1
|
Goldberg JK, Godfrey RK, Barrett M. A long-read draft assembly of the Chinese mantis (Mantodea: Mantidae: Tenodera sinensis) genome reveals patterns of ion channel gain and loss across Arthropoda. G3 (BETHESDA, MD.) 2024; 14:jkae062. [PMID: 38517310 PMCID: PMC11152070 DOI: 10.1093/g3journal/jkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Praying mantids (Mantodea: Mantidae) are iconic insects that have captivated biologists for decades, especially the species with cannibalistic copulatory behavior. This behavior has been cited as evidence that insects lack nociceptive capacities and cannot feel pain; however, this behaviorally driven hypothesis has never been rigorously tested at the genetic or functional level. To enable future studies of nociceptive capabilities in mantids, we sequenced and assembled a draft genome of the Chinese praying mantis (Tenodera sinensis) and identified multiple classes of nociceptive ion channels by comparison to orthologous gene families in Arthropoda. Our assembly-produced using PacBio HiFi reads-is fragmented (total size = 3.03 Gb; N50 = 1.8 Mb; 4,966 contigs), but is highly complete with respect to gene content (BUSCO complete = 98.7% [odb10_insecta]). The size of our assembly is substantially larger than that of most other insects, but is consistent with the size of other mantid genomes. We found that most families of nociceptive ion channels are present in the T. sinensis genome; that they are most closely related to those found in the damp-wood termite (Zootermopsis nevadensis); and that some families have expanded in T. sinensis while others have contracted relative to nearby lineages. Our findings suggest that mantids are likely to possess nociceptive capabilities and provide a foundation for future experimentation regarding ion channel functions and their consequences for insect behavior.
Collapse
Affiliation(s)
- Jay K Goldberg
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E Lowell St, Tucson, AZ 85741, USA
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney Ln, Norwich, Norfolk NR4 7UH, UK
| | - R Keating Godfrey
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Meghan Barrett
- Department of Biology, Indiana University Purdue University Indianapolis, 420 University Blvd, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. PLoS Genet 2024; 20:e1011237. [PMID: 38662763 DOI: 10.1371/journal.pgen.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P Luedke
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jiro Yoshino
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Chang Yin
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Nan Jiang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jessica M Huang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Kevin Huynh
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| |
Collapse
|
3
|
Zhai M, Huang J, Yang S, Li N, Zeng J, Zheng Y, Sun W, Wu B. Transcriptomic analysis of differentially alternative splicing patterns in mice with inflammatory and neuropathic pain. Mol Pain 2024; 20:17448069241249455. [PMID: 38597175 PMCID: PMC11084985 DOI: 10.1177/17448069241249455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024] Open
Abstract
Although the molecular mechanisms of chronic pain have been extensively studied, a global picture of alternatively spliced genes and events in the peripheral and central nervous systems of chronic pain is poorly understood. The current study analyzed the changing pattern of alternative splicing (AS) in mouse brain, dorsal root ganglion, and spinal cord tissue under inflammatory and neuropathic pain. In total, we identified 6495 differentially alternatively spliced (DAS) genes. The molecular functions of shared DAS genes between these two models are mainly enriched in calcium signaling pathways, synapse organization, axon regeneration, and neurodegeneration disease. Additionally, we identified 509 DAS in differentially expressed genes (DEGs) shared by these two models, accounting for a small proportion of total DEGs. Our findings supported the hypothesis that the AS has an independent regulation pattern different from transcriptional regulation. Taken together, these findings indicate that AS is one of the important molecular mechanisms of chronic pain in mammals. This study presents a global description of AS profile changes in the full path of neuropathic and inflammatory pain models, providing new insights into the underlying mechanisms of chronic pain and guiding genomic clinical diagnosis methods and rational medication.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Southern University of Science and Technology Yantian Hospital, Shenzhen, China
- Benqing Laboratory, Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Jiabin Huang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Na Li
- Southern University of Science and Technology Yantian Hospital, Shenzhen, China
| | - Jun Zeng
- Center for Medical Experiments (CME), Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Benqing Wu
- Benqing Laboratory, Shenzhen Guangming District People’s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557275. [PMID: 37745567 PMCID: PMC10515945 DOI: 10.1101/2023.09.14.557275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P. Luedke
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jiro Yoshino
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Chang Yin
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Nan Jiang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jessica M. Huang
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Kevin Huynh
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| | - Jay Z. Parrish
- Department of Biology, University of Washington, Campus Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Wang F, Ruppell KT, Zhou S, Qu Y, Gong J, Shang Y, Wu J, Liu X, Diao W, Li Y, Xiang Y. Gliotransmission and adenosine signaling promote axon regeneration. Dev Cell 2023; 58:660-676.e7. [PMID: 37028426 PMCID: PMC10173126 DOI: 10.1016/j.devcel.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/18/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
