1
|
Gkanogiannis A, Rahman H, Singh RK, Lopez-Lavalle AB. Chromosome-level genome assembly and functional annotation of Citrullus colocynthis: unlocking genetic resources for drought-resilient crop development. PLANTA 2024; 260:124. [PMID: 39443340 PMCID: PMC11499410 DOI: 10.1007/s00425-024-04551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
MAIN CONCLUSION The chromosome-level genome assembly of Citrullus colocynthis reveals its genetic potential for enhancing drought tolerance, paving the way for innovative crop improvement strategies. This study presents the first comprehensive genome assembly and annotation of Citrullus colocynthis, a drought-tolerant wild close relative of cultivated watermelon, highlighting its potential for enhancing agricultural resilience to climate change. The study achieved a chromosome-level assembly using advanced sequencing technologies, including PacBio HiFi and Hi-C, revealing a genome size of approximately 366 Mb with low heterozygosity and substantial repetitive content. Our analysis identified 23,327 gene models, that could encode stress response mechanisms for species' adaptation to arid environments. Comparative genomics with closely related species illuminated the evolutionary dynamics within the Cucurbitaceae family. In addition, resequencing of 27 accessions from the United Arab Emirates (UAE) identified genetic diversity, suggesting a foundation for future breeding programs. This genomic resource opens new avenues for the de novo domestication of C. colocynthis, offering a blueprint for developing crops with enhanced drought tolerance, disease resistance, and nutritional profiles, crucial for sustaining future food security in the face of escalating climate challenges.
Collapse
Affiliation(s)
- Anestis Gkanogiannis
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates.
| | - Hifzur Rahman
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
| | - Rakesh Kumar Singh
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
| | | |
Collapse
|
2
|
Zhang Y, Zhao M, Tan J, Huang M, Chu X, Li Y, Han X, Fang T, Tian Y, Jarret R, Lu D, Chen Y, Xue L, Li X, Qin G, Li B, Sun Y, Deng XW, Deng Y, Zhang X, He H. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nat Genet 2024; 56:1750-1761. [PMID: 38977857 PMCID: PMC11319210 DOI: 10.1038/s41588-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
To decipher the genetic diversity within the cucurbit genus Citrullus, we generated telomere-to-telomere (T2T) assemblies of 27 distinct genotypes, encompassing all seven Citrullus species. This T2T super-pangenome has expanded the previously published reference genome, T2T-G42, by adding 399.2 Mb and 11,225 genes. Comparative analysis has unveiled gene variants and structural variations (SVs), shedding light on watermelon evolution and domestication processes that enhanced attributes such as bitterness and sugar content while compromising disease resistance. Multidisease-resistant loci from Citrullus amarus and Citrullus mucosospermus were successfully introduced into cultivated Citrullus lanatus. The SVs identified in C. lanatus have not only been inherited from cordophanus but also from C. mucosospermus, suggesting additional ancestors beyond cordophanus in the lineage of cultivated watermelon. Our investigation substantially improves the comprehension of watermelon genome diversity, furnishing comprehensive reference genomes for all Citrullus species. This advancement aids in the exploration and genetic enhancement of watermelon using its wild relatives.
Collapse
Affiliation(s)
- Yilin Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Mingxia Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Jingsheng Tan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Minghan Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Xiao Chu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yan Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Xue Han
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Taohong Fang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yao Tian
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | | | - Dongdong Lu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yijun Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Lifang Xue
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Xiaoni Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Guochen Qin
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Bosheng Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yudong Sun
- Vegetable Research and Development Center, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yun Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| | - Xingping Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| | - Hang He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Guo S, Tian M, Du H, Liu S, Yu R, Shen H. Quantitative Trait Loci Mapping and Comparative Transcriptome Analysis of Fruit Weight (FW) in Watermelon ( Citrullus lanatus L.). Genes (Basel) 2024; 15:933. [PMID: 39062712 PMCID: PMC11276344 DOI: 10.3390/genes15070933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The watermelon (Citrullus lanatus L.) holds substantial economic value as a globally cultivated horticultural crop. However, the genetic architecture of watermelon fruit weight (FW) remains poorly understood. In this study, we used sh14-11 with small fruit and N14 with big fruit to construct 100 recombinant inbred lines (RILs). Based on whole-genome resequencing (WGR), 218,127 single nucleotide polymorphisms (SNPs) were detected to construct a high-quality genetic map. After quantitative trait loci (QTL) mapping, a candidate interval of 31-38 Mb on chromosome 2 was identified for FW. Simultaneously, the bulked segregant analysis (BSA) in the F2 population corroborated the identification of the same interval, encompassing the homologous gene linked to the known FW-related gene fas. Additionally, RNA-seq was carried out across 11 tissues from sh14-11 and N14, revealing expression profiles that identified 1695 new genes and corrected the annotation of 2941 genes. Subsequent differential expression analysis unveiled 8969 differentially expressed genes (DEGs), with 354 of these genes exhibiting significant differences across four key developmental stages. The integration of QTL mapping and differential expression analysis facilitated the identification of 14 FW-related genes, including annotated TGA and NAC transcription factors implicated in fruit development. This combined approach offers valuable insights into the genetic basis of FW, providing crucial resources for enhancing watermelon cultivation.
