes to inflammatory injury in multiple organs. Panx1 primarily exacerbates injury and hinders recovery, making it a potential target for sepsis-induced MODS. While no drugs have been developed explicitly against Panx1, some compounds that inhibit Panx1 hemichannels have been used extensively in experiments. However, given that Panx1's role may vary during different phases of sepsis, more investigations are required before interventions against Panx1 can be applied in clinical. Overall, Panx1 may be a promising target for sepsis-induced MODS. Nevertheless, further research is needed to understand its complex role in different stages of sepsis fully and to develop suitable pharmaceutical interventions for clinical use.
Collapse
Affiliation(s)
| | | | | | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
18
|
Ojanguren A, Parapanov R, Debonneville A, Lugrin J, Szabo C, Hasenauer A, Rosner L, Gonzalez M, Perentes JY, Krueger T, Liaudet L. Therapeutic reconditioning of damaged lungs by transient heat stress during ex vivo lung perfusion. Am J Transplant 2023; 23:1130-1144. [PMID: 37217006 DOI: 10.1016/j.ajt.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Ex vivo lung perfusion (EVLP) may serve as a platform for the pharmacologic repair of lung grafts before transplantation (LTx). We hypothesized that EVLP could also permit nonpharmacologic repair through the induction of a heat shock response, which confers stress adaptation via the expression of heat shock proteins (HSPs). Therefore, we evaluated whether transient heat application during EVLP (thermal preconditioning [TP]) might recondition damaged lungs before LTx. TP was performed during EVLP (3 hours) of rat lungs damaged by warm ischemia by transiently heating (30 minutes, 41.5 °C) the EVLP perfusate, followed by LTx (2 hours) reperfusion. We also assessed the TP (30 minutes, 42 °C) during EVLP (4 hours) of swine lungs damaged by prolonged cold ischemia. In rat lungs, TP induced HSP expression, reduced nuclear factor κB and inflammasome activity, oxidative stress, epithelial injury, inflammatory cytokines, necroptotic death signaling, and the expression of genes involved in innate immune and cell death pathways. After LTx, heated lungs displayed reduced inflammation, edema, histologic damage, improved compliance, and unchanged oxygenation. In pig lungs, TP induced HSP expression, reduced oxidative stress, inflammation, epithelial damage, vascular resistance, and ameliorated compliance. Collectively, these data indicate that transient heat application during EVLP promotes significant reconditioning of damaged lungs and improves their outcomes after transplantation.
Collapse
Affiliation(s)
- Amaia Ojanguren
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland; Service of Thoracic Surgery, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Roumen Parapanov
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland; Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Debonneville
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland; Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Lugrin
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland; Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Csaba Szabo
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Arpad Hasenauer
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Lorenzo Rosner
- Service of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel Gonzalez
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Yannis Perentes
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Thorsten Krueger
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland.
| | - Lucas Liaudet
- Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
19
|
Kuppusamy M, Ta HQ, Davenport HN, Bazaz A, Kulshrestha A, Daneva Z, Chen YL, Carrott PW, Laubach VE, Sonkusare SK. Purinergic P2Y2 Receptor-Induced Activation of Endothelial TRPV4 Channels Mediates Lung Ischemia-Reperfusion Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542520. [PMID: 37397979 PMCID: PMC10312453 DOI: 10.1101/2023.05.29.542520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. We recently reported that endothelial cell (EC) TRPV4 channels play a central role in lung edema and dysfunction after IR. However, the cellular mechanisms for lung IR-induced activation of endothelial TRPV4 channels are unknown. In a left-lung hilar ligation model of IRI in mice, we found that lung IR increases the efflux of extracellular ATP (eATP) through pannexin 1 (Panx1) channels at the EC membrane. Elevated eATP activated elementary Ca2+ influx signals through endothelial TRPV4 channels through purinergic P2Y2 receptor (P2Y2R) signaling. P2Y2R-dependent activation of TRPV4 channels was also observed in human and mouse pulmonary microvascular endothelium in ex vivo and in vitro surrogate models of lung IR. Endothelium-specific deletion of P2Y2R, TRPV4, and Panx1 in mice had substantial protective effects against lung IR-induced activation of endothelial TRPV4 channels, lung edema, inflammation, and dysfunction. These results identify endothelial P2Y2R as a novel mediator of lung edema, inflammation, and dysfunction after IR, and show that disruption of endothelial Panx1-P2Y2R-TRPV4 signaling pathway could represent a promising therapeutic strategy for preventing lung IRI after transplantation.
Collapse
Affiliation(s)
- Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Huy Q. Ta
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Hannah N. Davenport
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Abhishek Bazaz
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Astha Kulshrestha
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Philip W. Carrott
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Victor E. Laubach
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
20
|
Hong SG, Ashby JW, Kennelly JP, Wu M, Chattopadhyay E, Foreman R, Tontonoz P, Turowski P, Gallagher-Jones M, Mack JJ. Polarized Mechanosensitive Signaling Domains Protect Arterial Endothelial Cells Against Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542500. [PMID: 37292837 PMCID: PMC10246006 DOI: 10.1101/2023.05.26.542500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Endothelial cells (ECs) in the descending aorta are exposed to high laminar shear stress, which supports an anti-inflammatory phenotype that protects them from atherosclerosis. High laminar shear stress also supports flow-aligned cell elongation and front-rear polarity, but whether this is required for athero-protective signaling is unclear. Here, we show that Caveolin-1-rich microdomains become polarized at the downstream end of ECs exposed to continuous high laminar flow. These microdomains are characterized by higher membrane rigidity, filamentous actin (F-actin) and lipid accumulation. Transient receptor potential vanilloid-type 4 (Trpv4) ion channels, while ubiquitously expressed, mediate localized Ca 2+ entry at these microdomains where they physically interact with clustered Caveolin-1. The resultant focal bursts in Ca 2+ activate the anti-inflammatory factor endothelial nitric oxide synthase (eNOS) within the confines of these domains. Importantly, we find that signaling at these domains requires both cell body elongation and sustained flow. Finally, Trpv4 signaling at these domains is necessary and sufficient to suppress inflammatory gene expression. Our work reveals a novel polarized mechanosensitive signaling hub that induces an anti-inflammatory response in arterial ECs exposed to high laminar shear stress.
