1
|
Soriano-Correa C, Vichi-Ramírez MM, Herrera-Valencia EE, Barrientos-Salcedo C. The role of ETFS amino acids on the stability and inhibition of p53-MDM2 complex of anticancer p53-derivatives peptides: Density functional theory and molecular docking studies. J Mol Graph Model 2023; 122:108472. [PMID: 37086514 DOI: 10.1016/j.jmgm.2023.108472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
Cancer is one of the leading causes of mortality in the world. Despite the existence of diverse antineoplastic treatments, these do not possess the expected efficacy in many cases. Knowledge of the molecular mechanisms involved in tumor processes allows the identification of a greater number of therapeutic targets employed in the study of new anticancer drugs. In the last decades, peptide-based therapy design using computational chemistry has gained importance in the field of oncology therapeutics. This work aims to evaluate the electronic structure, physicochemical properties, stability, and inhibition of ETFS amino acids and peptides derived from the p53-MDM2 binding domain with action in cancer cells; by means of chemical descriptors at the DFT-BHandHLYP level in an aqueous solution, and its intermolecular interactions through molecular docking studies. The results show that The ETFS fragment plays a critical role in the intermolecular interactions. Thus, the amino acids E17, T18 and S20 increase intermolecular interactions through hydrogen bonds and enhance structural stability. F19, W23 and V25 enhance the formation of the alpha-helix. The hydrogen bonds formed by the backbone atoms for PNC-27, PNC-27-B and PNC-28 stabilize the α-helices more than hydrogen bonds formed by the side chains atoms. Also, molecular docking indicated that the PNC27B-MDM2, PNC28B-MDM2, PNC27-MDM2 and PNC28A-MDM2 complexes show the best binding energy. Therefore, DFT and molecular docking studies showed that the proposed peptides: PNC-28B, PNC-27B and PNC-28A could inhibit the binding of MDM2 to the p53 protein, decreasing the translocation and degradation of p53 native protein.
Collapse
Affiliation(s)
- Catalina Soriano-Correa
- Unidad de Química Computacional, Facultad de Estudios Superiores Zaragoza (FES-Zaragoza), Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230, Mexico City, Mexico
| | - Micheel Merari Vichi-Ramírez
- Doctorado en Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, C.P. 91192, Xalapa, Mexico
| | - Edtson E Herrera-Valencia
- Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz, Universidad Veracruzana, C.P. 91700, Veracruz, Mexico
| | - Carolina Barrientos-Salcedo
- Laboratorio de Reología y Fenómenos de Transporte (UMIEZ), Carrera de Ingeniería Química, FES Zaragoza UNAM, Iztapalapa, C.P. 09230, Mexico City, Mexico.
| |
Collapse
|
2
|
Juretić D. Designed Multifunctional Peptides for Intracellular Targets. Antibiotics (Basel) 2022; 11:antibiotics11091196. [PMID: 36139975 PMCID: PMC9495127 DOI: 10.3390/antibiotics11091196] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Nature’s way for bioactive peptides is to provide them with several related functions and the ability to cooperate in performing their job. Natural cell-penetrating peptides (CPP), such as penetratins, inspired the design of multifunctional constructs with CPP ability. This review focuses on known and novel peptides that can easily reach intracellular targets with little or no toxicity to mammalian cells. All peptide candidates were evaluated and ranked according to the predictions of low toxicity to mammalian cells and broad-spectrum activity. The final set of the 20 best peptide candidates contains the peptides optimized for cell-penetrating, antimicrobial, anticancer, antiviral, antifungal, and anti-inflammatory activity. Their predicted features are intrinsic disorder and the ability to acquire an amphipathic structure upon contact with membranes or nucleic acids. In conclusion, the review argues for exploring wide-spectrum multifunctionality for novel nontoxic hybrids with cell-penetrating peptides.
Collapse
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia;
- Faculty of Science, University of Split, 21000 Split, Croatia;
| |
Collapse
|
3
|
Bose D, Roy L, Chatterjee S. Peptide therapeutics in the management of metastatic cancers. RSC Adv 2022; 12:21353-21373. [PMID: 35975072 PMCID: PMC9345020 DOI: 10.1039/d2ra02062a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer remains a leading health concern threatening lives of millions of patients worldwide. Peptide-based drugs provide a valuable alternative to chemotherapeutics as they are highly specific, cheap, less toxic and easier to synthesize compared to other drugs. In this review, we have discussed various modes in which peptides are being used to curb cancer. Our review highlights specially the various anti-metastatic peptide-based agents developed by targeting a plethora of cellular factors. Herein we have given a special focus on integrins as targets for peptide drugs, as these molecules play key roles in metastatic progression. The review also discusses use of peptides as anti-cancer vaccines and their efficiency as drug-delivery tools. We hope this work will give the reader a clear idea of the mechanisms of peptide-based anti-cancer therapeutics and encourage the development of superior drugs in the future.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Laboni Roy
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Subhrangsu Chatterjee
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| |
Collapse
|
4
|
Li H, Wang Z, Fang X, Zeng W, Yang Y, Jin L, Wei X, Qin Y, Wang C, Liang W. Poroptosis: A form of cell death depending on plasma membrane nanopores formation. iScience 2022; 25:104481. [PMID: 35712073 PMCID: PMC9194171 DOI: 10.1016/j.isci.2022.104481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immunogenic cell death (ICD) in malignant cells can decrease tumor burden and activate antitumor immune response to obtain lasting antitumor immunity, leading to the elimination of distant metastases and prevention of recurrence. Here, we reveal that ppM1 peptide is capable of forming irreparable transmembrane pores on tumor cell membrane, leading to ICD which we name poroptosis. Poroptosis is directly dependent on cell membrane nanopores regardless of the upstream signaling of cell death. ppM1-induced poroptosis was characterized by the sustained release of intracellular LDH. This unique feature is distinct from other well-characterized types of acute necrosis induced by freezing-thawing (F/T) and detergents, which leads to the burst release of intracellular LDH. Our results suggested that steady transmembrane-nanopore-mediated subacute cell death played a vital role in subsequent activated immunity that transforms to an antitumor immune microenvironment. Selectively generating poroptosis in cancer cell could be a promise strategy for cancer therapy.
Collapse
Affiliation(s)
- Hao Li
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zihao Wang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaocui Fang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenfeng Zeng
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingtao Jin
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yan Qin
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Chen Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
6
|
PNC-27, a Chimeric p53-Penetratin Peptide Binds to HDM-2 in a p53 Peptide-like Structure, Induces Selective Membrane-Pore Formation and Leads to Cancer Cell Lysis. Biomedicines 2022; 10:biomedicines10050945. [PMID: 35625682 PMCID: PMC9138867 DOI: 10.3390/biomedicines10050945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/10/2022] Open
Abstract
PNC-27, a 32-residue peptide that contains an HDM-2 binding domain and a cell-penetrating peptide (CPP) leader sequence kills cancer, but not normal, cells by binding to HDM-2 associated with the plasma membrane and induces the formation of pores causing tumor cell lysis and necrosis. Conformational energy calculations on the structure of PNC-27 bound to HDM-2 suggest that 1:1 complexes form between PNC-27 and HDM-2 with the leader sequence pointing away from the complex. Immuno-scanning electron microscopy was carried out with cancer cells treated with PNC-27 and decorated with an anti-PNC-27 antibody coupled to 6 nm gold particles and an anti-HDM-2 antibody linked to 15 nm gold particles. We found multiple 6 nm- and 15 nm-labeled gold particles in approximately 1:1 ratios in layered ring-shaped structures in the pores near the cell surface suggesting that these complexes are important to the pore structure. No pores formed in the control, PNC-27-treated untransformed fibroblasts. Based on the theoretical and immuno-EM studies, we propose that the pores are lined by PNC-27 bound to HDM-2 at the membrane surface with the PNC-27 leader sequence lining the pores or by PNC-27 bound to HDM-2.