Collapse
Affiliation(s)
- Song Guo
- Horticulture College, China Agricultural University, Beijing 100193, China;
| | - Mei Tian
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Huiying Du
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Shengfeng Liu
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Rong Yu
- Institute of Horticultural Research, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (M.T.); (H.D.); (S.L.)
| | - Huolin Shen
- Horticulture College, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
4
|
Yang T, Amanullah S, Li S, Cheng R, Zhang C, Zhao Z, Liu H, Luan F, Wang X. Molecular Mapping of Putative Genomic Regions Controlling Fruit and Seed Morphology of Watermelon. Int J Mol Sci 2023; 24:15755. [PMID: 37958737 PMCID: PMC10650541 DOI: 10.3390/ijms242115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The genetic regulatory basis of qualitative and quantitative phenotypes of watermelon is being investigated in different types of molecular and genetic breeding studies around the world. In this study, biparental F2 mapping populations were developed over two experimental years, and the collected datasets of fruit and seed traits exhibited highly significant correlations. Whole-genome resequencing of comparative parental lines was performed and detected single nucleotide polymorphism (SNP) loci were converted into cleaved amplified polymorphic sequence (CAPS) markers. The screened polymorphic markers were genotyped in segregating populations and two genetic linkage maps were constructed, which covered a total of 2834.28 and 2721.45 centimorgan (cM) genetic lengths, respectively. A total of 22 quantitative trait loci (QTLs) for seven phenotypic traits were mapped; among them, five stable and major-effect QTLs (PC-8-1, SL-9-1, SWi-9-1, SSi-9-1, and SW-6-1) and four minor-effect QTLs (PC-2-1 and PC-2-2; PT-2-1 and PT-2-2; SL-6-1 and SSi-6-2; and SWi-6-1 and SWi-6-2) were observed with 3.77-38.98% PVE. The adjacent QTL markers showed a good fit marker-trait association, and a significant allele-specific contribution was also noticed for genetic inheritance of traits. Further, a total of four candidate genes (Cla97C09G179150, Cla97C09G179350, Cla97C09G180040, and Cla97C09G180100) were spotted in the stable colocalized QTLs of seed size linked traits (SL-9-1 and SWi-9-1) that showed non-synonymous type mutations. The gene expression trends indicated that the seed morphology had been formed in the early developmental stage and showed the genetic regulation of seed shape formation. Hence, we think that our identified QTLs and genes would provide powerful genetic insights for marker-assisted breeding aimed at improving the quality traits of watermelon.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Shenglong Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Rui Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Chen Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Zhengxiang Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (T.Y.); (S.L.); (R.C.); (Z.Z.); (H.L.); (F.L.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
5
|
Wu S, Sun H, Gao L, Branham S, McGregor C, Renner SS, Xu Y, Kousik C, Wechter WP, Levi A, Fei Z. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1926-1928. [PMID: 37490004 PMCID: PMC10502741 DOI: 10.1111/pbi.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Shan Wu
- Boyce Thompson InstituteIthacaNew YorkUSA
| | - Honghe Sun
- Boyce Thompson InstituteIthacaNew YorkUSA
- Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Lei Gao
- Boyce Thompson InstituteIthacaNew YorkUSA
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed DesignChinese Academy of SciencesWuhanHubeiChina
| | - Sandra Branham
- Coastal Research and Educational CenterClemson UniversityCharlestonSouth CarolinaUSA
| | | | | | - Yong Xu
- National Engineering Research Center for VegetablesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | | | - W. Patrick Wechter
- Coastal Research and Educational CenterClemson UniversityCharlestonSouth CarolinaUSA
| | - Amnon Levi
- USDA‐ARSU.S. Vegetable LaboratoryCharlestonSouth CarolinaUSA
| | - Zhangjun Fei
- Boyce Thompson InstituteIthacaNew YorkUSA
- USDA‐ARS Robert W. Holley Center for Agriculture and HealthIthacaNew YorkUSA
| |
Collapse
|
6
|
Leal-Dutra CA, Yuen LM, Guedes BAM, Contreras-Serrano M, Marques PE, Shik JZ. Evidence that the domesticated fungus Leucoagaricus gongylophorus recycles its cytoplasmic contents as nutritional rewards to feed its leafcutter ant farmers. IMA Fungus 2023; 14:19. [PMID: 37715276 PMCID: PMC10503033 DOI: 10.1186/s43008-023-00126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Leafcutter ants farm a fungal cultivar (Leucoagaricus gongylophorus) that converts inedible vegetation into food that sustains colonies with up to millions of workers. Analogous to edible fruits of crops domesticated by humans, L. gongylophorus has evolved specialized nutritional rewards-swollen hyphal cells called gongylidia that package metabolites and are consumed by ant farmers. Yet, little is known about how gongylidia form, and thus how fungal physiology and ant provisioning collectively govern farming performance. We explored the process of gongylidium formation using advanced microscopy to image the cultivar at scales of nanometers, and both in vitro experiments and in silico analyses to examine the mechanisms of gongylidia formation when isolated from ant farmers. We first used transmission electron, fluorescence, and confocal microscopy imaging to see inside hyphal cells. This imaging showed that the cultivar uses a process called autophagy to recycle its own cellular material (e.g. cytosol, mitochondria) and then shuttles the resulting metabolites into a vacuole whose continual expansion displaces other organelles and causes the gongylidium cell's bulging bulb-like appearance. We next used scanning electron microscopy and light microscopy to link this intracellular rearrangement to the external branching patterns of gongylidium cells as they clump together into edible bundles called staphyla. We next confirmed that autophagy plays a critical role in gongylidium formation both: (1) in vitro as gongylidium suppression occurred when isolated fungal cultures were grown on media with autophagy inhibitors, and (2) in silico as differential transcript expression (RNA-seq) analyses showed upregulation of multiple autophagy gene isoforms in gongylidia relative to undifferentiated hyphae. While autophagy is a ubiquitous and often highly derived process across the tree of life, our study reveals a new role for autophagy as a mechanism of functional integration between ant farmers and their fungal crop, and potentially as a signifier of higher-level homeostasis between uniquely life-time committed ectosymbionts.