Collapse
|
21
|
Zhu Y, Chu Y, Wang S, Tang J, Li H, Feng L, Yu F, Ma X. Vascular Smooth Muscle TRPV4 (Transient Receptor Potential Vanilloid Family Member 4) Channels Regulate Vasoconstriction and Blood Pressure in Obesity. Hypertension 2023; 80:757-770. [PMID: 36794584 DOI: 10.1161/hypertensionaha.122.20109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND Vascular endothelium and smooth muscle work together to keep the balance of vasomotor tone and jointly maintain vascular homeostasis. Ca2+-permeable ion channel TRPV4 (transient receptor potential vanilloid family member 4) in endothelial cells regulates endothelium-dependent vasodilation and contraction in various states. However, how vascular smooth muscle cell TRPV4 (TRPV4SMC) contributes to vascular function and blood pressure regulation in physiological and pathologically obese condition has not been fully studied. METHODS We generated smooth muscle TRPV4-deficient mice and developed diet-induced obese mice model and analyzed the role of TRPV4SMC in intracellular Ca2+ ([Ca2+]i) regulation and vasoconstriction. Vasomotor changes of mouse mesenteric artery were measured by wire, and pressure myography. [Ca2+]i were measured by fluo-4 staining. Blood pressure was recorded by telemetric device. RESULTS Vascular TRPV4SMC played different roles in regulating vasomotor tone than endothelial TRPV4 due to their different features of [Ca2+]i regulation. Loss of TRPV4SMC attenuated U46619- and phenylephrine-induced contraction, suggesting its involvement in regulating vascular contractility. Mesenteric arteries from obese mice showed SMC hyperplasia, suggesting an increased level of TRPV4SMC. Loss of TRPV4SMC did not influence the development of obesity but protected mice from obesity-induced vasoconstriction and hypertension. In arteries deficient in SMC TRPV4, SMCs F-actin polymerization and RhoA dephosphorylation were attenuated under contractile stimuli. Moreover, SMC-dependent vasoconstriction was inhibited in human resistance arteries with TRPV4 inhibitor application. CONCLUSIONS Our data identify TRPV4SMC as a regulator of vascular contraction in both physiological states and pathologically obese mice. TRPV4SMC contributes to the ontogeny of vasoconstriction and hypertension induced by TRPV4SMC over-expression in obese mice mesenteric artery.
Collapse
Affiliation(s)
- Yifei Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Yuan Chu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Sheng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Junjian Tang
- Department of Vascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China (J.T., H.L.)
| | - Hu Li
- Department of Vascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China (J.T., H.L.)
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y.Z., Y.C., S.W., L.F., F.Y., X.M.)
| |
Collapse
|
22
|
Daneva Z, Chen Y, Ta HQ, Manchikalapudi V, Bazaz A, Laubach VE, Sonkusare SK. Endothelial IK and SK channel activation decreases pulmonary arterial pressure and vascular remodeling in pulmonary hypertension. Pulm Circ 2023; 13:e12186. [PMID: 36686408 PMCID: PMC9841469 DOI: 10.1002/pul2.12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells (ECs) from small pulmonary arteries (PAs) release nitric oxide (NO) and prostacyclin, which lower pulmonary arterial pressure (PAP). In pulmonary hypertension (PH), the levels of endothelium-derived NO and prostacyclin are reduced, contributing to elevated PAP. Small-and intermediate-conductance Ca2+-activated K+ channels (IK and SK)-additional crucial endothelial mediators of vasodilation-are also present in small PAs, but their function has not been investigated in PH. We hypothesized that endothelial IK and SK channels can be targeted to lower PAP in PH. Whole-cell patch-clamp experiments showed functional IK and SK channels in ECs, but not smooth muscle cells, from small PAs. Using a SU5416 plus chronic hypoxia (Su + CH) mouse model of PH, we found that currents through EC IK and SK channels were unchanged compared with those from normal mice. Moreover, IK/SK channel-mediated dilation of small PAs was preserved in Su + CH mice. Consistent with previous reports, endothelial NO levels and NO-mediated dilation were reduced in small PAs from Su + CH mice. Notably, acute treatment with IK/SK channel activators decreased PAP in Su + CH mice but not in normal mice. Further, chronic activation of IK/SK channels decreased PA remodeling and right ventricular hypertrophy, which are pathological hallmarks of PH, in Su + CH mice. Collectively, our data provide the first evidence that, unlike endothelial NO release, IK/SK channel activity is not altered in PH. Our results also demonstrate proof of principle that IK/SK channel activation can be used as a strategy for lowering PAP in PH.