Collapse
|
7
|
Kung CP, Weber JD. It’s Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Front Cell Dev Biol 2022; 10:818744. [PMID: 35155432 PMCID: PMC8833255 DOI: 10.3389/fcell.2022.818744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 01/31/2023] Open
Abstract
Anti-tumorigenic mechanisms mediated by the tumor suppressor p53, upon oncogenic stresses, are our bodies’ greatest weapons to battle against cancer onset and development. Consequently, factors that possess significant p53-regulating activities have been subjects of serious interest from the cancer research community. Among them, MDM2 and ARF are considered the most influential p53 regulators due to their abilities to inhibit and activate p53 functions, respectively. MDM2 inhibits p53 by promoting ubiquitination and proteasome-mediated degradation of p53, while ARF activates p53 by physically interacting with MDM2 to block its access to p53. This conventional understanding of p53-MDM2-ARF functional triangle have guided the direction of p53 research, as well as the development of p53-based therapeutic strategies for the last 30 years. Our increasing knowledge of this triangle during this time, especially through identification of p53-independent functions of MDM2 and ARF, have uncovered many under-appreciated molecular mechanisms connecting these three proteins. Through recognizing both antagonizing and synergizing relationships among them, our consideration for harnessing these relationships to develop effective cancer therapies needs an update accordingly. In this review, we will re-visit the conventional wisdom regarding p53-MDM2-ARF tumor-regulating mechanisms, highlight impactful studies contributing to the modern look of their relationships, and summarize ongoing efforts to target this pathway for effective cancer treatments. A refreshed appreciation of p53-MDM2-ARF network can bring innovative approaches to develop new generations of genetically-informed and clinically-effective cancer therapies.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| | - Jason D. Weber
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| |
Collapse
|
8
|
Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021; 121:11653-11698. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent decades, peptides, which can possess high potency, excellent selectivity, and low toxicity, have emerged as promising therapeutics for cancer applications. Combined with an improved understanding of tumor biology and immuno-oncology, peptides have demonstrated robust antitumor efficacy in preclinical tumor models. However, the translation of peptides with intracellular targets into clinical therapies has been severely hindered by limitations in their intrinsic structure, such as low systemic stability, rapid clearance, and poor membrane permeability, that impede intracellular delivery. In this Review, we summarize recent advances in polymer-mediated intracellular delivery of peptides for cancer therapy, including both therapeutic peptides and peptide antigens. We highlight strategies to engineer polymeric materials to increase peptide delivery efficiency, especially cytosolic delivery, which plays a crucial role in potentiating peptide-based therapies. Finally, we discuss future opportunities for peptides in cancer treatment, with an emphasis on the design of polymer nanocarriers for optimized peptide delivery.
Collapse
Affiliation(s)
| | | | - Alexander N Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
9
|
Lee RH, Oh JD, Hwang JS, Lee HK, Shin D. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor. Sci Rep 2021; 11:18445. [PMID: 34531430 PMCID: PMC8446052 DOI: 10.1038/s41598-021-97581-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is highly resistant to conventional treatments and is one of the most aggressive types of skin cancers. Conventional cancer treatments are limited due to drug resistance, tumor selectivity, and solubility. Therefore, new treatments with fewer side effects and excellent effects should be developed. In previous studies, we have analyzed antimicrobial peptides (AMPs), which showed antibacterial and anti-inflammatory effects in insects, and some AMPs also exhibited anticancer efficacy. Anticancer peptides (ACPs) are known to have fewer side effects and high anticancer efficacy. In this study, the insect-derived peptide poecilocorisin-1 (PCC-1) did not induce toxicity in the human epithelial cell line HaCaT, but its potential as an anticancer agent was confirmed through specific effects of antiproliferation, apoptosis, and cell cycle arrest in two melanoma cell lines, SK-MEL-28 and G361. Additionally, we discovered a novel anticancer mechanism of insect-derived peptides in melanoma through the regulation of transcription factor Sp1 protein, which is overexpressed in cancer, apoptosis, and cell cycle-related proteins. Taken together, this study aims to clarify the anticancer efficacy and safety of insect-derived peptides and to present their potential as future therapeutic agents.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
10
|
Beheshtirouy S, Mirzaei F, Eyvazi S, Tarhriz V. Recent Advances in Therapeutic Peptides for Breast Cancer Treatment. Curr Protein Pept Sci 2021; 22:74-88. [PMID: 33208071 DOI: 10.2174/1389203721999201117123616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer is a heterogeneous malignancy and is the second leading cause of mortality among women around the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapeutic approaches for the treatment of this malignancy. Among the novel methods, therapeutic peptides that target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acid monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides, such as specific binding on tumor cells surface, low molecular weight, and low toxicity on normal cells, make the peptides appealing therapeutic agents against solid tumors, particularly breast cancer. Also, the National Institutes of Health (NIH) describes therapeutic peptides as a suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells that can be used in the treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines that have been developed for the treatment of breast cancer.
Collapse
Affiliation(s)
- Samad Beheshtirouy
- Department of Cardiothoracic Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Mirzaei
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
12
|
Efficient Therapeutic Delivery by a Novel Cell-Penetrating Peptide Derived from Acinus. Cancers (Basel) 2020; 12:cancers12071858. [PMID: 32664285 PMCID: PMC7408964 DOI: 10.3390/cancers12071858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we have identified a novel cell-penetrating sequence, termed hAP10, from the C-terminus of the human protein Acinus. hAP10 was able to efficiently enter various normal and cancerous cells, likely through an endocytosis pathway, and to deliver an EGFP cargo to the cell interior. Cell penetration of a peptide, hAP10DR, derived from hAP10 by mutation of an aspartic acid residue to an arginine was dramatically increased. Interestingly, a peptide containing a portion of the heptad leucine repeat region domain of the survival protein AAC-11 (residues 377–399) fused to either hAP10 or hAP10DR was able to induce tumor cells, but not normal cells, death both ex vivo on Sézary patients’ circulating cells and to inhibit tumor growth in vivo in a sub-cutaneous xenograft mouse model for the Sézary syndrome. Combined, our results indicate that hAP10 and hAP10DR may represent promising vehicles for the in vitro or in vivo delivery of bioactive cargos, with potential use in clinical settings.
