1
|
Scott TE, Boccarossa T, Florian D, Fischer MA, Peck SH, Savona MR, Pingen G, Guelcher SA. Rapid prototyping of perfusion cell culture devices for three-dimensional imaging of mesenchymal stem cell deposition and proliferation. Heliyon 2024; 10:e35103. [PMID: 39170274 PMCID: PMC11336473 DOI: 10.1016/j.heliyon.2024.e35103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Perfusion of porous scaffolds transports cells to the surface to yield cellular constructs for 3D models of disease and for tissue engineering applications. While ceramic scaffolds mimic the structure and composition of trabecular bone, their opacity and tortuous pores limit the penetration of light into the interior. Scaffolds that are both perfusable and amenable to fluorescence microscopy are therefore needed to visualize the spatiotemporal dynamics of cells in the bone microenvironment. In this study, a hybrid injection molding approach was designed to enable rapid prototyping of collector arrays with variable configurations that are amenable to longitudinal imaging of attached human mesenchymal stem cells (hMSCs) using fluorescence microscopy. Cylindrical collectors were arranged in an array that is permeable to perfusion in the xy-plane and to light in the z-direction for imaging from below. The effects of the collector radius, number, and spacing on the collection efficiency of perfused hMSCs was simulated using computational fluid dynamics (CFD) and measured experimentally using fluorescence microscopy. The effect of collector diameter on simulated and experimental cell collection efficiencies followed a trend similar to that predicted by interception theory corrected for intermolecular and hydrodynamic forces for the arrays with constant collector spacing. In contrast, arrays designed with constant collector number yielded collection efficiencies that poorly fit the trend with collector radius predicted by interception theory. CFD simulations of collection efficiency agreed with experimental measurements within a factor of two. These findings highlight the utility of CFD simulations and hybrid injection molding for rapid prototyping of collector arrays to optimize the longitudinal imaging of cells without the need for expensive and time-consuming tooling.
Collapse
Affiliation(s)
- Taylor E. Scott
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN, USA
- Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tim Boccarossa
- Department of Engineering, Union University, Jackson, TN, USA
| | - David Florian
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Melissa A. Fischer
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sun H. Peck
- Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Nashville VA Medical Center, Department of Veterans Affairs, Nashville, TN, USA
| | - Michael R. Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Center for Immunobiology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Georg Pingen
- Department of Engineering, Union University, Jackson, TN, USA
| | - Scott A. Guelcher
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN, USA
- Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Aydin H, Ozcelikkale A, Acar A. Exploiting Matrix Stiffness to Overcome Drug Resistance. ACS Biomater Sci Eng 2024; 10:4682-4700. [PMID: 38967485 PMCID: PMC11322920 DOI: 10.1021/acsbiomaterials.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Drug resistance is arguably one of the biggest challenges facing cancer research today. Understanding the underlying mechanisms of drug resistance in tumor progression and metastasis are essential in developing better treatment modalities. Given the matrix stiffness affecting the mechanotransduction capabilities of cancer cells, characterization of the related signal transduction pathways can provide a better understanding for developing novel therapeutic strategies. In this review, we aimed to summarize the recent advancements in tumor matrix biology in parallel to therapeutic approaches targeting matrix stiffness and its consequences in cellular processes in tumor progression and metastasis. The cellular processes governed by signal transduction pathways and their aberrant activation may result in activating the epithelial-to-mesenchymal transition, cancer stemness, and autophagy, which can be attributed to drug resistance. Developing therapeutic strategies to target these cellular processes in cancer biology will offer novel therapeutic approaches to tailor better personalized treatment modalities for clinical studies.