Collapse
Affiliation(s)
- Zdravka Daneva
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yen‐Lin Chen
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Huy Q. Ta
- Department of SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Vamsi Manchikalapudi
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Abhishek Bazaz
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Victor E. Laubach
- Department of SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
23
|
Negri S, Sanford M, Shi H, Tarantini S. The role of endothelial TRP channels in age-related vascular cognitive impairment and dementia. Front Aging Neurosci 2023; 15:1149820. [PMID: 37020858 PMCID: PMC10067599 DOI: 10.3389/fnagi.2023.1149820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Transient receptor potential (TRP) proteins are part of a superfamily of polymodal cation channels that can be activated by mechanical, physical, and chemical stimuli. In the vascular endothelium, TRP channels regulate two fundamental parameters: the membrane potential and the intracellular Ca2+ concentration [(Ca2+)i]. TRP channels are widely expressed in the cerebrovascular endothelium, and are emerging as important mediators of several brain microvascular functions (e.g., neurovascular coupling, endothelial function, and blood-brain barrier permeability), which become impaired with aging. Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the coming decades. Yet, there are currently no preventative or therapeutic treatments available against the development and progression of VCI. In this review, we discuss the involvement of endothelial TRP channels in diverse physiological processes in the brain as well as in the pathogenesis of age-related VCI to explore future potential neuroprotective strategies.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Madison Sanford
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Stefano Tarantini,
| |
Collapse
|
24
|
Willcox A, Lee NT, Nandurkar HH, Sashindranath M. CD39 in the development and progression of pulmonary arterial hypertension. Purinergic Signal 2022; 18:409-419. [PMID: 35947229 PMCID: PMC9832216 DOI: 10.1007/s11302-022-09889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating progressive disease characterised by pulmonary arterial vasoconstriction and vascular remodelling. Endothelial dysfunction has emerged as a contributing factor in the development of PAH. However, despite progress in the understanding of the pathophysiology of this disease, current therapies fail to impact upon long-term outcomes which remain poor in most patients. Recent observations have suggested the disturbances in the balance between ATP and adenosine may be integral to the vascular remodelling seen in PAH. CD39 is an enzyme important in regulating these nucleos(t)ides which may also provide a novel pathway to target for future therapies. This review summarises the role of adenosine signalling in the development and progression of PAH and highlights the therapeutic potential of CD39 for treatment of PAH.
Collapse
Affiliation(s)
- Abbey Willcox
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Natasha Ting Lee
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Monash AMREP Building, Level 1, Walkway, via The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
25
|
Tian S, Cai Z, Sen P, van Uden D, van de Kamp E, Thuillet R, Tu L, Guignabert C, Boomars K, Van der Heiden K, Brandt MM, Merkus D. Loss of lung microvascular endothelial Piezo2 expression impairs NO synthesis, induces EndMT, and is associated with pulmonary hypertension. Am J Physiol Heart Circ Physiol 2022; 323:H958-H974. [PMID: 36149769 DOI: 10.1152/ajpheart.00220.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mechanical forces are translated into biochemical stimuli by mechanotransduction channels, such as the mechanically activated cation channel Piezo2. Lung Piezo2 expression has recently been shown to be restricted to endothelial cells. Hence, we aimed to investigate the role of Piezo2 in regulation of pulmonary vascular function and structure, as well as its contribution to development of pulmonary arterial hypertension (PAH). The expression of Piezo2 was significantly reduced in pulmonary microvascular endothelial cells (MVECs) from patients with PAH, in lung tissue from mice with a Bmpr2+/R899X knock-in mutation commonly found in patients with pulmonary hypertension, and in lung tissue of monocrotaline (MCT) and sugen-hypoxia-induced PH (SuHx) PAH rat models, as well as from a swine model with pulmonary vein banding. In MVECs, Piezo2 expression was reduced in response to abnormal shear stress, hypoxia, and TGFβ stimulation. Functional studies in MVECs exposed to shear stress illustrated that siRNA-mediated Piezo2 knockdown impaired endothelial alignment, calcium influx, phosphorylation of AKT, and nitric oxide production. In addition, siPiezo2 reduced the expression of the endothelial marker PECAM-1 and increased the expression of vascular smooth muscle markers ACTA2, SM22a, and calponin. Thus, Piezo2 acts as a mechanotransduction channel in pulmonary MVECs, stimulating shear-induced production of nitric oxide and is essentially involved in preventing endothelial to mesenchymal transition. Its blunted expression in pulmonary hypertension could impair the vasodilator capacity and stimulate vascular remodeling, indicating that Piezo2 might be an interesting therapeutic target to attenuate progression of the disease.NEW & NOTEWORTHY The mechanosensory ion channel Piezo2 is exclusively expressed in lung microvascular endothelial cells (MVECs). Patient MVECs as well as animal models of pulmonary (arterial) hypertension showed lower expression of Piezo2 in the lung. Mechanistically, Piezo2 is required for calcium influx and NO production in response to shear stress, whereas stimuli known to induce endothelial to mesenchymal transition (EndMT) reduce Piezo2 expression in MVECs, and Piezo2 knockdown induces a gene and protein expression pattern consistent with EndMT.
Collapse
Affiliation(s)
- Siyu Tian
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zongye Cai
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Payel Sen
- Walter Brendel Center of Experimental Medicine, University Clinic Munich, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Esther van de Kamp
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Raphael Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Karin Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Biomedical Engineering, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten M Brandt
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daphne Merkus
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands.,Walter Brendel Center of Experimental Medicine, University Clinic Munich, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
26
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
27
|
Cho S, Ju HR, Oh H, Choi ES, Lee JA. The association between the restriction of daily life and depression during the COVID-19 pandemic in Korea: a nationwide based survey. Sci Rep 2022; 12:17722. [PMID: 36271227 PMCID: PMC9586933 DOI: 10.1038/s41598-022-21301-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
The coronavirus (COVID-19) pandemic has led to substantial daily life changes for people worldwide. We investigated the association between daily life restrictions and depression during the COVID-19 pandemic based on the Korea Community Health Survey. Daily life restrictions were evaluated using a questionnaire to population into three restriction categories: no/slightly, moderately, and severely. Depression was assessed by the Korean version of the Patient Health Questionnaire-9 (PHQ-9). Chi-square tests and Fisher's exact tests were used to compare the demographic characteristics of individuals with and without depression. Logistic regression was used to assess the association between the severity of daily life restrictions and the prevalence of depression. The prevalence of depression was 2.4% in the total population: 5.7% in the severely restricted group and 2.7% in the moderately restricted group. After adjusting for age, sex, educational level, income, marital status, and employment status, the severely restricted group was more likely to have depression than was the no change/slightly restricted group (OR = 2.40, 95% CI 2.16-2.67, p < 0.001). Employers with severely restricted daily life exhibited a higher OR for depression compared to the no/slightly restricted group (OR = 3.24, 95% CI 2.37-4.45, p < 0.001). It is necessary to consider the mental health of vulnerable affected by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sunwoo Cho
- Workplace Health Institute, Total Health Care Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, B1, 55 Sejong-daero, Jung-gu, Seoul, South Korea
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hyo Rim Ju
- Department of Family Medicine, Dankook University Hospital, Dankook University College of Medicine, Cheonan, South Korea
| | - Hyoungseok Oh
- Workplace Health Institute, Total Health Care Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, B1, 55 Sejong-daero, Jung-gu, Seoul, South Korea
| | - Eun-Suk Choi
- Workplace Health Institute, Total Health Care Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, B1, 55 Sejong-daero, Jung-gu, Seoul, South Korea
| | - Jung Ah Lee
- Workplace Health Institute, Total Health Care Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, B1, 55 Sejong-daero, Jung-gu, Seoul, South Korea.