Collapse
|
13
|
Wang H, Zhao D, Nguyen LX, Wu H, Li L, Dong D, Troadec E, Zhu Y, Hoang DH, Stein AS, Al Malki M, Aldoss I, Lin A, Ghoda LY, McDonald T, Pichiorri F, Carlesso N, Kuo YH, Zhang B, Jin J, Marcucci G. Targeting cell membrane HDM2: A novel therapeutic approach for acute myeloid leukemia. Leukemia 2019; 34:75-86. [PMID: 31337857 DOI: 10.1038/s41375-019-0522-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
The E3 ligase human double minute 2 (HDM2) regulates the activity of the tumor suppressor protein p53. A p53-independent HDM2 expression has been reported on the membrane of cancer cells but not on that of normal cells. Herein, we first showed that membrane HDM2 (mHDM2) is exclusively expressed on human and mouse AML blasts, including leukemia stem cell (LSC)-enriched subpopulations, but not on normal hematopoietic stem cells (HSCs). Higher mHDM2 levels in AML blasts were associated with leukemia-initiating capacity, quiescence, and chemoresistance. We also showed that a synthetic peptide PNC-27 binds to mHDM2 and enhances the interaction of mHDM2 and E-cadherin on the cell membrane; in turn, E-cadherin ubiquitination and degradation lead to membrane damage and cell death of AML blasts by necrobiosis. PNC-27 treatment in vivo resulted in a significant killing of both AML "bulk" blasts and LSCs, as demonstrated respectively in primary and secondary transplant experiments, using both human and murine AML models. Notably, PNC-27 spares normal HSC activity, as demonstrated in primary and secondary BM transplant experiments of wild-type mice. We concluded that mHDM2 represents a novel and unique therapeutic target, and targeting mHDM2 using PNC-27 selectively kills AML cells, including LSCs, with minimal off-target hematopoietic toxicity.
Collapse
Affiliation(s)
- Huafeng Wang
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Dandan Zhao
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Le Xuan Nguyen
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.,Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Herman Wu
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ling Li
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Dan Dong
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.,Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Estelle Troadec
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Yinghui Zhu
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Dinh Hoa Hoang
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Anthony S Stein
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Monzr Al Malki
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ibrahim Aldoss
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Allen Lin
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Lucy Y Ghoda
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Tinisha McDonald
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Flavia Pichiorri
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Nadia Carlesso
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ya-Huei Kuo
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Bin Zhang
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, PR China.
| | - Guido Marcucci
- Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
14
|
Chan KP, Chao SH, Kah JCY. Exploiting Protein Corona around Gold Nanoparticles Conjugated to p53 Activating Peptides To Increase the Level of Stable p53 Proteins in Cells. Bioconjug Chem 2019; 30:920-930. [DOI: 10.1021/acs.bioconjchem.9b00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kian Ping Chan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore 117597
| | - James Chen Yong Kah
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583
| |
Collapse
|
15
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
16
|
The anticancer peptide RT53 induces immunogenic cell death. PLoS One 2018; 13:e0201220. [PMID: 30080874 PMCID: PMC6078289 DOI: 10.1371/journal.pone.0201220] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
In recent years, immunogenic cell death (ICD) has emerged as a revolutionary concept in the development of novel anticancer therapies. This particular form of cell death is able, through the spatiotemporally defined emission of danger signals by the dying cell, to induce an effective antitumor immune response, allowing the immune system to recognize and eradicate malignant cells. To date, only a restricted number of chemotherapeutics can trigger ICD of cancer cells. We previously reported that a peptide, called RT53, spanning the heptad leucine repeat region of the survival protein AAC-11 fused to a penetrating sequence, selectively induces cancer cell death in vitro and in vivo. Interestingly, B16F10 melanoma cells treated by RT53 were able to mediate anticancer effects in a tumor vaccination model. Stimulated by this observation, we investigated whether RT53 might mediate ICD of cancer cells. Here, we report that RT53 treatment induces all the hallmarks of immunogenic cell death, as defined by the plasma membrane exposure of calreticulin, release of ATP and the exodus of high-mobility group box 1 protein (HMGB1) from dying cancer cells, through a non-regulated, membranolytic mode of action. In a prophylactic mouse model, vaccination with RT53-treated fibrosarcomas prevented tumor growth at the challenge site. Finally, local intratumoral injection of RT53 into established cancers led to tumor regression together with T-cell infiltration and the mounting of an inflammatory response in the treated animals. Collectively, our results strongly suggest that RT53 can induce bona fide ICD of cancer cells and illustrate its potential use as a novel antitumor and immunotherapeutic strategy.
Collapse
|
17
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
18
|
Jagot-Lacoussiere L, Kotula E, Villoutreix BO, Bruzzoni-Giovanelli H, Poyet JL. A Cell-Penetrating Peptide Targeting AAC-11 Specifically Induces Cancer Cells Death. Cancer Res 2016; 76:5479-90. [DOI: 10.1158/0008-5472.can-16-0302] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022]
|
19
|
Rodríguez V, Lascani J, Asenjo JA, Andrews BA. Production of Cell-Penetrating Peptides in Escherichia coli Using an Intein-Mediated System. Appl Biochem Biotechnol 2015; 175:3025-37. [DOI: 10.1007/s12010-015-1484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
20
|
Rodríguez V, Asenjo JA, Andrews BA. Design and implementation of a high yield production system for recombinant expression of peptides. Microb Cell Fact 2014; 13:65. [PMID: 24885242 PMCID: PMC4022411 DOI: 10.1186/1475-2859-13-65] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/01/2014] [Indexed: 11/24/2022] Open
Abstract
Background Making peptide pharmaceuticals involves challenging processes where many barriers, which include production and manufacture, need to be overcome. A non common but interesting research area is related to peptides with intracellular targets, which opens up new possibilities, allowing the modulation of processes occurring within the cell or interference with signaling pathways. However, if the bioactive sequence requires fusion to a carrier peptide to allow access into the cell, the resulting peptide could be such a length that traditional production could be difficult. The goal of the present study was the development of a flexible recombinant expression and purification system for peptides, as a contribution to the discovery and development of these potentially new drugs. Results In this work, a high throughput recombinant expression and purification system for production of cell penetrating peptides in Escherichia coli has been designed and implemented. The system designed produces target peptides in an insoluble form by fusion to a hexahistidine tagged ketosteroid isomerase which is then separated by a highly efficient thrombin cleavage reaction procedure. The expression system was tested on the anticancer peptides p53pAnt and PNC27. These peptides comprise the C-terminal region and the N-terminal region of the protein p53, respectively, fused by its carboxyl terminal extreme to the cell penetrating peptide Penetratin. High yields of purified recombinant fused peptides were obtained in both cases; nevertheless, thrombin cleavage reaction was successful only for p53pAnt peptide release. The features of the system, together with the procedure developed, allow achievement of high production yields of over 30 mg of highly pure p53pAnt peptide per g of dry cell mass. It is proposed that the system could be used for production of other peptides at a similar yield. Conclusions This study provides a system suitable for recombinant production of peptides for scientific research, including biological assays.