Collapse
Affiliation(s)
- Hakan
Berk Aydin
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| | - Altug Ozcelikkale
- Department
of Mechanical Engineering, Middle East Technical
University, 06800, Ankara, Turkey
- Graduate
Program of Biomedical Engineering, Middle
East Technical University, 06800, Ankara, Turkey
| | - Ahmet Acar
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| |
Collapse
|
3
|
Liesveld J, Galipeau J. In Vitro Insights Into the Influence of Marrow Mesodermal/Mesenchymal Progenitor Cells on Acute Myelogenous Leukemia and Myelodysplastic Syndromes. Stem Cells 2023; 41:823-836. [PMID: 37348128 DOI: 10.1093/stmcls/sxad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The study of marrow-resident mesodermal progenitors can provide important insight into their role in influencing normal and aberrant hematopoiesis as occurs in acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). In addition, the chemokine competency of these cells provides links to the inflammatory milieu of the marrow microenvironment with additional implications for normal and malignant hematopoiesis. While in vivo studies have elucidated the structure and function of the marrow niche in murine genetic models, corollary human studies have not been feasible, and thus the use of culture-adapted mesodermal cells has provided insights into the role these rare endogenous niche cells play in physiologic, malignant, and inflammatory states. This review focuses on culture-adapted human mesenchymal stem/stromal cells (MSCs) as they have been utilized in understanding their influence in AML and MDS as well as on their chemokine-mediated responses to myeloid malignancies, injury, and inflammation. Such studies have intrinsic limitations but have provided mechanistic insights and clues regarding novel druggable targets.
Collapse
Affiliation(s)
- Jane Liesveld
- Department of Medicine, James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Jaques Galipeau
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin in Madison, Madison, WI, USA
| |
Collapse
|
4
|
Dai K, Zhang W, Deng S, Wang J, Liu C. Sulfated Polysaccharide Regulates the Homing of HSPCs in a BMP-2-Triggered In Vivo Osteo-Organoid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301592. [PMID: 37357138 PMCID: PMC10460842 DOI: 10.1002/advs.202301592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Indexed: 06/27/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is a well-established method for a variety of acquired and congenital diseases. However, the limited number and sources of therapeutic hematopoietic stem/progenitor cells (HSPCs) hinder the further application of HSCT. A BMP-2 triggered in vivo osteo-organoid that is previously reported, serves as a kind of stem cell biogenerator, for obtaining therapeutic HSPCs via activating the residual regenerative capacity of mammals using bioactive biomaterials. Here, it is demonstrated that targeting the homing signaling of HSPCs elevates the proportions and biological functions of HSPCs in the in vivo osteo-organoid. Notably, it is identified that sulfonated chito-oligosaccharide, a degradation product of sulfonated chitosan, specifically elevates the expression of endothelial protein C receptor on HSPCs and vascular cell adhesion molecule-1 on macrophages in the in vivo osteo-organoid, ultimately leading to the production of adequate therapeutic HSPCs. This in vivo osteo-organoid approach has the potential to provide an alternative HSPCs source for HSCT and benefits more patients.
Collapse
Affiliation(s)
- Kai Dai
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenchao Zhang
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shunshu Deng
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
5
|
de Janon A, Mantalaris A, Panoskaltsis N. Three-Dimensional Human Bone Marrow Organoids for the Study and Application of Normal and Abnormal Hematoimmunopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:895-904. [PMID: 36947817 PMCID: PMC7614371 DOI: 10.4049/jimmunol.2200836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 03/24/2023]
Abstract
Hematoimmunopoiesis takes place in the adult human bone marrow (BM), which is composed of heterogeneous niches with complex architecture that enables tight regulation of homeostatic and stress responses. There is a paucity of representative culture systems that recapitulate the heterogeneous three-dimensional (3D) human BM microenvironment and that can endogenously produce soluble factors and extracellular matrix that deliver culture fidelity for the study of both normal and abnormal hematopoiesis. Native BM lymphoid populations are also poorly represented in current in vitro and in vivo models, creating challenges for the study and treatment of BM immunopathology. BM organoid models leverage normal 3D organ structure to recreate functional niche microenvironments. Our focus herein is to review the current state of the art in the use of 3D BM organoids, focusing on their capacities to recreate critical quality attributes of the in vivo BM microenvironment for the study of human normal and abnormal hematopoiesis.