| |
Collapse
|
28
|
Physiological levels of fluid shear stress modulate vascular function through TRPV4 sparklets. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1268-1277. [PMID: 36082933 DOI: 10.3724/abbs.2022118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endothelial calcium (Ca 2+) signaling plays a major role in regulating vasodilation in response to fluid shear stress (FSS) generated by blood flow. Local Ca 2+ influx through single transient receptor potential channel subfamily V member 4 (TRPV4) (termed "sparklets") activated by low concentrations of chemical and biological stimuli has been revealed to modulate vascular function. However, the range in which FSS can initiate TRPV4 sparklets to induce vasodilation is unknown. Here, we assess the activity of TPRV4 sparklets induced by various physiological levels of FSS and investigate the mechanisms involving these Ca 2+ signals in FSS-induced vasodilation. Intact small mesenteric arteries are used for Ca 2+ imaging with a GCaMP2(TRPV4-KO) mouse model and high-speed confocal systems. Markedly increased local Ca 2+ signals are observed in the endothelium under 4-8 dyne/cm 2 FSS, whereas FSS >8 dyne/cm 2 causes global Ca 2+ influx. Further analysis shows that TRPV4 channels form a four-channel group to mediate Ca 2+ sparklets under certain levels of FSS. The large Ca 2+ influx hyperpolarizes endothelial cells by stimulating intermediate (IK)- and small (SK)-conductance Ca 2+-sensitive potassium channels, leading to hyperpolarization of the surrounding smooth muscle cells and ultimately causing endothelium-dependent vasodilation. In conclusion, Ca 2+ influx transits through a small number of endothelial TRPV4 channels opened by certain levels of FSS, which activates the Ca 2+-sensitive IK and SK channels to cause vasodilation.
Collapse
|
29
|
Chen D, Zhang HF, Yuan TY, Sun SC, Wang RR, Wang SB, Fang LH, Lyu Y, Du GH. Puerarin-V prevents the progression of hypoxia- and monocrotaline-induced pulmonary hypertension in rodent models. Acta Pharmacol Sin 2022; 43:2325-2339. [PMID: 35190697 PMCID: PMC9433387 DOI: 10.1038/s41401-022-00865-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiopulmonary disease characterized by a progressive increase in pulmonary vascular resistance. One of the initial pathogenic factors of PH is pulmonary arterial remodeling under various stimuli. Current marketed drugs against PH mainly relieve symptoms without significant improvement in overall prognosis. Discovering and developing new therapeutic drugs that interfere with vascular remodeling is in urgent need. Puerarin is an isoflavone compound extracted from the root of Kudzu vine, which is widely used in the treatment of cardiovascular diseases. In the present study, we evaluated the efficacy of puerarin in the treatment of experimental PH. PH was induced in rats by a single injection of MCT (50 mg/kg, sc), and in mice by exposure to hypoxia (10% O2) for 14 days. After MCT injection the rats were administered puerarin (10, 30, 100 mg · kg-1 · d-1, i.g.) for 28 days, whereas hypoxia-treated mice were pre-administered puerarin (60 mg · kg-1 · d-1, i.g.) for 7 days. We showed that puerarin administration exerted significant protective effects in both experimental PH rodent models, evidenced by significantly reduced right ventricular systolic pressure (RVSP) and lung injury, improved pulmonary artery blood flow as well as pulmonary vasodilation and contraction function, inhibited inflammatory responses in lung tissues, improved resistance to apoptosis and abnormal proliferation in lung tissues, attenuated right ventricular injury and remodeling, and maintained normal function of the right ventricle. We revealed that MCT and hypoxia treatment significantly downregulated BMPR2/Smad signaling in the lung tissues and PPARγ/PI3K/Akt signaling in the lung tissues and right ventricles, which were restored by puerarin administration. In addition, we showed that a novel crystal type V (Puer-V) exerted better therapeutic effects than the crude form of puerarin (Puer). Furthermore, Puer-V was more efficient than bosentan (a positive control drug) in alleviating the abnormal structural changes and dysfunction of lung tissues and right ventricles. In conclusion, this study provides experimental evidence for developing Puer-V as a novel therapeutic drug to treat PH.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Fang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shu-Chan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ran-Ran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lian-Hua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lyu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
30
|
Chen YL, Daneva Z, Kuppusamy M, Ottolini M, Baker TM, Klimentova E, Shah SA, Sokolowski JD, Park MS, Sonkusare SK. Novel Smooth Muscle Ca 2+-Signaling Nanodomains in Blood Pressure Regulation. Circulation 2022; 146:548-564. [PMID: 35758040 PMCID: PMC9378684 DOI: 10.1161/circulationaha.121.058607] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ca2+ signals in smooth muscle cells (SMCs) contribute to vascular resistance and control blood pressure. Increased vascular resistance in hypertension has been attributed to impaired SMC Ca2+ signaling mechanisms. In this regard, transient receptor potential vanilloid 4 (TRPV4SMC) ion channels are a crucial Ca2+ entry pathway in SMCs. However, their role in blood pressure regulation has not been identified. METHODS We used SMC-specific TRPV4-/- (TRPV4SMC-/-) mice to assess the role of TRPV4SMC channels in blood pressure regulation. We determined the contribution of TRPV4SMC channels to the constrictor effect of α1 adrenergic receptor (α1AR) stimulation and elevated intraluminal pressure: 2 main physiologic stimuli that constrict resistance-sized arteries. The contribution of spatially separated TRPV4SMC channel subpopulations to elevated blood pressure in hypertension