Collapse
Affiliation(s)
- Vida Rodríguez
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile.
| | | | | |
Collapse
|
21
|
Peptides for cancer therapy: a drug-development opportunity and a drug-delivery challenge. Ther Deliv 2012; 3:609-21. [DOI: 10.4155/tde.12.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Therapeutic peptides (TPs) are a class of peptide-based agents capable of eliciting a therapeutic response by modulation of targets within or on the surface of cells. TPs are advantageous because they are amenable to rational design, they have high specificity for their targets and can be made to target almost any protein of interest, including proteins for which we have no small-molecule drugs. Owing to this versatility, TPs have a great potential for cancer therapy in an age of personalized medicine, in which we need novel drugs to target the many novel pathways being discovered as tumor drivers. However, in order to utilize TPs as drugs, many obstacles must be overcome. TPs have short half-lives in systemic circulation, are easily degraded by proteases in plasma and target cells, are often cleared by the reticuloendothelial system and can be immunogenic. This article will discuss ways of overcoming many of these hurdles by utilizing macromolecular peptide delivery systems and tumor-targeting agents.
Collapse
|
22
|
Yamada S, Kanno H, Kawahara N. Trans-membrane peptide therapy for malignant glioma by use of a peptide derived from the MDM2 binding site of p53. J Neurooncol 2012; 109:7-14. [PMID: 22528789 DOI: 10.1007/s11060-012-0860-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/28/2012] [Indexed: 02/03/2023]
Abstract
A new strategy is required against glioblastoma, a highly aggressive and fatal disease. In recent studies the protein transduction domains (PTDs) of some proteins, which are able to cross biological membranes, have been identified as critical domains for protein transduction. Here, we show that this protein-delivery system is a powerful tool for transduction of p53, a biologically active tumor-suppressor protein, into cancer cells, to suppress their proliferation. A 15-amino-acid sequence corresponding to the mouse double minutes clone2 (MDM2) binding site of p53 was shown by cell proliferation assay and MTT assay to have a proliferation-inhibiting effect on glioma cells. The polyarginine11R as a PTD, nuclear localization sequence (NLS), and laminin (Ln) fused to the p53 peptide corresponding to the MDM2 binding site (p53-NLS-Ln-11R) effectively penetrated the plasma membrane of the glioma cells and was translocated into the nucleus. At a 10 μM: concentration, this peptide inhibited the proliferation of human glioma cells, whether the p53 gene had mutated or not. These results suggest that this protein-transduction method using the p53-NSL-Ln-11R peptide may become a promising glioma therapy as an alternative gene therapy.
Collapse
Affiliation(s)
- Sachiko Yamada
- Department of Neurosurgery, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | |
Collapse
|
23
|
Bartz R, Fan H, Zhang J, Innocent N, Cherrin C, Beck SC, Pei Y, Momose A, Jadhav V, Tellers DM, Meng F, Crocker LS, Sepp-Lorenzino L, Barnett SF. Effective siRNA delivery and target mRNA degradation using an amphipathic peptide to facilitate pH-dependent endosomal escape. Biochem J 2011; 435:475-87. [PMID: 21265735 DOI: 10.1042/bj20101021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Effective delivery of siRNA (small interfering RNA) into the cells requires the translocation of siRNA into the cytosol. One potential delivery strategy uses cell-delivery peptides that facilitate this step. In the present paper, we describe the characterization of an amphipathic peptide that mediates the uptake of non-covalently bound siRNA into cells and its subsequent release into the cytosol. Biophysical characterization of peptide and peptide/siRNA mixtures at neutral and lysosomal (acidic) pH suggested the formation of α-helical structure only in endosomes and lysosomes. Surprisingly, even though the peptide enhanced the uptake of siRNA into cells, no direct interaction between siRNA and peptide was observed at neutral pH by isothermal titration calorimetry. Importantly, we show that peptide-mediated siRNA uptake occurred through endocytosis and, by applying novel endosomal-escape assays and cell-fractionation techniques, we demonstrated a pH-dependent alteration in endosome and lysosome integrity and subsequent release of siRNA and other cargo into the cytosol. These results indicate a peptide-mediated siRNA delivery through a pH-dependent and conformation-specific interaction with cellular membranes and not with the cargo.
Collapse
Affiliation(s)
- René Bartz
- Department of RNA Therapeutics, Merck & Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shiheido H, Takashima H, Doi N, Yanagawa H. mRNA display selection of an optimized MDM2-binding peptide that potently inhibits MDM2-p53 interaction. PLoS One 2011; 6:e17898. [PMID: 21423613 PMCID: PMC3057987 DOI: 10.1371/journal.pone.0017898] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/14/2011] [Indexed: 12/17/2022] Open
Abstract
p53 is a tumor suppressor protein that prevents tumorigenesis through cell cycle arrest or apoptosis of cells in response to cellular stress such as DNA damage. Because the oncoprotein MDM2 interacts with p53 and inhibits its activity, MDM2-p53 interaction has been a major target for the development of anticancer drugs. While previous studies have used phage display to identify peptides (such as DI) that inhibit the MDM2-p53 interaction, these peptides were not sufficiently optimized because the size of the phage-displayed random peptide libraries did not cover all of the possible sequences. In this study, we performed selection of MDM2-binding peptides from large random peptide libraries in two stages using mRNA display. We identified an optimal peptide named MIP that inhibited the MDM2-p53 and MDMX-p53 interactions 29- and 13-fold more effectively than DI, respectively. Expression of MIP fused to the thioredoxin scaffold protein in living cells by adenovirus caused stabilization of p53 through its interaction with MDM2, resulting in activation of the p53 pathway. Furthermore, expression of MIP also inhibited tumor cell proliferation in a p53-dependent manner more potently than DI. These results show that two-stage, mRNA-displayed peptide selection is useful for the rapid identification of potent peptides that target oncoproteins.
Collapse
Affiliation(s)
- Hirokazu Shiheido
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Hideaki Takashima
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Hiroshi Yanagawa
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| |
Collapse
|
25
|
Zietarska M, Madore J, Diallo JS, Delvoye N, Saad F, Provencher D, Mes-Masson AM. A novel method of cell embedding for tissue microarrays. Histopathology 2010; 57:323-9. [PMID: 20716176 DOI: 10.1111/j.1365-2559.2010.03602.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc Natl Acad Sci U S A 2010; 107:14321-6. [PMID: 20660730 DOI: 10.1073/pnas.1008930107] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53, conferring tumor development and survival. Antagonists targeting the p53-binding domains of MDM2 and MDMX kill tumor cells both in vitro and in vivo by reactivating the p53 pathway, promising a class of antitumor agents for cancer therapy. Aided by native chemical ligation and mirror image phage display, we recently identified a D-peptide inhibitor of the p53-MDM2 interaction termed (D)PMI-alpha (TNWYANLEKLLR) that competes with p53 for MDM2 binding at an affinity of 219 nM. Increased selection stringency resulted in a distinct D-peptide inhibitor termed (D)PMI-gamma (DWWPLAFEALLR) that binds MDM2 at an affinity of 53 nM. Structural studies coupled with mutational analysis verified the mode of action of these D-peptides as MDM2-dependent p53 activators. Despite being resistant to proteolysis, both (D)PMI-alpha and (D)PMI-gamma failed to actively traverse the cell membrane and, when conjugated to a cationic cell-penetrating peptide, were indiscriminately cytotoxic independently of p53 status. When encapsulated in liposomes decorated with an integrin-targeting cyclic-RGD peptide, however, (D)PMI-alpha exerted potent p53-dependent growth inhibitory activity against human glioblastoma in cell cultures and nude mouse xenograft models. Our findings validate D-peptide antagonists of MDM2 as a class of p53 activators for targeted molecular therapy of malignant neoplasms harboring WT p53 and elevated levels of MDM2.