Collapse
Affiliation(s)
- Caio Ambrosio Leal-Dutra
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | - Lok Man Yuen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Department of Biology, ETH Zürich, Universitätsstrasse 16, Zürich, 8092, Switzerland
| | - Bruno Augusto Maciel Guedes
- Departamento de Ciências Básicas da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares, MG, 35020-360, Brazil
| | - Marta Contreras-Serrano
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jonathan Zvi Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
7
|
Llaberia-Robledillo M, Lucas-Lledó JI, Pérez-Escobar OA, Krasnov BR, Balbuena JA. Rtapas: An R Package to Assess Cophylogenetic Signal between Two Evolutionary Histories. Syst Biol 2023; 72:946-954. [PMID: 36964756 DOI: 10.1093/sysbio/syad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/26/2023] Open
Abstract
Cophylogeny represents a framework to understand how ecological and evolutionary process influence lineage diversification. The recently developed algorithm Random Tanglegram Partitions provides a directly interpretable statistic to quantify the strength of cophylogenetic signal and incorporates phylogenetic uncertainty into its estimation, and maps onto a tanglegram the contribution to cophylogenetic signal of individual host-symbiont associations. We introduce Rtapas, an R package to perform Random Tanglegram Partitions. Rtapas applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and internal nodes that maximize phylogenetic congruence. This new package extends the original implementation with a new algorithm that examines the contribution to phylogenetic incongruence of each host-symbiont association and adds ParaFit, a method designed to test for topological congruence between two phylogenies, to the list of global-fit methods than can be applied. Rtapas facilitates and speeds up cophylogenetic analysis, as it can handle large phylogenies (100+ terminals) in affordable computational time as illustrated with two real-world examples. Rtapas can particularly cater for the need for causal inference in cophylogeny in two domains: (i) Analysis of complex and intricate host-symbiont evolutionary histories and (ii) assessment of topological (in)congruence between phylogenies produced with different DNA markers and specifically identify subsets of loci for phylogenetic analysis that are most likely to reflect gene-tree evolutionary histories. [Cophylogeny; cophylogenetic signal; gene tree incongruence; phylogenetic congruence; phylogenomics.].
Collapse
Affiliation(s)
- Mar Llaberia-Robledillo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| | - J Ignacio Lucas-Lledó
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| | | | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | - Juan Antonio Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
8
|
Xu L, Wang Y, Dong J, Zhang W, Tang M, Zhang W, Wang K, Chen Y, Zhang X, He Q, Zhang X, Wang K, Wang L, Ma Y, Xia K, Liu L. A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:990-1004. [PMID: 36648398 PMCID: PMC10106849 DOI: 10.1111/pbi.14011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 05/04/2023]
Abstract
High-quality radish (Raphanus sativus) genome represents a valuable resource for agronomical trait improvements and understanding genome evolution among Brassicaceae species. However, existing radish genome assembly remains fragmentary, which greatly hampered functional genomics research and genome-assisted breeding. Here, using a NAU-LB radish inbred line, we generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88 Mb by incorporating Illumina, PacBio and BioNano optical mapping techniques. Utilizing Hi-C data, 448.12 Mb (94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40 306 protein-coding genes annotated. In total, 249.14 Mb (52.31%) comprised the repetitive sequences, among which long terminal repeats (LTRs, 30.31%) were the most abundant class. Beyond confirming the whole-genome triplication (WGT) event in R. sativus lineage, we found several tandem arrayed genes were involved in stress response process, which may account for the distinctive phenotype of high disease resistance in R. sativus. By comparing against the existing Xin-li-mei radish genome, a total of 2 108 573 SNPs, 7740 large insertions, 7757 deletions and 84 inversions were identified. Interestingly, a 647-bp insertion in the promoter of RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its low promoter activity and late-bolting phenotype of NAU-LB cultivar. Importantly, introgression of this 647-bp insertion allele, RsVRN1In-536 , into early-bolting genotype could contribute to delayed bolting time, indicating that it is a potential genetic resource for radish late-bolting breeding. Together, this genome resource provides valuable information to facilitate comparative genomic analysis and accelerate genome-guided breeding and improvement in radish.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Weilan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kai Wang
- School of Life SciencesNantong UniversityNantongChina
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and EnvironmentThe University of Western AustraliaPerthWAAustralia
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qing He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Lun Wang
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Yinbo Ma
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Kai Xia
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| |
Collapse
|
9
|
Zhou C, Wang P, Zeng Q, Zeng R, Hu W, Sun L, Liu S, Luan F, Zhu Q. Comparative chloroplast genome analysis of seven extant Citrullus species insight into genetic variation, phylogenetic relationships, and selective pressure. Sci Rep 2023; 13:6779. [PMID: 37185306 PMCID: PMC10130142 DOI: 10.1038/s41598-023-34046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
Citrullus ecirrhosus, Citrullus rehmii, and Citrullus naudinianus are three important related wild species of watermelon in the genus Citrullus, and their morphological differences are clear, however, their chloroplast genome differences remain unknown. This study is the first to assemble, analyze, and publish the complete chloroplast genomes of C. ecirrhosus, C. rehmii, and C. naudinianus. A comparative analysis was then conducted among the complete chloroplast genomes of seven extant Citrullus species, and the results demonstrated that the average genome sizes of Citrullus is 157,005 bp, a total of 130-133 annotated genes were identified, including 8 rRNA, 37 tRNA and 85-88 protein-encoding genes. Their gene content, order, and genome structure were similar. However, noncoding regions were more divergent than coding regions, and rps16-trnQ was a hypervariable fragment. Thirty-four polymorphic SSRs, 1,271 SNPs and 234 INDELs were identified. Phylogenetic trees revealed a clear phylogenetic relationship of Citrullus species, and the developed molecular markers (SNPs and rps16-trnQ) could be used for taxonomy in Citrullus. Three genes (atpB, clpP1, and rpoC2) were identified to undergo selection and would promote the environmental adaptation of Citrullus.