was evaluated in angiotensin II-infused mice and patients with hypertension. RESULTS We provide first evidence that TRPV4SMC channel activity elevates resting blood pressure in normal mice. α1AR stimulation activated TRPV4SMC channels through PKCα (protein kinase Cα) signaling, which contributed significantly to vasoconstriction and blood pressure elevation. Intraluminal pressure-induced TRPV4SMC channel activity opposed vasoconstriction through activation of Ca2+-sensitive K+ (BK) channels, indicating functionally opposite pools of TRPV4SMC channels. Superresolution imaging of SMCs revealed spatially separated α1AR:TRPV4 and TRPV4:BK nanodomains in SMCs. These data suggest that spatially separated α1AR-TRPV4SMC and intraluminal pressure-TRPV4SMC-BK channel signaling have opposite effects on blood pressure, with α1AR-TRPV4SMC signaling dominating under resting conditions. Furthermore, in patients with hypertension and a mouse model of hypertension, constrictor α1AR-PKCα-TRPV4 signaling was upregulated, whereas dilator pressure-TRPV4-BK channel signaling was disrupted, thereby increasing vasoconstriction and elevating blood pressure. CONCLUSIONS Our data identify novel smooth muscle Ca2+-signaling nanodomains that regulate blood pressure and demonstrate their impairment in hypertension.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Thomas M. Baker
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Eliska Klimentova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Soham A. Shah
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jennifer D. Sokolowski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States, VA, 22908, USA
| | - Min S. Park
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States, VA, 22908, USA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
31
|
Xu S, Chuang CY, Malle E, Gamon LF, Hawkins CL, Davies MJ. Influence of plasma halide, pseudohalide and nitrite ions on myeloperoxidase-mediated protein and extracellular matrix damage. Free Radic Biol Med 2022; 188:162-174. [PMID: 35718304 DOI: 10.1016/j.freeradbiomed.2022.06.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 01/15/2023]
Abstract
Myeloperoxidase (MPO) mediates pathogen destruction by generating the bactericidal oxidant hypochlorous acid (HOCl). Formation of this oxidant is however associated with host tissue damage and disease. MPO also utilizes H2O2 to oxidize other substrates, and we hypothesized that mixtures of other plasma anions, including bromide (Br-), iodide (I-), thiocyanate (SCN-) and nitrite (NO2-), at normal or supplemented concentrations, might modulate MPO-mediated HOCl damage. For the (pseudo)halide anions, only SCN- significantly modulated HOCl formation (IC50 ∼33 μM), which is within the normal physiological range, as judged by damage to human plasma fibronectin or extracellular matrix preparations detected by ELISA and LC-MS. NO2- modulated HOCl-mediated damage, in a dose-dependent manner, at physiologically-attainable anion concentrations. However, this was accompanied by increased tyrosine and tryptophan nitration (detected by ELISA and LC-MS), and the overall extent of damage remained approximately constant. Increasing NO2- concentrations (0.5-20 μM) diminished HOCl-mediated modification of tyrosine and methionine, whereas tryptophan loss was enhanced. At higher NO2- concentrations, enhanced tyrosine and methionine loss was detected. These analytical data were confirmed in studies of cell adhesion and metabolic activity. Together, these data indicate that endogenous plasma levels of SCN- (but not Br- or I-) can modulate protein modification induced by MPO, including the extent of chlorination. In contrast, NO2- alters the type of modification, but does not markedly decrease its extent, with chlorination replaced by nitration. These data also indicate that MPO could be a major source of nitration in vivo, and particularly at inflammatory sites where NO2- levels are often elevated.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
32
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
33
|
Christou H, Khalil RA. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol 2022; 322:H702-H724. [PMID: 35213243 PMCID: PMC8977136 DOI: 10.1152/ajpheart.00021.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by various degrees of pulmonary vasoconstriction and progressive fibroproliferative remodeling and inflammation of the pulmonary arterioles that lead to increased pulmonary vascular resistance, right ventricular hypertrophy, and failure. Pulmonary vascular tone is regulated by a balance between vasoconstrictor and vasodilator mediators, and a shift in this balance to vasoconstriction is an important component of PH pathology, Therefore, the mainstay of current pharmacological therapies centers on pulmonary vasodilation methodologies that either enhance vasodilator mechanisms such as the NO-cGMP and prostacyclin-cAMP pathways and/or inhibit vasoconstrictor mechanisms such as the endothelin-1, cytosolic Ca2+, and Rho-kinase pathways. However, in addition to the increased vascular tone, many patients have a "fixed" component in their disease that involves altered biology of various cells in the pulmonary vascular wall, excessive pulmonary artery remodeling, and perivascular fibrosis and inflammation. Pulmonary arterial smooth muscle cell (PASMC) phenotypic switch from a contractile to a synthetic and proliferative phenotype is an important factor in pulmonary artery remodeling. Although current vasodilator therapies also have some antiproliferative effects on PASMCs, they are not universally successful in halting PH progression and increasing survival. Mild acidification and other novel approaches that aim to reverse the resident pulmonary vascular pathology and structural remodeling and restore a contractile PASMC phenotype could ameliorate vascular remodeling and enhance the responsiveness of PH to vasodilator therapies.