Collapse
|
27
|
Yang H, Liu S, Cai H, Wan L, Li S, Li Y, Cheng J, Lu X. Chondroitin sulfate as a molecular portal that preferentially mediates the apoptotic killing of tumor cells by penetratin-directed mitochondria-disrupting peptides. J Biol Chem 2010; 285:25666-76. [PMID: 20484051 DOI: 10.1074/jbc.m109.089417] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The use of cell-penetrating peptides (CPPs) as drug carriers for targeted therapy is limited by the unrestricted cellular translocation of CPPs. The preferential induction of tumor cell death by penetratin (Antp)-directed peptides (PNC27 and PNC28), however, suggests that the CPP Antp may contribute to the preferential cytotoxicity of these peptides. Using PNC27 as a molecular model, we constructed three novel peptides (PT, PR9, and PD3) by replacing the leader peptide Antp with one of three distinct CPPs (TAT, R9, or DPV3), respectively. The IC(50) values of PNC27 in tumor cells were 2-3 times lower than in normal cells. However, all three engineered peptides demonstrated similar cytotoxic effects in tumor and normal cells. Another three chimeric peptides containing the leader peptide Antp with different mitochondria-disrupting peptides (KLA-Antp (KGA), B27-Antp (BA27), and B28-Antp (BA28)), preferentially induced apoptosis in tumor cells. The IC(50) values of these peptides (3-10 microM) were 3-6 times lower in tumor cells than in normal cells. In contrast, TAT-directed peptides (TAT-KLA (TK), TAT-B27 (TB27), and TAT-B28 (TB28)), were cytotoxic to both tumor and normal cells. These data demonstrate that the leader peptide Antp contributes to the preferential cytotoxicity of Antp-directed peptides. Furthermore, Antp-directed peptides bind chondroitin sulfate (CS), and the removal of endogenous CS reduces the cytotoxic effects of Antp-directed peptides in tumor cells. The overexpression of CS in tumor cells is positively correlated to the cell entry and cytotoxicity of Antp- directed peptides. These results suggest that CS overexpression in tumor cells is an important molecular portal that mediates the preferential cytotoxicity of Antp-directed peptides.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
The anti-cancer peptide, PNC-27, induces tumor cell lysis as the intact peptide. Cancer Chemother Pharmacol 2010; 66:325-31. [DOI: 10.1007/s00280-009-1166-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/25/2009] [Indexed: 11/30/2022]
|
29
|
Li C, Pazgier M, Liu M, Lu WY, Lu W. Apamin as a template for structure-based rational design of potent peptide activators of p53. Angew Chem Int Ed Engl 2010; 48:8712-5. [PMID: 19827079 DOI: 10.1002/anie.200904550] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chong Li
- Institute of Human Virology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
30
|
Khafagy ES, Morishita M, Ida N, Nishio R, Isowa K, Takayama K. Structural requirements of penetratin absorption enhancement efficiency for insulin delivery. J Control Release 2010; 143:302-10. [PMID: 20096319 DOI: 10.1016/j.jconrel.2010.01.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 11/28/2022]
Abstract
Penetratin, a 16-residue peptide, is used widely as a highly efficient delivery carrier for a wide range of poorly permeable therapeutic cargoes. The crucial structural features of penetratin remain unclear, as demonstrated by the difficulties encountered in designing new molecules. The efficiency in enhancing nasal insulin absorption was compared between l-penetratin and 20 of its analogues in rats. We also measured lactate dehydrogenase (LDH) leakage as an indicator of cytotoxicity and scored the histopathological irritation. Substitution of a cationic residue (Arg or Lys) with Leu or addition of tetra-arginine to the C- or N-terminus of penetratin caused considerable reduction in the enhancing efficiency properties of the modified analogues. Mutual exchanging of Arg and Lys in corresponding analogues produced nearly inactive analogues, although changing Arg to Lys in the same analogue produced similar penetratin activity. In addition, activity was impaired markedly upon modification of penetratin within amphiphilic (Trp) or hydrophobic (Ile and Phe) residues. Chain size-modified analogues lacked the ability to induce nasal insulin absorption. In contrast, rearrangement of the modified analogues by C,N-half-exchange and reverse analogues produced activity similar to that of the original penetratin. The enhancing activity was inhibited almost completely upon sequence arrangement of the resulting analogues. Surprisingly, a shuffle (Arg, Lys fix) 2 analogue increased insulin absorption significantly, reaching a relative bioavailability value 1.85-times that of original penetratin. This analogue caused negligible release of LDH in nasal lavage fluid and maintained the integrity of the nasal respiratory epithelium. In conclusion, modulation of amino acid sequences by fixing the cationic residue positions can augment penetratin-enhanced nasal absorption and may lead to improvements in nasal insulin absorption.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Anticancer peptide PNC-27 adopts an HDM-2-binding conformation and kills cancer cells by binding to HDM-2 in their membranes. Proc Natl Acad Sci U S A 2010; 107:1918-23. [PMID: 20080680 DOI: 10.1073/pnas.0909364107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anticancer peptide PNC-27, which contains an HDM-2-binding domain corresponding to residues 12-26 of p53 and a transmembrane-penetrating domain, has been found to kill cancer cells (but not normal cells) by inducing membranolysis. We find that our previously determined 3D structure of the p53 residues of PNC-27 is directly superimposable on the structure for the same residues bound to HDM-2, suggesting that the peptide may target HDM-2 in the membranes of cancer cells. We now find significant levels of HDM-2 in the membranes of a variety of cancer cells but not in the membranes of several untransformed cell lines. In colocalization experiments, we find that PNC-27 binds to cell membrane-bound HDM-2. We further transfected a plasmid expressing full-length HDM-2 with a membrane-localization signal into untransformed MCF-10-2A cells not susceptible to PNC-27 and found that these cells expressing full-length HDM-2 on their cell surface became susceptible to PNC-27. We conclude that PNC-27 targets HDM-2 in the membranes of cancer cells, allowing it to induce membranolysis of these cells selectively.
Collapse
|
32
|
Roy RK, Saha S. Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b811052m] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Song LP, Li YP, Wang N, Li WW, Ren J, Qiu SD, Wang QY, Yang GX. NT4(Si)-p53(N15)-antennapedia induces cell death in a human hepatocellular carcinoma cell line. World J Gastroenterol 2009; 15:5813-20. [PMID: 19998502 PMCID: PMC2791274 DOI: 10.3748/wjg.15.5813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct the recombinant lentivirus expression plasmid, pLenti6/V5-NT4 p53(N15)-antennapedia (Ant), and study its effect on HepG2 cells.
