1
|
Uprety T, Soni S, Sreenivasan C, Hause BM, Naveed A, Ni S, Graves AJ, Morrow JK, Meade N, Mellits KH, Adam E, Kennedy MA, Wang D, Li F. Genetic and antigenic characterization of two diarrhoeicdominant rotavirus A genotypes G3P[12] and G14P[12] circulating in the global equine population. J Gen Virol 2024; 105:002016. [PMID: 39163114 PMCID: PMC11335307 DOI: 10.1099/jgv.0.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Equine rotavirus species A (ERVA) G3P[12] and G14P[12] are two dominant genotypes that cause foal diarrhoea with a significant economic impact on the global equine industry. ERVA can also serve as a source of novel (equine-like) rotavirus species A (RVA) reassortants with zoonotic potential as those identified previously in 2013-2019 when equine G3-like RVA was responsible for worldwide outbreaks of severe gastroenteritis and hospitalizations in children. One hurdle to ERVA research is that the standard cell culture system optimized for human rotavirus replication is not efficient for isolating ERVA. Here, using an engineered cell line defective in antiviral innate immunity, we showed that both equine G3P[12] and G14P[12] strains can be rapidly isolated from diarrhoeic foals. The genome sequence analysis revealed that both G3P[12] and G14P[12] strains share the identical genotypic constellation except for VP7 and VP6 segments in which G3P[12] possessed VP7 of genotype G3 and VP6 of genotype I6 and G14P[12] had the combination of VP7 of genotype G14 and VP6 of genotype I2. Further characterization demonstrated that two ERVA genotypes have a limited cross-neutralization. The lack of an in vitro broad cross-protection between both genotypes supported the increased recent diarrhoea outbreaks due to equine G14P[12] in foals born to dams immunized with the inactivated monovalent equine G3P[12] vaccine. Finally, using the structural modelling approach, we provided the genetic basis of the antigenic divergence between ERVA G3P[12] and G14P[12] strains. The results of this study will provide a framework for further investigation of infection biology, pathogenesis and cross-protection of equine rotaviruses.
Collapse
Affiliation(s)
- Tirth Uprety
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shalini Soni
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Chithra Sreenivasan
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Ahsan Naveed
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Amy J. Graves
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Jennifer K. Morrow
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Nathan Meade
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Kenneth H. Mellits
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Emma Adam
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Michael A. Kennedy
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
2
|
Xia M, Huang P, Vago F, Kawagishi T, Ding S, Greenberg HB, Jiang W, Tan M. A Viral Protein 4-Based Trivalent Nanoparticle Vaccine Elicited High and Broad Immune Responses and Protective Immunity against the Predominant Rotaviruses. ACS NANO 2024; 18:6673-6689. [PMID: 38353701 DOI: 10.1021/acsnano.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The current live rotavirus (RV) vaccines show reduced effectiveness in developing countries, calling for vaccine strategies with improved efficacy and safety. We generated pseudovirus nanoparticles (PVNPs) that display multiple ectodomains of RV viral protein 4 (VP4), named S-VP4e, as a nonreplicating RV vaccine candidate. The RV spike protein VP4s that bind host receptors and facilitate viral entry are excellent targets for vaccination. In this study, we developed scalable methods to produce three S-VP4e PVNPs, each displaying the VP4e antigens from one of the three predominant P[8], P[4], and P[6] human RVs (HRVs). These PVNPs were recognized by selected neutralizing VP4-specific monoclonal antibodies, bound glycan receptors, attached to permissive HT-29 cells, and underwent cleavage by trypsin between VP8* and VP5*. 3D PVNP models were constructed to understand their structural features. A trivalent PVNP vaccine containing the three S-VP4e PVNPs elicited high and well-balanced VP4e-specific antibody titers in mice directed against the three predominant HRV P types. The resulting antisera neutralized the three HRV prototypes at high titers; greater than 4-fold higher than the neutralizing responses induced by a trivalent vaccine consisting of the S60-VP8* PVNPs. Finally, the trivalent S-VP4e PVNP vaccine provided 90-100% protection against diarrhea caused by HRV challenge. Our data supports the trivalent S-VP4e PVNPs as a promising nonreplicating HRV vaccine candidate for parenteral delivery to circumvent the suboptimal immunization issues of all present live HRV vaccines. The established PVNP-permissive cell and PVNP-glycan binding assays will be instrumental for further investigating HRV-host cell interactions and neutralizing effects of VP4-specific antibodies and antivirals.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Frank Vago
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Harry B Greenberg