Collapse
Affiliation(s)
- Alejandro de Janon
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
| | - Athanasios Mantalaris
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Ireland
- National Institute for Bioprocessing Research and Training, Ireland
| | - Nicki Panoskaltsis
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, The Georgia Institute of Technology, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Ireland
- Department of Haematology, St. James’s Hospital Dublin, Ireland
| |
Collapse
|
6
|
Born G, Plantier E, Nannini G, Caimi A, Mazzoleni A, Asnaghi MA, Muraro MG, Scherberich A, Martin I, García-García A. Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues. Biotechnol J 2023; 18:e2200405. [PMID: 36428229 DOI: 10.1002/biot.202200405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022]
Abstract
Bioreactors enabling direct perfusion of cell suspensions or culture media through the pores of 3D scaffolds have long been used in tissue engineering to improve cell seeding efficiency as well as uniformity of cell distribution and tissue development. A macro-scale U-shaped bioreactor for cell culture under perfusion (U-CUP) has been previously developed. In that system, the geometry of the perfusion chamber results in rather uniform flow through most of the scaffold volume, but not in the peripheral regions. Here, the design of the perfusion chamber has been optimized to provide a more homogenous perfusion flow through the scaffold. Then, the design of this macro-scale flow-optimized perfusion bioreactor (macro-Flopper) has been miniaturized to create a mini-scale device (mini-Flopper) compatible with medium-throughput assays. Computational fluid dynamic (CFD) modeling of the new chamber design, including a porous scaffold structure, revealed that Flopper bioreactors provide highly homogenous flow speed, pressure, and shear stress. Finally, a proof-of-principle of the functionality of the Flopper systems by engineering endothelialized stromal tissues using human adipose tissue-derived stromal vascular fraction (SVF) cells has been offered. Preliminary evidence showing that flow optimization improves cell maintenance in the engineered tissues will have to be confirmed in future studies. In summary, two bioreactor models with optimized perfusion flow and complementary sizes have been proposed that might be exploited to engineer homogenous tissues and, in the case of the mini-Flopper, for drug testing assays with a limited amount of biological material.
Collapse
Affiliation(s)
- Gordian Born
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Evelia Plantier
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Guido Nannini
- Department of Electronics, Informatics and Bioengineering (DEIB), Politecnico di Milano, Milan, MI, Italy
| | - Alessandro Caimi
- Department of Electronics, Informatics and Bioengineering (DEIB), Politecnico di Milano, Milan, MI, Italy
| | - Andrea Mazzoleni
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - M Adelaide Asnaghi
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Manuele G Muraro
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrés García-García
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
8
|
Dai K, Zhang Q, Deng S, Yu Y, Zhu F, Zhang S, Pan Y, Long D, Wang J, Liu C. A BMP-2-triggered in vivo osteo-organoid for cell therapy. SCIENCE ADVANCES 2023; 9:eadd1541. [PMID: 36608118 PMCID: PMC9821865 DOI: 10.1126/sciadv.add1541] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell therapies and regenerative medicine interventions require an adequate source of therapeutic cells. Here, we demonstrate that constructing in vivo osteo-organoids by implanting bone morphogenetic protein-2-loaded scaffolds into the internal muscle pocket near the femur of mice supports the growth and subsequent harvest of therapeutically useful cells including hematopoietic stem/progenitor cells (HSPCs), mesenchymal stem cells (MSCs), lymphocytes, and myeloid cells. Profiling of the in vivo osteo-organoid maturation process delineated three stages-fibroproliferation, osteochondral differentiation, and marrow generation-each of which entailed obvious changes in the organoid structure and cell type distribution. The MSCs harvested from the osteochondral differentiation stage mitigated carbon tetrachloride (CCl4)-induced chronic liver fibrosis in mice, while HSPCs and immune cells harvested during the marrow generation stage rapidly and effectively reconstituted the impaired peripheral and solid immune organs of irradiated mice. These findings demonstrate the therapeutic potentials of in vivo osteo-organoid-derived cells in cell therapies.
Collapse
Affiliation(s)
- Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinghao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shunshu Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuanman Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fuwei Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - YuanZhong Pan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dandan Long
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
9
|
Hong J, Zheng W, Wang X, Hao Y, Cheng G. Biomedical polymer scaffolds mimicking bone marrow niches to advance in vitro expansion of hematopoietic stem cells. J Mater Chem B 2022; 10:9755-9769. [PMID: 36444902 DOI: 10.1039/d2tb01211a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation provides an effective platform for the treatment of hematological disorders. However, the donor shortage of HSCs and immune responses severely restrict the clinical applications of HSCs. Compared to allogeneic transplantation, autogenous transplantation poses less risk to the immune system, but the problem associated with insufficient HSCs remains a substantial challenge. A significant strategy for obtaining sufficient HSCs is to promote the expansion of HSCs. In vivo, a bone marrow microenvironment supports the survival and hematopoiesis of HSCs. Therefore, it is crucial to establish a platform that mimics the features of a bone marrow microenvironment for the in vitro expansion of HSCs. Three-dimensional (3D) scaffolds have emerged as the most powerful tools to mimic cellular microenvironments for the growth and proliferation of stem cells. Biomedical polymers have been widely utilized as cell scaffolds due to their advantageous features including favorable biocompatibility, biodegradability, as well as adjustable physical and chemical properties. This review focuses on recent advances in the study of biomedical polymer scaffolds that mimic bone marrow microenvironments for the in vitro expansion of HSCs. Bone marrow transplantation and microenvironments are first introduced. Then, biomedical polymer scaffolds for the expansion of HSCs and future prospects are summarized and discussed.