METHODS: Plasmid pLenti6/V5-NT4 p53(N15)-Ant was constructed incorporating the following functional regions, including signal peptide sequence and pro-region of neurotrophin 4, N-terminal residues 12-26 of p53 and 17 amino acid drosophila carrier protein, Ant. Hepatocellular carcinoma (HepG2) cells were used for transfection. 3-[4,5-dimethyl-thiazol-2yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, transmission electron microscopy (TEM) and flow cytometric analysis (FCM) were employed to investigate the effects of LV-NT4(Si)-p53(N15)-Ant in vitro on HepG2 cells. In vivo experiment was also performed to investigate the inhibitory effect of LV-NT4(Si)-p53(N15)-Ant on tumor growth in nude mice.
RESULTS: LV-NT4(Si)-p53(N15)-Ant significantly suppressed the growth of HepG2 cells. MTT assay showed that the growth of HepG2 cells was mucj more significantly inhibited by LV-NT4(Si)-p53(N15)-Ant than by LV-EGFP. The inhibition rate for HepG2 cell growth in the two groups was 46.9% and 94.5%, respectively, 48 h after infection with LV-NT4(Si)-p53(N15)-Ant, and was 33.9% and 95.8%, respectively, 72 h after infection with LV-NT4(Si)-p53(N15)-Ant (P < 0.01). Light microscopy and TEM showed morphological changes in HepG2 cells infected with LV-NT4(Si)-p53(N15)-Ant, but no significant changes in HepG2 cells infected with LV-EGFP. Changes were observed in ultra-structure of HepG2 cells infected with LV-NT4(Si)-p53(N15)-Ant, with degraded membranes, resulting in necrosis. LDH release from HepG2 cells was analyzed at 24, 48, 72 and 96 h after infection with LV-NT4(Si)-p53(N15)-Ant and LV-EGFP, which showed that LDH release was significantly higher in LV-NT4(Si)-p53(N15)-Ant treatment group (682 IU/L) than in control group (45 IU/L, P < 0.01). The longer the time was after infection, the bigger the difference was in LDH release. FCM analysis showed that LV-NT4(Si)-p53(N15)-Ant could induce two different kinds of cell death: necrosis and apoptosis, with apoptosis being the minor type and necrosis being the main type, suggesting that LV-NT4(Si)-p53(N15)-Ant exerts its anticancer effect on HepG2 cells by inducing necrosis. The in vivo study showed that LV-NT4(Si)-p53(N15)-Ant significantly inhibited tumor growth with an inhibition rate of 66.14% in terms of tumor size and weight.
CONCLUSION: LV-NT4(Si)-p53(N15)-Ant is a novel recombinant lentivirus expression plasmid and can be used in gene therapy for cancer.
Collapse
|
34
|
Apamin as a Template for Structure-Based Rational Design of Potent Peptide Activators of p53. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Bidwell GL, Raucher D. Therapeutic peptides for cancer therapy. Part I – peptide inhibitors of signal transduction cascades. Expert Opin Drug Deliv 2009; 6:1033-47. [DOI: 10.1517/17425240903143745] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Li Y, Qiu S, Song L, Yan Q, Yang G. Secretory Expression of p53(N15)-Ant following Lentivirus-Mediated Gene Transfer Induces Cell Death in Human Cancer Cells. Cancer Invest 2009; 26:28-34. [DOI: 10.1080/07357900701681384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Hintersteiner M, Kimmerlin T, Garavel G, Schindler T, Bauer R, Meisner NC, Seifert JM, Uhl V, Auer M. A highly potent and cellularly active beta-peptidic inhibitor of the p53/hDM2 interaction. Chembiochem 2009; 10:994-8. [PMID: 19267375 DOI: 10.1002/cbic.200800803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
New and improved: The incorporation of a 6-chlorotryptophan (6-Cl-Trp) into a beta-peptide (M)-3(14) helix leads to a high-affinity hDM2 inhibitor, as demonstrated by fluorescence fluctuation analysis at single molecule resolution. When conjugated to penetratin, the newly derived hDM2 binder specifically inhibits tumour cell growth in vitro.
Collapse
|
38
|
Bassett EA, Wang W, Rastinejad F, El-Deiry WS. Structural and functional basis for therapeutic modulation of p53 signaling. Clin Cancer Res 2008; 14:6376-86. [PMID: 18927276 DOI: 10.1158/1078-0432.ccr-08-1526] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective modulation of structural features and/or functional properties of the major tumor suppressor p53 as a wild-type or cancer-associated mutant protein represents a major challenge in drug development for cancer. p53 is an attractive target for therapeutic design because of its involvement as a mediator of growth arrest and apoptosis after exposure to chemoradiotherapy and/or radiotherapy. Although most clinically used cytotoxic agents target stabilization of wild-type p53, there are a number of approaches that hold promise for reactivation of mutant p53. On the other hand, brief blockade of p53 may reduce toxicity from systemic cytotoxic therapy. Screens for restoration of p53 transcriptional responses in p53-deficient cells may provide a functional means to develop anticancer therapeutics. Structure-based modulation continues to hold promise for development of peptides or small molecules capable of modulation of either wild-type or mutant p53 proteins.
Collapse
Affiliation(s)
- Emily A Bassett
- Department of Medicine, The Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
39
|
Bowne WB, Sookraj KA, Vishnevetsky M, Adler V, Sarafraz-Yazdi E, Lou S, Koenke J, Shteyler V, Ikram K, Harding M, Bluth MH, Ng M, Brandt-Rauf PW, Hannan R, Bradu S, Zenilman ME, Michl J, Pincus MR. The Penetratin Sequence in the Anticancer PNC-28 Peptide Causes Tumor Cell Necrosis Rather Than Apoptosis of Human Pancreatic Cancer Cells. Ann Surg Oncol 2008; 15:3588-600. [DOI: 10.1245/s10434-008-0147-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 11/18/2022]
|
40
|
Organelle-Targeted Delivery of Biological Macromolecules Using the Protein Transduction Domain: Potential Applications for Peptide Aptamer Delivery into the Nucleus. J Mol Biol 2008; 380:777-82. [DOI: 10.1016/j.jmb.2008.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/16/2008] [Accepted: 05/21/2008] [Indexed: 11/15/2022]
|
41
|
Groner B, Lucks P, Borghouts C. The function of Stat3 in tumor cells and their microenvironment. Semin Cell Dev Biol 2008; 19:341-50. [PMID: 18621135 DOI: 10.1016/j.semcdb.2008.06.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/06/2008] [Accepted: 06/17/2008] [Indexed: 12/13/2022]
Abstract
Stat3 was initially recognized as a transcription factor and mediates the nuclear action of many different cytokines and growth factors. In addition to its roles in normal cell function, the inappropriate activation of Stat3 in tumor cells has attracted the attention of tumor biologists and has led to the consideration of Stat3 as a drug target. The induction of Stat3 activity under physiological circumstances is transient and many different levels of activation and deactivation have been defined. In addition to kinases and phosphatases, the SOCS proteins and the PIAS proteins have been recognized as negatively regulating components, which fine-tune the extent and the duration of Stat3 function. Its nuclear cytoplasmic shuttling is exquisitely regulated and adds to the complexity of Stat3 action. Newly discovered associations with cytoplasmic molecules suggest functions outside the conventional transcriptional regulation context. High molecular weight transcription complexes suggest that Stat3 might assume roles in transcriptional induction as well as in transcriptional suppression. The aberrant activation in tumor cells and the central function of Stat3 in the communication between cells of the immune system and tumor cells are of great interest for translational research projects and innovative drug development.