Collapse
Affiliation(s)
- Cong Zhou
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Putao Wang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Qun Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Rongbin Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Wei Hu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Lei Sun
- Department of Agronomy and Horticulture, Liaoning Agricultural Technical College, Yingkou, 115009, People's Republic of China
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qianglong Zhu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
10
|
Nie H, Kim M, Lee S, Lim S, Lee MS, Kim JH, Noh SJ, Park SW, Kim ST, Shin AY, Lee Y, Kwon SY. High-quality genome assembly and genetic mapping reveal a gene regulating flesh color in watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2023; 14:1142856. [PMID: 36938051 PMCID: PMC10014564 DOI: 10.3389/fpls.2023.1142856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The unique color and type characteristics of watermelon fruits are regulated by many molecular mechanisms. However, it still needs to be combined with more abundant genetic data to fine-tune the positioning. We assembled genomes of two Korean inbred watermelon lines (cv. 242-1 and 159-1) with unique color and fruit-type characteristics and identified 23,921 and 24,451 protein-coding genes in the two genomes, respectively. To obtain more precise results for further study, we resequenced one individual of each parental line and an F2 population composed of 87 individuals. This identified 1,539 single-nucleotide polymorphisms (SNPs) and 80 InDel markers that provided a high-density genetic linkage map with a total length of 3,036.9 cM. Quantitative trait locus mapping identified 15 QTLs for watermelon fruit quality-related traits, including β-carotene and lycopene content in fruit flesh, fruit shape index, skin thickness, flesh color, and rind color. By investigating the mapping intervals, we identified 33 candidate genes containing variants in the coding sequence. Among them, Cla97C01G008760 was annotated as a phytoene synthase with a single-nucleotide variant (A → G) in the first exon at 9,539,129 bp of chromosome 1 that resulted in the conversion of a lysine to glutamic acid, indicating that this gene might regulate flesh color changes at the protein level. These findings not only prove the importance of a phytoene synthase gene in pigmentation but also explain an important reason for the color change of watermelon flesh.
Collapse
Affiliation(s)
- Hualin Nie
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Moonkyo Kim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
- Division of Life Science, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Sanghee Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Sohee Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Mi Sun Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Hyeok Kim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Sol Ji Noh
- Watermelon and Strawberry Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju, Republic of Korea
| | - Seong Won Park
- Watermelon and Strawberry Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju, Republic of Korea
| | - Sang-Tae Kim
- Department of Medical and Biological Sciences, Catholic University of Korea, Bucheon, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Yu J, Wu S, Sun H, Wang X, Tang X, Guo S, Zhang Z, Huang S, Xu Y, Weng Y, Mazourek M, McGregor C, Renner SS, Branham S, Kousik C, Wechter W, Levi A, Grumet R, Zheng Y, Fei Z. CuGenDBv2: an updated database for cucurbit genomics. Nucleic Acids Res 2023; 51:D1457-D1464. [PMID: 36271794 PMCID: PMC9825510 DOI: 10.1093/nar/gkac921] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/30/2023] Open
Abstract
The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.