Collapse
Affiliation(s)
- Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Taylor MS, Lowery J, Choi CS, Francis M. Restricted Intimal Ca 2+ Signaling Associated With Cardiovascular Disease. Front Physiol 2022; 13:848681. [PMID: 35492608 PMCID: PMC9040708 DOI: 10.3389/fphys.2022.848681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial dysfunction is a key feature of cardiovascular disease (CVD) including atherosclerosis. Impaired endothelial signaling leads to plaque formation, vascular wall remodeling and widespread cardiovascular dysregulation. The specific changes along the vascular intima associated with atherosclerosis, including the vulnerable circulation downstream of the flow obstruction, remain poorly understood. Previous findings from animal models suggest that preservation of a distinct Ca2+ signaling profile along the arterial endothelial network is crucial for maintaining vasculature homeostasis and preventing arterial disease. Ca2+ signaling in the intact human artery intima has not been well characterized. Here, we employed confocal imaging and a custom analysis algorithm to assess the spatially and temporally dynamic Ca2+ signaling profiles of human peripheral arteries isolated from the amputated legs of patients with advanced CVD (peripheral artery disease and/or diabetes) or patients who had lost limbs due to non-cardiovascular trauma. In all tibial artery branches (0.5-5 mm diameter) assessed, the intima consistently elicited a broad range of basal Ca2+ signals ranging from isolated focal transients to broad waves. Arteries from patients with existing CVD displayed a restricted intimal Ca2+ signaling pattern characterized by diminished event amplitude and area. Stimulation of type-4 vanilloid transient receptor potential channels (TRPV4) amplified endothelial Ca2+ signals; however, these signals remained smaller and spatially confined in arteries from patients with CVD verses those without CVD. Our findings reveal a characteristic underlying basal Ca2+ signaling pattern within the intima of human peripheral arteries and suggest a distinct truncation of the inherent Ca2+ profile with CVD.
Collapse
Affiliation(s)
- Mark S. Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Jordan Lowery
- Department of Pathology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
35
|
Grzelakowska A, Modrzejewska J, Kolińska J, Szala M, Zielonka M, Dębowska K, Zakłos-Szyda M, Sikora A, Zielonka J, Podsiadły R. Water-soluble cationic boronate probe based on coumarin imidazolium scaffold: Synthesis, characterization, and application to cellular peroxynitrite detection. Free Radic Biol Med 2022; 179:34-46. [PMID: 34923103 DOI: 10.1016/j.freeradbiomed.2021.12.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Peroxynitrite (ONOO-) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. Here, the development of a new water-soluble and cationic boronate probe based on a coumarin-imidazolium scaffold (CI-Bz-BA) for the fluorescent detection of ONOO- in cells is reported. The chemical reactivity of the CI-Bz-BA probe toward selected oxidants known to react with the boronate moiety was characterized, and the suitability of the probe for the direct detection of ONOO- in cell-free and cellular system is reported. Oxidation of the probe results in the formation of the primary hydroxybenzyl product (CI-Bz-OH), followed by the spontaneous elimination of the quinone methide moiety to produce the secondary phenol (CI-OH), which is accompanied by a red shift in the fluorescence emission band from 405 nm to 481 nm. CI-Bz-BA reacts with ONOO- stoichiometrically with a rate constant of ∼1 × 106 M-1s-1 to form, in addition to the major phenolic product CI-OH, the minor nitrated product CI-Bz-NO2, which is not formed by other oxidants tested or via myeloperoxidase-catalyzed oxidation/nitration. Both CI-OH and CI-Bz-NO2 products were also formed in the presence of cogenerated fluxes of nitric oxide and superoxide radical anion produced during decomposition of a SIN-1 donor. Using RAW 264.7 cells, we demonstrate the ability of the probe to report endogenously produced ONOO-via fluorescence measurements, including plate reader real time monitoring and two-photon fluorescence imaging. Liquid chromatography/mass spectrometry analyses of cell extracts and media confirmed the formation of both CI-OH and CI-Bz-NO2 in macrophages activated to produce ONOO-. We propose the use of a combination of real-time monitoring of probe oxidation using fluorimetry and fluorescence microscopy with liquid chromatography/mass spectrometry-based product identification for rigorous detection and quantitative analyses of ONOO- in biological systems.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Jolanta Kolińska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland.
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| |
Collapse
|
36
|
Jia Q, Yang Y, Chen X, Yao S, Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir Res 2022; 23:366. [PMID: 36539808 PMCID: PMC9764320 DOI: 10.1186/s12931-022-02303-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating respiratory disorder with high rates of mortality and morbidity, but the detailed underlying mechanisms of ALI/ARDS remain largely unknown. Mechanosensitive ion channels (MSCs), including epithelial sodium channel (ENaC), Piezo channels, transient receptor potential channels (TRPs), and two-pore domain potassium ion (K2P) channels, are highly expressed in lung tissues, and the activity of these MSCs can be modulated by mechanical forces (e.g., mechanical ventilation) and other stimuli (e.g., LPS, hyperoxia). Dysfunction of MSCs has been found in various types of ALI/ARDS, and MSCs play a key role in regulating alveolar fluid clearance, alveolar epithelial/endothelial barrier function, the inflammatory response and surfactant secretion in ALI/ARDS lungs. Targeting MSCs exerts therapeutic effects in the treatment of ALI/ARDS. In this review, we summarize the structure and functions of several well-recognized MSCs, the role of MSCs in the pathogenesis of ALI/ARDS and recent advances in the pharmacological and molecular modulation of MSCs in the treatment of ALI/ARDS. According to the current literature, targeting MSCs might be a very promising therapeutic approach against ALI/ARDS.