How glia control axon regeneration remains incompletely understood. Here, we investigate glial regulation of regenerative ability differences of closely related Drosophila larval sensory neuron subtypes. Axotomy elicits Ca2+ signals in ensheathing glia, which activates regenerative neurons through the gliotransmitter adenosine and mounts axon regenerative programs. However, non-regenerative neurons do not respond to glial stimulation or adenosine. Such neuronal subtype-specific responses result from specific expressions of adenosine receptors in regenerative neurons. Disrupting gliotransmission impedes axon regeneration of regenerative neurons, and ectopic adenosine receptor expression in non-regenerative neurons suffices to activate regenerative programs and induce axon regeneration. Furthermore, stimulating gliotransmission or activating the mammalian ortholog of Drosophila adenosine receptors in retinal ganglion cells (RGCs) promotes axon regrowth after optic nerve crush in adult mice. Altogether, our findings demonstrate that gliotransmission orchestrates neuronal subtype-specific axon regeneration in Drosophila and suggest that targeting gliotransmission or adenosine signaling is a strategy for mammalian central nervous system repair.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Kendra Takle Ruppell
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Songlin Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yun Qu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiaxin Gong
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ye Shang
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jinglin Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenlin Diao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yi Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; The National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Yang Xiang
- Department of Neurobiology, Program of Neuroscience, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Boivin JC, Zhu J, Ohyama T. Nociception in fruit fly larvae. FRONTIERS IN PAIN RESEARCH 2023; 4:1076017. [PMID: 37006412 PMCID: PMC10063880 DOI: 10.3389/fpain.2023.1076017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Nociception, the process of encoding and processing noxious or painful stimuli, allows animals to detect and avoid or escape from potentially life-threatening stimuli. Here, we provide a brief overview of recent technical developments and studies that have advanced our understanding of the Drosophila larval nociceptive circuit and demonstrated its potential as a model system to elucidate the mechanistic basis of nociception. The nervous system of a Drosophila larva contains roughly 15,000 neurons, which allows for reconstructing the connectivity among them directly by transmission electron microscopy. In addition, the availability of genetic tools for manipulating the activity of individual neurons and recent advances in computational and high-throughput behavior analysis methods have facilitated the identification of a neural circuit underlying a characteristic nocifensive behavior. We also discuss how neuromodulators may play a key role in modulating the nociceptive circuit and behavioral output. A detailed understanding of the structure and function of Drosophila larval nociceptive neural circuit could provide insights into the organization and operation of pain circuits in mammals and generate new knowledge to advance the development of treatment options for pain in humans.
Collapse
Affiliation(s)
- Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jiayi Zhu
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Walters ET, Crook RJ, Neely GG, Price TJ, Smith ESJ. Persistent nociceptor hyperactivity as a painful evolutionary adaptation. Trends Neurosci 2023; 46:211-227. [PMID: 36610893 PMCID: PMC9974896 DOI: 10.1016/j.tins.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered maladaptive because both can persist long after injured tissues have healed and inflammation has resolved. While the assumption of maladaptiveness is appropriate in many diseases, accumulating evidence from diverse species, including humans, challenges the assumption that neuropathic pain and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit selected, animal groups as a physiological response that can increase survival long after bodily injury, using both highly conserved and divergent underlying mechanisms.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
9
|
Klobučar T, Fisher DN. When Do We Start Caring About Insect Welfare? NEOTROPICAL ENTOMOLOGY 2023; 52:5-10. [PMID: 36656488 PMCID: PMC9886582 DOI: 10.1007/s13744-022-01023-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The world is facing an incoming global protein shortage due to existing malnutrition and further rapid increases in population size. It will however be difficult to greatly expand traditional methods of protein production such as cattle, chicken and pig farming, due to space limitations and environmental costs such as deforestation. As a result, alternative sources of protein that require less space and fewer resources, such as insects and other invertebrates, are being sought. The Neotropics are a key area of focus given the widespread prevalence of entomophagy and developing animal welfare regulations. Unlike vertebrate livestock however, insect "minilivestock" are typically not protected by existing animal welfare regulations. This is despite the fact that the evidence is mounting that insects possess "personalities", may experience affective states analogous to emotions and feel something like pain. In this forum article, we highlight this discrepancy, outline some of the emerging research on the topic and identify areas for future research. There are various empirical and ethical questions that must be addressed urgently while insect farming is ramped up around the globe. Finally, we describe the benefits and also potential costs of regulation for insect welfare.