Collapse
Affiliation(s)
- Jingyin Yu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Xin Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemei Tang
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yiqun Weng
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Susanne S Renner
- Faculty of Biology, Systematic Botany and Mycology, University of Munich (LMU), 80638 Munich, Germany
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | - Sandra Branham
- Coastal Research and Educational Center, Clemson University, Charleston, SC 29414, USA
| | - Chandrasekar Kousik
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - W Patrick Wechter
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Amnon Levi
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Zhang X, Zhao Y, Kou Y, Chen X, Yang J, Zhang H, Zhao Z, Zhao Y, Zhao G, Li Z. Diploid chromosome-level reference genome and population genomic analyses provide insights into Gypenoside biosynthesis and demographic evolution of Gynostemma pentaphyllum (Cucurbitaceae). HORTICULTURE RESEARCH 2022; 10:uhac231. [PMID: 36643751 PMCID: PMC9832869 DOI: 10.1093/hr/uhac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/01/2022] [Indexed: 06/17/2023]
Abstract
Gynostemma pentaphyllum (Thunb.) Makino is a perennial creeping herbaceous plant in the family Cucurbitaceae, which has great medicinal value and commercial potential, but urgent conservation efforts are needed due to the gradual decreases and fragmented distribution of its wild populations. Here, we report the high-quality diploid chromosome-level genome of G. pentaphyllum obtained using a combination of next-generation sequencing short reads, Nanopore long reads, and Hi-C sequencing technologies. The genome is anchored to 11 pseudo-chromosomes with a total size of 608.95 Mb and 26 588 predicted genes. Comparative genomic analyses indicate that G. pentaphyllum is estimated to have diverged from Momordica charantia 60.7 million years ago, with no recent whole-genome duplication event. Genomic population analyses based on genotyping-by-sequencing and ecological niche analyses indicated low genetic diversity but a strong population structure within the species, which could classify 32 G. pentaphyllum populations into three geographical groups shaped jointly by geographic and climate factors. Furthermore, comparative transcriptome analyses showed that the genes encoding enzyme involved in gypenoside biosynthesis had higher expression levels in the leaves and tendrils. Overall, the findings obtained in this study provide an effective molecular basis for further studies of demographic genetics, ecological adaption, and systematic evolution in Cucurbitaceae species, as well as contributing to molecular breeding, and the biosynthesis and biotransformation of gypenoside.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Yuhe Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Yixuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaodan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, 030012, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
- College of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Zhe Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, China
| | - Yuemei Zhao
- School of Biological Sciences, Guizhou Education University, Guiyang, Guizhou, 550018, China
| | | | | |
Collapse
|
13
|
Mahmoud A, Qi R, Zhao H, Yang H, Liao N, Ali A, Malangisha GK, Ma Y, Zhang K, Zhou Y, Xia Y, Lyu X, Yang J, Zhang M, Hu Z. An allelic variant in the ACS7 gene promotes primary root growth in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3357-3373. [PMID: 35980402 DOI: 10.1007/s00122-022-04173-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Gene mining in a C. lanatus × C. amarus population revealed one gene, ACS7, linked to primary root elongation in watermelon. Watermelon is a xerophytic crop characterized by a long primary root and robust lateral roots. Therefore, watermelon serves as an excellent model for studying root elongation and development. However, the genetic mechanism underlying the primary root elongation in watermelon remains unknown. Herein, through bulk segregant analysis we identified a genetic locus, qPRL.Chr03, controlling primary root length (PRL) using two different watermelon species (Citrullus lanatus and Citrullus amarus) that differ in their root architecture. Fine mapping revealed that xaa-Pro dipeptidase and 1-aminocyclopropane-1-carboxylate synthase 7 (ACS7) are candidate regulators of the primary root growth. Allelic variation in the delimited region among 193 watermelon accessions indicated that the long-root alleles might only exist in C. amarus. Interestingly, the discrepancy in PRL among the C. amarus accessions was clearly associated with a nonsynonymous single nucleotide polymorphism variant within the ACS7 gene. The ACS7 expression and ethylene levels in the primary root tips suggested that ethylene is a negative regulator of root elongation in watermelon, as supported by the application of 1-aminocyclopropane-1-carboxylate (ACC, the ethylene precursor) or 2-aminoethoxyvinyl glycine (AVG, an ACS inhibitor). To the best of our knowledge, these findings provide the first description of the genetic basis of root elongation in watermelon. The detected markers of the ACS7 gene will facilitate marker-assisted selection for the PRL trait to improve water and nutrient use efficacy in watermelon and beyond.
Collapse
Affiliation(s)
- Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Agriculture Research Center, Horticulture Research Institute, 9 Gmaa St, Giza, 12619, Egypt
| | - Rui Qi
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, People's Republic of China
| | - Haoshun Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Haiyang Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuelin Xia
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, People's Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, People's Republic of China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, People's Republic of China.
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, People's Republic of China.
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, People's Republic of China.
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Demeulenaere E, Schils T, Burleigh JG, Ringelberg JJ, Koenen EJM, Ickert-Bond SM. Phylogenomic assessment prompts recognition of the Serianthes clade and confirms the monophyly of Serianthes and its relationship with Falcataria and Wallaceodendron in the wider ingoid clade (Leguminosae, Caesalpinioideae). PHYTOKEYS 2022; 205:335-361. [PMID: 36762011 PMCID: PMC9849021 DOI: 10.3897/phytokeys.205.79144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
The Indo-Pacific legume genus Serianthes was recently placed in the Archidendron clade (sensu Koenen et al. 2020), a subclade of the mimosoid clade in subfamily Caesalpinioideae, which also includes Acacia, Archidendron, Archidendropsis, Falcataria, Pararchidendron, Paraserianthes and Wallaceodendron. Serianthes comprises ca. 18 species, five subspecies and two varieties that are characterised by bipinnately compound leaves with alternate sessile leaflets, branched axillary corymbiform panicles and woody indehiscent pods. Generic relationships, as well as species relationships within genera in the Archidendron clade, remain uncertain. While the sister relationship between Serianthes and the genus Falcataria is strongly supported by molecular data, the distinction between Serianthes and the monotypic genus Wallaceodendron has been questioned, based on their similar flower and fruit morphologies. We combined three gene-enriched hybrid capture DNA sequence datasets (generated from the 964 mimobaits v1 probe set, the expanded 997 mimobaits v2 probe set and the GoFlag angiosperm 408 probe set) and used their overlapping markers (77 loci of the target exonic and flanking regions) to test the monophyly of Serianthes and to investigate generic relationships within the Archidendron clade using 55 ingoid plus two outgroup taxa. We show that Serianthes is monophyletic, confirm the Serianthes + Falcataria sister relationship to Wallaceodendron and recognise this combined clade as the Serianthes clade within the Archidendron clade. We also evaluated the use of overlapping loci across datasets in combination with concordance analyses to test generic relationships and further investigate previously unresolved relationships across the wider ingoid clade. Concordance analysis revealed limited gene tree conflicts near the tips of the Archidendron clade, but increased discordance at the base of the clade, which could be attributed to rapid lineage divergence (radiation) and/or incomplete lineage sorting.