Collapse
Affiliation(s)
- Bernd Groner
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW p53 mutation occurs in over half of all human tumors. Among the remaining tumors, although they may process a wild-type p53, the pathways of p53-induced cell-cycle arrest and apoptosis are deficient. Therefore, p53 serves as a unique molecular target for cancer therapy. This review focuses on the current progress regarding restoration of p53 function in human tumors for molecularly targeted therapy. RECENT FINDINGS Targeting p53 for cancer therapy has been intensively pursued. CP-31398 was the first small molecule identified with the ability to restore the wild-type conformation to mutant p53. Subsequently, PRIMA-1 and ellipticine were found to be able to induce mutant p53-dependent cell death. Nutlin was developed to rescue wild-type p53 from degradation mediated by MDM2. More recently, p53 family members can be activated and therefore serve as substitutes of p53 in tumor cells and induce cell death. SUMMARY Loss of p53 function is a characteristic of almost all human tumors. Recent advances demonstrate that reconstitution of p53 function is possible and practical as a promising antitumor strategy.
Collapse
|
43
|
|
44
|
Barrientos-Salcedo C, Arenas-Aranda D, Salamanca-Gómez F, Ortiz-Muñiz R, Soriano-Correa C. Electronic Structure and Physicochemical Properties Characterization of the Amino Acids 12−26 of TP53: A Theoretical Study. J Phys Chem A 2007; 111:4362-9. [PMID: 17472350 DOI: 10.1021/jp067841y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PNC-27, a synthetic peptide, is derived from the TP53-HDM2 binding domain that include TP53 amino acids 12-26 linked with 17 amino acids from the antennapedia protein transference domain. This peptide induces membrane rupture in tumor cells through toroidal pores formation and has motivated several experimental studies; nonetheless, its mechanism of biological action remains unknown to date. Herein, we present a theoretical study at the Hartree-Fock and density functional theory (B3LYP) levels of theory of TP53 protein residues 12-26 (PPLSQETFSDLWKLL) in order to characterize its electronic structure and physicochemical properties. Our results for atomic and group charges, fitted to the electrostatic potential (ESP) show important reactive sites (L14, S15, T18, S20, L25, and L26), suggesting that these amino acids are exposed to nucleophilic and electrophilic attacks. Analysis of bond orders, intramolecular interactions and of several global reactivity descriptors, such as ionization potentials, hardness, electrophilicity index, dipole moments, total energies, frontier molecular orbitals (HOMO-LUMO), and electrostatic potential, led us to characterize active sites and the electronic structure and physiochemical features that taken together may be important in understanding the specific selectivity for this peptides type's cancer-cell membrane lysis properties.
Collapse
Affiliation(s)
- Carolina Barrientos-Salcedo
- Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Cuauhtémoc, 06725 México, D.F., México.
| | | | | | | | | |
Collapse
|
45
|
Bowne WB, Michl J, Bluth MH, Zenilman ME, Pincus MR. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. CANCER THERAPY 2007; 5B:331-344. [PMID: 18007958 PMCID: PMC2078333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have employed a novel computer-based molecular modeling method to design peptides from the ras-p21 and p53 proteins that block proliferation of cancer cells. The rationale of our approach is to identify peptide domains from each protein that alter conformation in response to oncogenic amino acid substitutions in their polypeptide chain. We accomplish this by first generating and comparing low energy average structures for oncogenic and wild-type proteins using conformational energy calculations. Peptides are then synthesized corresponding to these domains. These domains are then linked to a trans-membrane-penetrating sequence (called penetratin) and tested against cancer and untransformed cell lines. Remarkably, we have found that two ras-p21 peptides, 35-47 and 96-110, called PNC-7 and PNC-2, respectively, can induce phenotypic reversion of ras-transformed TUC-3 pancreatic cancer cells and ras-transformed HT1080 human fibrosarcoma cells to their untransformed phenotypes. Moreover, both peptides were found to be cytotoxic to ras-transformed human MIA-PaCa-2 pancreatic carcinoma cells and human U-251 astrocytoma cells. Importantly, these peptides have no effect on the growth of their normal cellular counterparts. We have also synthesized peptides from the p53 protein corresponding to its hdm-2-binding domain sequences (residues 12-26), also linked to the penetratin sequence. Surprisingly, we have found that these peptides induce 100 percent tumor cell necrosis, not apoptosis, in 13 different human cancer cell lines but have no effect on normal pancreatic acinar cells, breast epithelial cells, and human stem cells. Moreover, these peptides are cytotoxic to TUC-3 pancreatic tumor cells in nude mice plus eradicate these tumor cells when administered at sites near these tumors. These novel peptides appear to hold much promise as new, non-toxic anti-cancer agents.
Collapse
Affiliation(s)
- Wilbur B. Bowne
- Department of Surgery, New York Harbor VA Medical Center, 800 Poly Place, Brooklyn, NY 11209
- Department of Surgery, State University of New York (SUNY), Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203
| | - Josef Michl
- Department of Pathology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203
- Departments of Microbiology and Anatomy and Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203
| | - Martin H. Bluth
- Department of Surgery, State University of New York (SUNY), Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203
| | - Michael E. Zenilman
- Department of Surgery, State University of New York (SUNY), Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203
| | - Matthew R. Pincus
- Department of Pathology and Laboratory Medicine, New York Harbor VA Medical Center, 800 Poly Place, Brooklyn, NY 11209
- Department of Pathology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203
| |
Collapse
|
46
|
Wang Y, Li D, Fan H, Tian L, Zhong Y, Zhang Y, Yuan L, Jin C, Yin C, Ma D. Cellular Uptake of Exogenous Human PDCD5 Protein. J Biol Chem 2006; 281:24803-17. [PMID: 16754680 DOI: 10.1074/jbc.m600183200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PDCD5 (human programmed cell death 5) plays a significant role in apoptotic and paraptotic cell deaths. However, it was found that recombinant PDCD5 added exogenously to culture medium could also enhance programmed cell death triggered by certain stimuli. Here we show that PDCD5 has a remarkable role in intercellular transport in various cells (endogenous caveolin-1-positive and -negative cells) through a clathrin-independent endocytic pathway that originates from heparan sulfate proteoglycan binding and lipid rafts. These conclusions are supported by the studies of slow internalization kinetics of PDCD5 endosomes, by the resistance of endosomes to nonionic detergents, by the overexpression of the clathrin dominant negative mutant form, which did not block PDCD5-fluorescein isothiocyanate uptake, and by PDCD5 localization in lipid rafts by immunofluorescence, electron microscopy techniques, and sucrose density centrifugation. This is further supported by the findings that certain drugs that disrupt lipid rafts, compete with cell membrane heparan sulfate proteoglycans, or block the caveolae pathway, impair the PDCD5 internalization process. The translocation activity of PDCD5 may possess physiological significance and be a potential mechanism for its programmed cell death-promoting activity. PDCD5 protein also has the ability to drive the internalization of large protein cargo, depending on the residues 109-115 mapped by deletion mutagenesis, and can introduce the Mdm-2 binding domain of human p53 into living cells to induce cell death in human cancer cells, indicating that PDCD5 may serve as a vehicle and thus have potential in the field of protein delivery to the cells. This is the first evidence of such findings.