- Departments of Medicine and Microbiology and Immunology Emeritus, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
| |
Collapse
|
3
|
Peña-Gil N, Randazzo W, Carmona-Vicente N, Santiso-Bellón C, Cárcamo-Cálvo R, Navarro-Lleó N, Monedero V, Yebra MJ, Buesa J, Gozalbo-Rovira R, Rodríguez-Díaz J. Culture of Human Rotaviruses in Relevant Models Shows Differences in Culture-Adapted and Nonculture-Adapted Strains. Int J Mol Sci 2023; 24:17362. [PMID: 38139191 PMCID: PMC10743750 DOI: 10.3390/ijms242417362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE) in children under 5 years old worldwide, and several studies have demonstrated that histo-blood group antigens (HBGAs) play a role in its infection process. In the present study, human stool filtrates from patients diagnosed with RV diarrhea (genotyped as P[8]) were used to infect differentiated Caco-2 cells (dCaco-2) to determine whether such viral strains of clinical origin had the ability to replicate in cell cultures displaying HBGAs. The cell culture-adapted human RV Wa model strain (P[8] genotype) was used as a control. A time-course analysis of infection was conducted in dCaco-2 at 1, 24, 48, 72, and 96 h. The replication of two selected clinical isolates and Wa was further assayed in MA104, undifferentiated Caco-2 (uCaco-2), HT29, and HT29-M6 cells, as well as in monolayers of differentiated human intestinal enteroids (HIEs). The results showed that the culture-adapted Wa strain replicated more efficiently in MA104 cells than other utilized cell types. In contrast, clinical virus isolates replicated more efficiently in dCaco-2 cells and HIEs. Furthermore, through surface plasmon resonance analysis of the interaction between the RV spike protein (VP8*) and its glycan receptor (the H antigen), the V7 RV clinical isolate showed 45 times better affinity compared to VP8* from the Wa strain. These findings support the hypothesis that the differences in virus tropism between clinical virus isolates and RV Wa could be a consequence of the different HBGA contents on the surface of the cell lines employed. dCaco-2, HT29, and HT29M6 cells and HIEs display HBGAs on their surfaces, whereas MA104 and uCaco-2 cells do not. These results indicate the relevance of using non-cell culture-adapted human RV to investigate the replication of rotavirus in relevant infection models.
Collapse
Affiliation(s)
- Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain;
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Cárcamo-Cálvo
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Noemi Navarro-Lleó
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
| | - Vicente Monedero
- Department of Biotechnology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain; (V.M.); (M.J.Y.)
| | - María J. Yebra
- Department of Biotechnology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain; (V.M.); (M.J.Y.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (N.P.-G.); (N.C.-V.); (C.S.-B.); (R.C.-C.); (N.N.-L.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| |
Collapse
|
4
|
Xia M, Huang P, Tan M. A Pseudovirus Nanoparticle-Based Trivalent Rotavirus Vaccine Candidate Elicits High and Cross P Type Immune Response. Pharmaceutics 2022; 14:1597. [PMID: 36015223 PMCID: PMC9413348 DOI: 10.3390/pharmaceutics14081597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022] Open
Abstract
Rotavirus infection continues to cause significant morbidity and mortality globally. In this study, we further developed the S60-VP8* pseudovirus nanoparticles (PVNPs) displaying the glycan receptor binding VP8* domains of rotavirus spike proteins as a parenteral vaccine candidate. First, we established a scalable method for the large production of tag-free S60-VP8* PVNPs representing four rotavirus P types, P[8], P[4], P[6], and P[11]. The approach consists of two major steps: selective precipitation of the S-VP8* proteins from bacterial lysates using ammonium sulfate, followed by anion exchange chromatography to further purify the target proteins to a high purity. The purified soluble proteins self-assembled into S60-VP8* PVNPs. Importantly, after intramuscular injections, the trivalent vaccine consisting of three PVNPs covering VP8* antigens of P[8], P[4], and P[6] rotaviruses elicited high and broad immunogenicity in mice toward the three predominant P-type rotaviruses. Specifically, the trivalent vaccine-immunized mouse sera showed (1) high and balanced IgG and IgA antibody titers toward all three VP8* types, (2) high blocking titer against the VP8*-glycan receptor interaction, and (3) high and broad neutralizing titers against replications of all P[8], P[4], and P[6] rotaviruses. Therefore, trivalent S60-VP8* PVNPs are a promising non-replicating, parenteral vaccine candidate against the most prevalent rotaviruses worldwide.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Tian J, Sun J, Li D, Wang N, Wang L, Zhang C, Meng X, Ji X, Suchard MA, Zhang X, Lai A, Su S, Veit M. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep 2022; 39:110969. [PMID: 35679864 PMCID: PMC9148931 DOI: 10.1016/j.celrep.2022.110969] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.