Collapse
Affiliation(s)
- Else Demeulenaere
- Center for Island Sustainability, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - Tom Schils
- Center for Island Sustainability, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - J. Gordon Burleigh
- Marine Laboratory, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - Jens J. Ringelberg
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Stefanie M. Ickert-Bond
- Evolutionary Biology & Ecology, Free University of Brussels, Av. F.D. Roosevelt, 50, CP 160/12 - B-1050 Brussels, Belgium
| |
Collapse
|
15
|
Deng Y, Liu S, Zhang Y, Tan J, Li X, Chu X, Xu B, Tian Y, Sun Y, Li B, Xu Y, Deng XW, He H, Zhang X. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. MOLECULAR PLANT 2022; 15:1268-1284. [PMID: 35746868 DOI: 10.1016/j.molp.2022.06.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Watermelon, Citrullus lanatus, is the world's third largest fruit crop. Reference genomes with gaps and a narrow genetic base hinder functional genomics and genetic improvement of watermelon. Here, we report the assembly of a telomere-to-telomere gap-free genome of the elite watermelon inbred line G42 by incorporating high-coverage and accurate long-read sequencing data with multiple assembly strategies. All 11 chromosomes have been assembled into single-contig pseudomolecules without gaps, representing the highest completeness and assembly quality to date. The G42 reference genome is 369 321 829 bp in length and contains 24 205 predicted protein-coding genes, with all 22 telomeres and 11 centromeres characterized. Furthermore, we established a pollen-EMS mutagenesis protocol and obtained over 200 000 M1 seeds from G42 . In a sampling pool, 48 monogenic phenotypic mutations, selected from 223 M1 and 78 M2 mutants with morphological changes, were confirmed. The average mutation density was 1 SNP/1.69 Mb and 1 indel/4.55 Mb per M1 plant and 1 SNP/1.08 Mb and 1 indel/6.25 Mb per M2 plant. Taking advantage of the gap-free G42 genome, 8039 mutations from 32 plants sampled from M1 and M2 families were identified with 100% accuracy, whereas only 25% of the randomly selected mutations identified using the 97103v2 reference genome could be confirmed. Using this library and the gap-free genome, two genes responsible for elongated fruit shape and male sterility (ClMS1) were identified, both caused by a single base change from G to A. The validated gap-free genome and its EMS mutation library provide invaluable resources for functional genomics and genetic improvement of watermelon.
Collapse
Affiliation(s)
- Yun Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Shoucheng Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yilin Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China; School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Jingsheng Tan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Xiaopeng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Xiao Chu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Binghua Xu
- Jiangsu Xuhuai Area Huaiyin Institute of Agricultural Science, Huaian, Jiangsu 223300, China
| | - Yao Tian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yudong Sun
- Jiangsu Xuhuai Area Huaiyin Institute of Agricultural Science, Huaian, Jiangsu 223300, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yunbi Xu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China; School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China; School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China.
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| |
Collapse
|
16
|
Pérez-Escobar OA, Tusso S, Przelomska NAS, Wu S, Ryan P, Nesbitt M, Silber MV, Preick M, Fei Z, Hofreiter M, Chomicki G, Renner SS. Genome sequencing of up to 6,000-yr-old Citrullus seeds reveals use of a bitter-fleshed species prior to watermelon domestication. Mol Biol Evol 2022; 39:6652436. [PMID: 35907246 PMCID: PMC9387916 DOI: 10.1093/molbev/msac168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iconographic evidence from Egypt suggests that watermelon pulp was consumed there as a dessert by 4,360 BP. Earlier archaeobotanical evidence comes from seeds from Neolithic settlements in Libya, but whether these were watermelons with sweet pulp or other forms is unknown. We generated genome sequences from 6,000- and 3,300-year-old seeds from Libya and Sudan, and from worldwide herbarium collections made between 1824 and 2019, and analyzed these data together with resequenced genomes from important germplasm collections for a total of 131 accessions. Phylogenomic and population-genomic analyses reveal that (1) much of the nuclear genome of both ancient seeds is traceable to West African seed-use “egusi-type” watermelon (Citrullus mucosospermus) rather than domesticated pulp-use watermelon (Citrullus lanatus ssp. vulgaris); (2) the 6,000-year-old watermelon likely had bitter pulp and greenish-white flesh as today found in C. mucosospermus, given alleles in the bitterness regulators ClBT and in the red color marker LYCB; and (3) both ancient genomes showed admixture from C. mucosospermus, C. lanatus ssp. cordophanus, C. lanatus ssp. vulgaris, and even South African Citrullus amarus, and evident introgression between the Libyan seed (UMB-6) and populations of C. lanatus. An unexpected new insight is that Citrullus appears to have initially been collected or cultivated for its seeds, not its flesh, consistent with seed damage patterns induced by human teeth in the oldest Libyan material.