Collapse
Affiliation(s)
- Ying Wang
- Center for Human Disease Genomics, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fasan R, Dias RLA, Moehle K, Zerbe O, Obrecht D, Mittl PRE, Grütter MG, Robinson JA. Structure-activity studies in a family of beta-hairpin protein epitope mimetic inhibitors of the p53-HDM2 protein-protein interaction. Chembiochem 2006; 7:515-26. [PMID: 16511824 DOI: 10.1002/cbic.200500452] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inhibitors of the interaction between the p53 tumor-suppressor protein and its natural human inhibitor HDM2 are attractive as potential anticancer agents. In earlier work we explored designing beta-hairpin peptidomimetics of the alpha-helical epitope on p53 that would bind tightly to the p53-binding site on HDM2. The beta-hairpin is used as a scaffold to display energetically hot residues in an optimal array for interaction with HDM2. The initial lead beta-hairpin mimetic, with a weak inhibitory activity (IC(50)=125 microM), was optimized to afford cyclo-(L-Pro-Phe-Glu-6ClTrp-Leu-Asp-Trp-Glu-Phe-D-Pro) (where 6ClTrp=L-6-chlorotryptophan), which has an affinity almost 1,000 times higher (IC(50)=140 nM). In this work, insights into the origins of this affinity maturation based on structure-activity studies and an X-ray crystal structure of the inhibitor/HDM2(residues 17-125) complex at 1.4 A resolution are described. The crystal structure confirms the beta-hairpin conformation of the bound ligand, and also reveals that a significant component of the affinity increase arises through new aromatic/aromatic stacking interactions between side chains around the hairpin and groups on the surface of HDM2.
Collapse
Affiliation(s)
- Rudi Fasan
- Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Borghouts C, Kunz C, Groner B. Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci 2006; 11:713-26. [PMID: 16138387 DOI: 10.1002/psc.717] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The completion of the human genome sequence and the development of new techniques, which allow the visualisation of comprehensive gene expression patterns, has led to the identification of a large number of gene products differentially expressed in tumours and corresponding normal tissues. The task at hand is the sorting of these genes into correlative and causative ones. Correlative genes are merely changed as a consequence of transformation and have no decisive effects upon transformation. In contrast, causative genes play a direct role in the process of cellular transformation and the maintenance of the transformed state, which can be exploited for therapeutic purposes. Oncogenes and tumour suppressor genes are prime targets for the development of new inhibitors and gene therapeutic strategies. However, many target oncogene products do not exhibit enzymatic activity that can be inhibited by conventional small molecular weight compounds. They exert their functions through regulated protein-protein or protein-DNA interactions and might require other compounds for efficient interference with such functions. Peptides are emerging as a novel class of drugs for cancer therapy, which could fulfil these tasks. Peptide therapy aims at the specific inhibition of inappropriately activated oncogenes. This review will focus on the selection procedures, which can be employed to identify useful peptides for the treatment of cancer. Before peptide-based therapeutics can become useful, it will be necessary to increase their stability by modifications or the use of scaffolds. Additionally, various delivery methods including liposomes and particularly the use of protein transduction domains (PTDs) have to be explored. These strategies will yield highly specific and more effective peptides and improve the potential of peptide-based anti-cancer therapeutics.
Collapse
Affiliation(s)
- Corina Borghouts
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | | | | |
Collapse
|
49
|
Michl J, Scharf B, Schmidt A, Huynh C, Hannan R, von Gizycki H, Friedman FK, Brandt-Rauf P, Fine RL, Pincus MR. PNC-28, a p53-derived peptide that is cytotoxic to cancer cells, blocks pancreatic cancer cell growthin vivo. Int J Cancer 2006; 119:1577-85. [PMID: 16688716 DOI: 10.1002/ijc.22029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PNC-28 is a p53 peptide from its mdm-2-binding domain (residues 17-26), which contains the penetratin sequence enabling cell penetration on its carboxyl terminal end. We have found that this peptide induces necrosis, but not apoptosis, of a variety of human tumor cell lines, including several with homozygous deletion of p53, and a ras-transformed rat acinar pancreatic carcinoma cell line, BMRPA1. Tuc3. On the other hand, PNC-28 has no effect on untransformed cells, such as rat pancreatic acinar cells, BMRPA1, and human breast epithelial cells and no effect on the differentiation of human stem cells. In this study, we now test PNC-28 in vivo for its ability to block the growth of BMRPA1. Tuc3 cells. When administered over a 2-week period in the peritoneal cavities of nude mice containing simultaneously transplanted tumors, PNC-28 causes complete destruction of these tumors. When delivered concurrently with tumor explantation at a remote site, PNC-28 causes a complete blockade of any tumor growth during its 2-week period of administration and 2 weeks posttreatment, followed by weak tumor growth that plateaus at low tumor sizes compared with tumor growth in the presence of a control peptide. When administered after tumor growth has occurred at a site remote from the tumor, PNC-28 causes a decrease in tumor size followed by a slow increase in tumor growth that is significantly slower than growth in the presence of control peptide. These results suggest that PNC-28 may be effective in treating cancers especially if delivered directly to the tumor.
Collapse
Affiliation(s)
- Josef Michl
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Toth A, Nickson P, Qin LL, Erhardt P. Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem 2005; 281:3679-89. [PMID: 16339144 DOI: 10.1074/jbc.m509630200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MDM2 is an E3 ubiquitin ligase that regulates the proteasomal degradation and activity of proteins involved in cell growth and apoptosis, including the tumor suppressors p53 and retinoblastoma and the transcription factor E2F1. Although the effect of several MDM2 targets on cardiomyocyte survival and hypertrophy has already been investigated, the role of MDM2 in these processes has not yet been established. We have, therefore, analyzed the effect of overexpression as well as inhibition of MDM2 on cardiac ischemia/reperfusion injury and hypertrophy. Here we show that isolated cardiac myocytes overexpressing MDM2 acquired resistance to hypoxia/reoxygenation-induced cell death. Conversely, inactivation of MDM2 by a peptide inhibitor resulted in elevated p53 levels and promoted hypoxia/reoxygenation-induced apoptosis. Consistent with this, decreased expression of MDM2 in a genetic mouse model was accompanied by reduced functional recovery of the left ventricles determined with the Langendorff ex vivo model of ischemia/reperfusion. In contrast to cell survival, cell hypertrophy induced by the alpha-agonists phenylephrine or endothelin-1 was inhibited by MDM2 overexpression. Collectively, our studies indicate that MDM2 promotes survival and attenuates hypertrophy of cardiac myocytes. This differential regulation of cell growth and cell survival is unique, because most other survival factors are prohypertrophic. MDM2, therefore, might be a potential therapeutic target to down-regulate both cell death and pathologic hypertrophy during remodeling upon cardiac infarction. In addition, our data also suggest that cancer treatments with MDM2 inhibitors to reactivate p53 may have adverse cardiac side effects by promoting cardiomyocyte death.
Collapse
Affiliation(s)
- Ambrus Toth
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | | | |
Collapse
|