Collapse
Affiliation(s)
- Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Harbin 150069, China.
| | - Jiumeng Sun
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Dongyan Li
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Ningning Wang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lifang Wang
- College of Veterinary Medicine, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, China
| | - Chang Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xiaorong Meng
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St., Charles Avenue, New Orleans, LA 70118, USA
| | - Marc A Suchard
- Departments of Biomathematics, Human Genetics and Biostatistics, David Geffen School of Medicine and Fielding School of Public Health, University of California, Los Angeles, Geffen Hall 885 Tiverton Drive, Los Angeles, CA 90095, USA
| | - Xu Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, 400 East Main St., Frankfort, KY 40601, USA
| | - Shuo Su
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany.
| |
Collapse
|
6
|
Hu L, Salmen W, Sankaran B, Lasanajak Y, Smith DF, Crawford SE, Estes MK, Prasad BVV. Novel fold of rotavirus glycan-binding domain predicted by AlphaFold2 and determined by X-ray crystallography. Commun Biol 2022; 5:419. [PMID: 35513489 PMCID: PMC9072675 DOI: 10.1038/s42003-022-03357-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
The VP8* domain of spike protein VP4 in group A and C rotaviruses, which cause epidemic gastroenteritis in children, exhibits a conserved galectin-like fold for recognizing glycans during cell entry. In group B rotavirus, which causes significant diarrheal outbreaks in adults, the VP8* domain (VP8*B) surprisingly lacks sequence similarity with VP8* of group A or group C rotavirus. Here, by using the recently developed AlphaFold2 for ab initio structure prediction and validating the predicted model by determining a 1.3-Å crystal structure, we show that VP8*B exhibits a novel fold distinct from the galectin fold. This fold with a β-sheet clasping an α-helix represents a new fold for glycan recognition based on glycan array screening, which shows that VP8*B recognizes glycans containing N-acetyllactosamine moiety. Although uncommon, our study illustrates how evolution can incorporate structurally distinct folds with similar functionality in a homologous protein within the same virus genus.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Wilhelm Salmen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA
| | - Yi Lasanajak
- Emory Glycomics and Molecular Interactions Core (EGMIC), Emory University School of Medicine, Atlanta, GA, USA
| | - David F Smith
- Emory Glycomics and Molecular Interactions Core (EGMIC), Emory University School of Medicine, Atlanta, GA, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Peña-Gil N, Santiso-Bellón C, Gozalbo-Rovira R, Buesa J, Monedero V, Rodríguez-Díaz J. The Role of Host Glycobiology and Gut Microbiota in Rotavirus and Norovirus Infection, an Update. Int J Mol Sci 2021; 22:13473. [PMID: 34948268 PMCID: PMC8704558 DOI: 10.3390/ijms222413473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rotavirus (RV) and norovirus (NoV) are the leading causes of acute gastroenteritis (AGE) worldwide. Several studies have demonstrated that histo-blood group antigens (HBGAs) have a role in NoV and RV infections since their presence on the gut epithelial surfaces is essential for the susceptibility to many NoV and RV genotypes. Polymorphisms in genes that code for enzymes required for HBGAs synthesis lead to secretor or non-secretor and Lewis positive or Lewis negative individuals. While secretor individuals appear to be more susceptible to RV infections, regarding NoVs infections, there are too many discrepancies that prevent the ability to draw conclusions. A second factor that influences enteric viral infections is the gut microbiota of the host. In vitro and animal studies have determined that the gut microbiota limits, but in some cases enhances enteric viral infection. The ways that microbiota can enhance NoV or RV infection include virion stabilization and promotion of virus attachment to host cells, whereas experiments with microbiota-depleted and germ-free animals point to immunoregulation as the mechanism by which the microbiota restrict infection. Human trials with live, attenuated RV vaccines and analysis of the microbiota in responder and non-responder individuals also allowed the identification of bacterial taxa linked to vaccine efficacy. As more information is gained on the complex relationships that are established between the host (glycobiology and immune system), the gut microbiota and intestinal viruses, new avenues will open for the development of novel anti-NoV and anti-RV therapies.
Collapse
Affiliation(s)
- Nazaret Peña-Gil
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| | - Vicente Monedero
- Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain;
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez 17, 46010 Valencia, Spain; (N.P.-G.); (C.S.-B.); (R.G.-R.); (J.B.)
| |
Collapse
|
8
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|