Collapse
Affiliation(s)
| | - Sergio Tusso
- Faculty of Biology, Division of Genetics, University of Munich (LMU), 82152 Planegg- Martinsried, Germany
| | | | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | | | - Mark Nesbitt
- Royal Botanic Gardens, Kew, TW9 3AE, United Kingdom
| | - Martina V Silber
- Faculty of Biology, Systematic Botany and Mycology, University of Munich (LMU), 80638 Munich, Germany
| | - Michaela Preick
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Michael Hofreiter
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Guillaume Chomicki
- Ecology and Evolutionary Biology, School of Bioscience, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Susanne S Renner
- Faculty of Biology, Systematic Botany and Mycology, University of Munich (LMU), 80638 Munich, Germany.,Department of Biology, Washington University, Saint Louis, MO 63130, USA
| |
Collapse
|
17
|
Lu J, Cheng F, Huang Y, Bie Z. Grafting Watermelon Onto Pumpkin Increases Chilling Tolerance by Up Regulating Arginine Decarboxylase to Increase Putrescine Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:812396. [PMID: 35242149 PMCID: PMC8886213 DOI: 10.3389/fpls.2021.812396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/02/2023]
Abstract
Low temperature is a major environmental factor that severely impairs plant growth and productivity. Watermelon (Citrullus lanatus) is a chilling-sensitive crop. Grafting of watermelon onto pumpkin rootstock is an effective technique to increase the chilling tolerance of watermelon when exposure to short-time chilling stress. However, the mechanism by which pumpkin rootstock increases chilling tolerance remains poorly understood. Under 10°C/5°C (day/night) chilling stress treatment, pumpkin-grafted watermelon seedlings showed higher chilling tolerance than self-grafted watermelon plants with significantly reduced lipid peroxidation and chilling injury (CI) index. Physiological analysis revealed that pumpkin rootstock grafting led to the notable accumulation of putrescine in watermelon seedlings under chilling conditions. Pre-treat foliar with 1 mM D-arginine (inhibitor of arginine decarboxylase, ADC) increased the electrolyte leakage (EL) of pumpkin-grafted watermelon leaves under chilling stress. This result can be ascribed to the decrease in transcript levels of ADC, ornithine decarboxylase, spermidine synthase, and polyamine oxidase genes involved in the synthesis and metabolism of polyamines. Transcriptome analysis showed that pumpkin rootstock improved chilling tolerance in watermelon seedlings by regulating differential gene expression under chilling stress. Pumpkin-grafted seedling reduced the number and expression level of differential genes in watermelon scion under chilling stress. It specifically increased the up-regulated expression of ADC (Cla97C11G210580), a key gene in the polyamine metabolism pathway, and ultimately promoted the accumulation of putrescine. In conclusion, pumpkin rootstock grafting increased the chilling tolerance of watermelon through transcription adjustments, up regulating the expression level of ADC, and promoting the synthesis of putrescine, which ultimately improved the chilling tolerance of pumpkin-grafted watermelon plants.
Collapse
|
18
|
De Smet I, Vergauwen D. The Collaboration Between Art History and Genetics - An Unlikely Marriage of Disciplines. FRONTIERS IN PLANT SCIENCE 2021; 12:757439. [PMID: 34790214 PMCID: PMC8591120 DOI: 10.3389/fpls.2021.757439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Our fruits, vegetables, and cereal crops stem from a wild ancestor and have undergone major changes through millennia of domestication and selection. There are various ways to reveal plant diversity over time, and one of these is through the combination of art history and genetics (also known as #ArtGenetics). Here, we discuss this approach from the art historian's point of view and flag the advantages and caveats of such an approach. We also advocate for the development of an integrated, global art database to facilitate such analyses.
Collapse
Affiliation(s)
- Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | |
Collapse
|
19
|
Grumet R, McCreight JD, McGregor C, Weng Y, Mazourek M, Reitsma K, Labate J, Davis A, Fei Z. Genetic Resources and Vulnerabilities of Major Cucurbit Crops. Genes (Basel) 2021; 12:1222. [PMID: 34440396 PMCID: PMC8392200 DOI: 10.3390/genes12081222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The Cucurbitaceae family provides numerous important crops including watermelons (Citrullus lanatus), melons (Cucumis melo), cucumbers (Cucumis sativus), and pumpkins and squashes (Cucurbita spp.). Centers of domestication in Africa, Asia, and the Americas were followed by distribution throughout the world and the evolution of secondary centers of diversity. Each of these crops is challenged by multiple fungal, oomycete, bacterial, and viral diseases and insects that vector disease and cause feeding damage. Cultivated varieties are constrained by market demands, the necessity for climatic adaptations, domestication bottlenecks, and in most cases, limited capacity for interspecific hybridization, creating narrow genetic bases for crop improvement. This analysis of crop vulnerabilities examines the four major cucurbit crops, their uses, challenges, and genetic resources. ex situ germplasm banks, the primary strategy to preserve genetic diversity, have been extensively utilized by cucurbit breeders, especially for resistances to biotic and abiotic stresses. Recent genomic efforts have documented genetic diversity, population structure, and genetic relationships among accessions within collections. Collection size and accessibility are impacted by historical collections, current ability to collect, and ability to store and maintain collections. The biology of cucurbits, with insect-pollinated, outcrossing plants, and large, spreading vines, pose additional challenges for regeneration and maintenance. Our ability to address ongoing and future cucurbit crop vulnerabilities will require a combination of investment, agricultural, and conservation policies, and technological advances to facilitate collection, preservation, and access to critical Cucurbitaceae diversity.