Collapse
Affiliation(s)
- Qi Jia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Yang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Hu
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Role of TRPV4 in skeletal function and its mutant-mediated skeletal disorders. CURRENT TOPICS IN MEMBRANES 2022; 89:221-246. [DOI: 10.1016/bs.ctm.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Abstract
The alveolo-capillary barrier is relatively impermeable, and facilitates gas exchange via the large alveolar surface in the lung. Disruption of alveolo-capillary barrier leads to accumulation of edema fluid in lung injury. Studies in animal models of various forms of lung injury provide evidence that TRPV4 channels play a critical role in disruption of the alveolo-capillary barrier and pathogenesis of lung injury. TRPV4 channels from capillary endothelial cells, alveolar epithelial cells, and immune cells have been implicated in the pathogenesis of lung injury. Recent studies in endothelium-specific TRPV4 knockout mice point to a central role for endothelial TRPV4 channels in lung injury. In this chapter, we review the findings on the pathological roles of endothelial TRPV4 channels in different forms of lung injury and future directions for further investigation.
Collapse
|
39
|
Mao A, Zhang P, Zhang K, Kan H, He D, Han X, Wang Z, Tang C, Ma X. Endothelial TRPV4-eNOS coupling as a vital therapy target for treatment of hypertension. Br J Pharmacol 2021; 179:2297-2312. [PMID: 34822720 DOI: 10.1111/bph.15755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Reduced nitric oxide (NO) level and activity are signs of endothelial dysfunction, which is important in mediating blood pressure up-regulation. Previously, we demonstrated that transient receptor potential channel V4 (TRPV4) could form functional complex with other proteins to mediate vasodilation in the Endothelial cells (ECs). But how TRPV4 interacts with the NO pathway in larger arteries requires further exploration. EXPERIMENTAL APPROACH We used single-cell RNA-sequencing to find the CD106+ TRPV4high NOS3high ECs. The TRPV4-eNOS interaction was verified by co-immunoprecipitation and Immunofluorescence resonance energy transfer (FRET), and their binding site was found by site-directed mutagenesis. Endothelium-specific TRPV4 knockout (TRPV4EC -/- ) mice were used to study the effect of the TRPV4-eNOS interaction on blood pressure. A small molecule, JNc-463 was designed through molecular docking technology. KEY RESULTS We uncovered CD106+ TRPV4high NOS3high ECs in the mouse aorta, which they could regulate vasodilation via a TRPV4-eNOS interaction, and they were essential to regulate blood pressure. The TRPV4-eNOS interaction markedly decreased during the process of hypertension. We further attempted to identify the molecules re-join the TRPV4-eNOS interaction and develop a small-molecule drug, JNc-463, which could increase the TRPV4-eNOS interaction to enhance vasodilation, and exert antihypertensive effects in mice. CONCLUSION AND IMPLICATIONS This is the first study integrating single-cell RNA-Seq, single-cell functional study and drug screening in aorta. We identified a subpopulation of CD106+ TRPV4high NOS3high ECs, in which an impaired TRPV4-eNOS interaction was important in the progress of hypertension and we designed a small molecule, JNc-463 to improve the impaired TRPV4-eNOS interaction in hypertension.
Collapse
Affiliation(s)
- Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Peng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hao Kan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongxu He
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiping Han
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiwei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Kuppusamy M, Ottolini M, Sonkusare SK. Role of TRP ion channels in cerebral circulation and neurovascular communication. Neurosci Lett 2021; 765:136258. [PMID: 34560190 PMCID: PMC8572163 DOI: 10.1016/j.neulet.2021.136258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
The dynamic regulation of blood flow is essential for meeting the high metabolic demands of the brain and maintaining brain function. Cerebral blood flow is regulated primarily by 1) the intrinsic mechanisms that determine vascular contractility and 2) signals from neurons and astrocytes that alter vascular contractility. Stimuli from neurons and astrocytes can also initiate a signaling cascade in the brain capillary endothelium to increase regional blood flow. Recent studies provide evidence that TRP channels in endothelial cells, smooth muscle cells, neurons, astrocytes, and perivascular nerves control cerebrovascular contractility and cerebral blood flow. TRP channels exert their functional effects either through cell membrane depolarization or by serving as a Ca2+ influx pathway. Endothelial cells and astrocytes also maintain the integrity of the blood-brain barrier. Both endothelial cells and astrocytes express TRP channels, and an increase in endothelial TRP channel activity has been linked with a disrupted endothelial barrier function. Therefore, TRP channels can play a potentially important role in regulating blood-brain barrier integrity. Here, we review the regulation of cerebrovascular contractility by TRP channels under healthy and disease conditions and their potential roles in maintaining blood-brain barrier function.
Collapse
Affiliation(s)
- Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA; Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
41
|
Lakk M, Hoffmann GF, Gorusupudi A, Enyong E, Lin A, Bernstein PS, Toft-Bertelsen T, MacAulay N, Elliott MH, Križaj D. Membrane cholesterol regulates TRPV4 function, cytoskeletal expression, and the cellular response to tension. J Lipid Res 2021; 62:100145. [PMID: 34710431 PMCID: PMC8633027 DOI: 10.1016/j.jlr.2021.100145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers. Depleting free membrane cholesterol with m-β-cyclodextrin (MβCD) augmented TRPV4 activation by the agonist GSK1016790A, swelling and strain, with the effects reversed by cholesterol supplementation. MβCD increased membrane expression of TRPV4, caveolin-1, and flotillin. TRPV4 did not colocalize or interact with caveolae or lipid rafts, apart from a truncated ∼75 kDa variant partially precipitated by a caveolin-1 antibody. MβCD induced currents in TRPV4-expressing Xenopus laevis oocytes. Thus, membrane cholesterol regulates trabecular transduction of mechanical information, with TRPV4 channels mainly located outside the cholesterol-enriched membrane domains. Moreover, the biomechanical milieu itself shapes the lipid content of TM membranes. Diet, cholesterol metabolism, and mechanical stress might modulate the conventional outflow pathway and intraocular pressure in glaucoma and diabetes in part by modulating TM mechanosensing.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Grace F Hoffmann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric Enyong
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amy Lin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Elliott
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
42
|
Negri S, Faris P, Moccia F. Reactive Oxygen Species and Endothelial Ca 2+ Signaling: Brothers in Arms or Partners in Crime? Int J Mol Sci 2021; 22:ijms22189821. [PMID: 34575985 PMCID: PMC8465413 DOI: 10.3390/ijms22189821] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.