Collapse
Affiliation(s)
- Tina Klobučar
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK
| | - David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
| |
Collapse
|
10
|
Santos-Silva T, Lopes CFB, Guimarães JDS, Valer FB, Kuhn GCSE, Romero TRL, Naves LA, Duarte IDG. Classical analgesic drugs modulate nociceptive-like escape behavior in Drosophila melanogaster larvae. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.91390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Nociceptive stimulus triggers escape responses in Drosophila melanogaster larvae, characterized by 360° rolling behavior along its own body axis. Therefore, it is possible to study analgesic drugs based on this stereotypical nociceptive-like escape behavior. Here, we aimed to develop an analgesic predictive validity test of thermal nociception through D. melanogaster larvae.
Materials and methods: We evaluated the effect of classical analgesics (morphine, dipyrone, acetylsalicylic acid (ASA) and dexamethasone (DXM)) in the rolling behavior latency of D. melanogaster larvae exposed to thermal-acute noxious stimulus and nociceptive sensitization paradigm. Drugs were injected into hemocoel (100 nL) before nociceptive measurement.
Results and discussion: Rolling behavior latency was increased by morphine (2, 4, 8 and 16 ng) in dose-dependent manner. Naloxone (4 ng) fully reversed maximum effect of morphine. Dipyrone (32, 64 and 128 ng) and DXM (8 and 16 ng) elicited dose-dependent antinociceptive effects. Exposure of larvae to 97% of maximal infrared intensity induced nociceptive sensitization, i.e., latency changed from 12 to 7.5 seconds. ASA (25, 50 and 100 ng) and DXM (4, 8 and 16 ng) were administered 150 min after nociceptive sensitization and displayed reverse sensitization in rapid onset (30 min after injection). DXM (16 ng), injected prior to nociceptive sensitization, displayed a delay in the onset of action (150 min after injection). Locomotor behaviors were not affected by analgesic substances.
Conclusion: Our findings open perspectives for evaluation and discovery of antinociceptive drugs using D. melanogaster larvae model.
Graphical abstract
Collapse
|
11
|
Patel AA, Sakurai A, Himmel NJ, Cox DN. Modality specific roles for metabotropic GABAergic signaling and calcium induced calcium release mechanisms in regulating cold nociception. Front Mol Neurosci 2022; 15:942548. [PMID: 36157080 PMCID: PMC9502035 DOI: 10.3389/fnmol.2022.942548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium (Ca2+) plays a pivotal role in modulating neuronal-mediated responses to modality-specific sensory stimuli. Recent studies in Drosophila reveal class III (CIII) multidendritic (md) sensory neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Functional analyses revealed CIII-mediated multimodal behavioral output is dependent upon activation levels with stimulus-evoked Ca2+ displaying relatively low vs. high intracellular levels in response to gentle touch vs. noxious cold, respectively. However, the mechanistic bases underlying modality-specific differential Ca2+ responses in CIII neurons remain incompletely understood. We hypothesized that noxious cold-evoked high intracellular Ca2+ responses in CIII neurons may rely upon Ca2+ induced Ca2+ release (CICR) mechanisms involving transient receptor potential (TRP) channels and/or metabotropic G protein coupled receptor (GPCR) activation to promote cold nociceptive behaviors. Mutant and/or CIII-specific knockdown of GPCR and CICR signaling molecules [GABA B -R2, Gαq, phospholipase C, ryanodine receptor (RyR) and Inositol trisphosphate receptor (IP3R)] led to impaired cold-evoked nociceptive behavior. GPCR mediated signaling, through GABA B -R2 and IP3R, is not required in CIII neurons for innocuous touch evoked behaviors. However, CICR via RyR is required for innocuous touch-evoked behaviors. Disruptions in GABA B -R2, IP3R, and RyR in CIII neurons leads to significantly lower levels of cold-evoked Ca2+ responses indicating GPCR and CICR signaling mechanisms function in regulating Ca2+ release. CIII neurons exhibit bipartite cold-evoked firing patterns, where CIII neurons burst during rapid temperature change and tonically fire during steady state cold temperatures. GABA B -R2 knockdown in CIII neurons resulted in disorganized firing patterns during cold exposure. We further demonstrate that application of GABA or the GABA B specific agonist baclofen potentiates cold-evoked CIII neuron activity. Upon ryanodine application, CIII neurons exhibit increased bursting activity and with CIII-specific RyR knockdown, there is an increase in cold-evoked tonic firing and decrease in bursting. Lastly, our previous studies implicated the TRPP channel Pkd2 in cold nociception, and here, we show that Pkd2 and IP3R genetically interact to specifically regulate cold-evoked behavior, but not innocuous mechanosensation. Collectively, these analyses support novel, modality-specific roles for metabotropic GABAergic signaling and CICR mechanisms in regulating intracellular Ca2+ levels and cold-evoked behavioral output from multimodal CIII neurons.
Collapse
Affiliation(s)
| | | | | | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
12
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|