Collapse
Affiliation(s)
- Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - James D. McCreight
- USDA, ARS, Crop Improvement and Protection Research Unit, Salinas, CA 93905, USA;
| | - Cecilia McGregor
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53706, USA;
| | - Michael Mazourek
- School of Integrative Plant Science, Plant Breeding & Genetics Section, Cornell University, Ithaca, NY 14853, USA;
| | - Kathleen Reitsma
- North Central Regional Plant Introduction Station, Iowa State University, Ames, IA 50014, USA;
| | - Joanne Labate
- Plant Genetic Resources Unit, United States Department of Agriculture, Agricultural Research Service, Geneva, NY 14456, USA;
| | - Angela Davis
- Sakata Seed America, Inc., Woodland, CA 95776, USA;
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
20
|
Pérez-Escobar OA, Dodsworth S, Bogarín D, Bellot S, Balbuena JA, Schley RJ, Kikuchi IA, Morris SK, Epitawalage N, Cowan R, Maurin O, Zuntini A, Arias T, Serna-Sánchez A, Gravendeel B, Torres Jimenez MF, Nargar K, Chomicki G, Chase MW, Leitch IJ, Forest F, Baker WJ. Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. AMERICAN JOURNAL OF BOTANY 2021; 108:1166-1180. [PMID: 34250591 DOI: 10.1002/ajb2.1702] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.
Collapse
Affiliation(s)
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Diego Bogarín
- Lankester Botanic Garden, University of Costa Rica, Cartago, Costa Rica
| | | | | | | | | | | | | | - Robyn Cowan
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | | | | | | | | | | | | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Australia
- National Research Collections, Commonwealth Industrial and Scientific Research Organization, Australia
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, 6102, Australia
| | | | - Félix Forest
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | |
Collapse
|
21
|
Pérez-Escobar OA, Bellot S, Przelomska NAS, Flowers JM, Nesbitt M, Ryan P, Gutaker RM, Gros-Balthazard M, Wells T, Kuhnhäuser BG, Schley R, Bogarín D, Dodsworth S, Diaz R, Lehmann M, Petoe P, Eiserhardt WL, Preick M, Hofreiter M, Hajdas I, Purugganan M, Antonelli A, Gravendeel B, Leitch IJ, Torres Jimenez MF, Papadopulos AST, Chomicki G, Renner SS, Baker WJ. Molecular clocks and archaeogenomics of a Late Period Egyptian date palm leaf reveal introgression from wild relatives and add timestamps on the domestication. Mol Biol Evol 2021; 38:4475-4492. [PMID: 34191029 PMCID: PMC8476131 DOI: 10.1093/molbev/msab188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by ∼2,200 years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a ∼2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100 years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.
Collapse
Affiliation(s)
| | - Sidonie Bellot
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Natalia A S Przelomska
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jonathan M Flowers
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Mark Nesbitt
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Philippa Ryan
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | | | - Muriel Gros-Balthazard
- French National Research Institute for Sustainable Development, Montpellier, BP 64501 - 34394 Cedex 5, France
| | - Tom Wells
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Rowan Schley
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Diego Bogarín
- Lankester Botanical Garden, University of Costa Rica, San José, 302-7050, Costa Rica
| | - Steven Dodsworth
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Rudy Diaz
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | | | - Peter Petoe
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michaela Preick
- Institute of Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Michael Hofreiter
- Institute of Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Irka Hajdas
- Department of Earth Sciences, ETH Zurich, 8092, Switzerland
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK.,Department of Plant Sciences, University of Oxford, Oxford, OX1 3QU, UK.,Gothenburg Global Biodiversity Centre and Department of Biological and Environmental Sciences, University of Gothenburg, 413 19, Sweden
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond TW9 3AE. London, UK
| | - Maria Fernanda Torres Jimenez
- Gothenburg Global Biodiversity Centre and Department of Biological and Environmental Sciences, University of Gothenburg, 413 19, Sweden
| | - Alexander S T Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, University of Bangor, Bangor LL57 2UW, UK
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | | |
Collapse
|
22
|
Wei N, Pérez-Escobar OA, Musili PM, Huang WC, Yang JB, Hu AQ, Hu GW, Grace OM, Wang QF. Plastome Evolution in the Hyperdiverse Genus Euphorbia (Euphorbiaceae) Using Phylogenomic and Comparative Analyses: Large-Scale Expansion and Contraction of the Inverted Repeat Region. FRONTIERS IN PLANT SCIENCE 2021; 12:712064. [PMID: 34421963 PMCID: PMC8372406 DOI: 10.3389/fpls.2021.712064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 05/09/2023]
Abstract
With c. 2,000 species, Euphorbia is one of the largest angiosperm genera, yet a lack of chloroplast genome (plastome) resources impedes a better understanding of its evolution. In this study, we assembled and annotated 28 plastomes from Euphorbiaceae, of which 15 were newly sequenced. Phylogenomic and comparative analyses of 22 plastome sequences from all four recognized subgenera within Euphorbia revealed that plastome length in Euphorbia is labile, presenting a range of variation c. 42 kb. Large-scale expansions of the inverted repeat (IR) region were identified, and at the extreme opposite, the near-complete loss of the IR region (with only 355 bp left) was detected for the first time in Euphorbiaceae. Other structural variations, including gene inversion and duplication, and gene loss/pseudogenization, were also observed. We screened the most promising molecular markers from both intergenic and coding regions for phylogeny-based utilities, and estimated maximum likelihood and Bayesian phylogenies from four datasets including whole plastome sequences. The monophyly of Euphorbia is supported, and its four subgenera are recovered in a successive sister relationship. Our study constitutes the first comprehensive investigation on the plastome structural variation in Euphorbia and it provides resources for phylogenetic research in the genus, facilitating further studies on its taxonomy, evolution, and conservation.
Collapse
Affiliation(s)
- Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Paul M. Musili
- East African Herbarium, National Museums of Kenya, Nairobi, Kenya
| | - Wei-Chang Huang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Olwen M. Grace
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- *Correspondence: Olwen M. Grace,
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Qing-Feng Wang,
| |
Collapse
|