Collapse
|
43
|
Daneva Z, Ottolini M, Chen YL, Klimentova E, Kuppusamy M, Shah SA, Minshall RD, Seye CI, Laubach VE, Isakson BE, Sonkusare SK. Endothelial pannexin 1-TRPV4 channel signaling lowers pulmonary arterial pressure in mice. eLife 2021; 10:67777. [PMID: 34490843 PMCID: PMC8448527 DOI: 10.7554/elife.67777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.
Collapse
Affiliation(s)
- Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States.,Department of Pharmacology, University of Virginia, Charlottesville, United States
| | - Yen Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Eliska Klimentova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Soham A Shah
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
| | - Richard D Minshall
- Department of Anesthesiology, Department of Pharmacology, University of Illinois, Chicago, United States
| | - Cheikh I Seye
- Department of Biochemistry, University of Missouri-Columbia, Columbia, United States
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, United States
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| |
Collapse
|
44
|
Aramide Modupe Dosunmu-Ogunbi A, Galley JC, Yuan S, Schmidt HM, Wood KC, Straub AC. Redox Switches Controlling Nitric Oxide Signaling in the Resistance Vasculature and Implications for Blood Pressure Regulation: Mid-Career Award for Research Excellence 2020. Hypertension 2021; 78:912-926. [PMID: 34420371 DOI: 10.1161/hypertensionaha.121.16493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The arterial resistance vasculature modulates blood pressure and flow to match oxygen delivery to tissue metabolic demand. As such, resistance arteries and arterioles have evolved a series of highly orchestrated cell-cell communication mechanisms between endothelial cells and vascular smooth muscle cells to regulate vascular tone. In response to neurohormonal agonists, release of several intracellular molecules, including nitric oxide, evokes changes in vascular tone. We and others have uncovered novel redox switches in the walls of resistance arteries that govern nitric oxide compartmentalization and diffusion. In this review, we discuss our current understanding of redox switches controlling nitric oxide signaling in endothelial and vascular smooth muscle cells, focusing on new mechanistic insights, physiological and pathophysiological implications, and advances in therapeutic strategies for hypertension and other diseases.
Collapse
Affiliation(s)
- Atinuke Aramide Modupe Dosunmu-Ogunbi
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Joseph C Galley
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute (A.A.M.D.-O., J.C.G., S.Y., H.M.S., K.C.W., A.C.S.), University of Pittsburgh, PA.,Department of Pharmacology and Chemical Biology (A.A.M.D.-O., J.C.G., H.M.S., A.C.S), University of Pittsburgh, PA.,Center for Microvascular Research (A.C.S.), University of Pittsburgh, PA
| |
Collapse
|
45
|
Endothelial Transient Receptor Potential V4 Channels Mediate Lung Ischemia-Reperfusion Injury. Ann Thorac Surg 2021; 113:1256-1264. [PMID: 33961815 DOI: 10.1016/j.athoracsur.2021.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lung ischemia-reperfusion injury (IRI), involving severe inflammation and edema, is a major cause of primary graft dysfunction following transplant. Activation of transient receptor potential vanilloid 4 (TRPV4) channels modulates vascular permeability. Thus, this study tests the hypothesis that endothelial TRPV4 channels mediate lung IRI. METHODS C57BL/6 wild-type (WT), TRPV4-/-, tamoxifen-inducible endothelial TRPV4 knockout (TRPV4EC-/-), and tamoxifen-treated control (TRPV4fl/fl) mice underwent lung IR using a left lung hilar-ligation model (n≥6 mice/group). WT mice were also treated with a TRPV4-specific inhibitor (GSK2193874; 1mg/kg) (WT+GSK219). Partial pressure of oxygen (PaO2), edema (wet-to-dry weight ratio), compliance, neutrophil infiltration, and cytokine concentrations in bronchioalveolar lavage fluid were assessed. Pulmonary microvascular endothelial cells (PMVECs) were characterized in vitro following exposure to hypoxia-reoxygenation. RESULTS Compared to WT, PaO2 following IR was significantly improved in TRPV4-/- mice (133.1±43.9 vs 427.8±83.1 mmHg, p<0.001) and WT+GSK219 mice (133.1±43.9 vs 447.0±67.6 mmHg, p<0.001). Pulmonary edema and neutrophil infiltration were also significantly reduced after IR in TRPV4-/- and WT+GSK219 mice versus WT. TRPV4EC-/- mice following IR demonstrated significantly improved oxygenation versus control (109.2±21.6 vs 405.3±41.4 mmHg, p<0.001) as well as significantly improved compliance, and significantly less edema, neutrophil infiltration and proinflammatory cytokine production (TNF-α, CXCL1, IL-17, IFN-γ). Hypoxia-reoxygenation-induced permeability and CXCL1 expression by PMVECs was significantly attenuated by TRPV4 inhibitors. CONCLUSIONS Endothelial TRPV4 plays a key role in vascular permeability and lung inflammation following IR. TRPV4 channels may be a promising therapeutic target to mitigate lung IRI and decrease the incidence of primary graft dysfunction following transplant. (Word Count: 249/250).
Collapse
|