Collapse
Affiliation(s)
- Jing Hong
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, China. .,School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Anhui 230026, China
| | - Wenlong Zheng
- Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Jiangsu 215021, China
| | | | - Ying Hao
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, China. .,School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Anhui 230026, China
| | - Guosheng Cheng
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, China. .,School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
10
|
Krysko DV, Demuynck R, Efimova I, Naessens F, Krysko O, Catanzaro E. In Vitro Veritas: From 2D Cultures to Organ-on-a-Chip Models to Study Immunogenic Cell Death in the Tumor Microenvironment. Cells 2022; 11:3705. [PMID: 36429133 PMCID: PMC9688238 DOI: 10.3390/cells11223705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Immunogenic cell death (ICD) is a functionally unique form of cell death that promotes a T-cell-dependent anti-tumor immune response specific to antigens originating from dying cancer cells. Many anticancer agents and strategies induce ICD, but despite their robust effects in vitro and in vivo on mice, translation into the clinic remains challenging. A major hindrance in antitumor research is the poor predictive ability of classic 2D in vitro models, which do not consider tumor biological complexity, such as the contribution of the tumor microenvironment (TME), which plays a crucial role in immunosuppression and cancer evasion. In this review, we describe different tumor models, from 2D cultures to organ-on-a-chip technology, as well as spheroids and perfusion bioreactors, all of which mimic the different degrees of the TME complexity. Next, we discuss how 3D cell cultures can be applied to study ICD and how to increase the translational potential of the ICD inducers. Finally, novel research directions are provided regarding ICD in the 3D cellular context which may lead to novel immunotherapies for cancer.
Collapse
Affiliation(s)
- Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Elena Catanzaro
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Al-Kaabneh B, Frisch B, Aljitawi OS. The Potential Role of 3D In Vitro Acute Myeloid Leukemia Culture Models in Understanding Drug Resistance in Leukemia Stem Cells. Cancers (Basel) 2022; 14:5252. [PMID: 36358676 PMCID: PMC9656790 DOI: 10.3390/cancers14215252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/14/2023] Open
Abstract
The complexity of the bone marrow (BM) microenvironment makes studying hematological malignancies in vitro a challenging task. Three-dimensional cell cultures are being actively studied, particularly due to their ability to serve as a bridge of the gap between 2D cultures and animal models. The role of 3D in vitro models in studying the mechanisms of chemotherapeutic resistance and leukemia stem cells (LSCs) in acute myeloid leukemia (AML) is not well-reviewed. We present an overview of 3D cell models used for studying AML, emphasizing the recent advancements in microenvironment modeling, chemotherapy testing, and resistance.
Collapse
Affiliation(s)
- Basil Al-Kaabneh
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Benjamin Frisch
- Departments of Pathology and Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Omar S. Aljitawi
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Kim MJ, Valderrábano RJ, Wu JY. Osteoblast Lineage Support of Hematopoiesis in Health and Disease. J Bone Miner Res 2022; 37:1823-1842. [PMID: 35983701 PMCID: PMC11346465 DOI: 10.1002/jbmr.4678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Abstract
In mammals, hematopoiesis migrates to the bone marrow during embryogenesis coincident with the appearance of mineralized bone, where hematopoietic stem cells (HSCs) and their progeny are maintained by the surrounding microenvironment or niche, and sustain the entirety of the hematopoietic system. Genetic manipulation of niche factors and advances in cell lineage tracing techniques have implicated cells of both hematopoietic and nonhematopoietic origin as important regulators of hematopoiesis in health and disease. Among them, cells of the osteoblast lineage, from stromal skeletal stem cells to matrix-embedded osteocytes, are vital niche residents with varying capacities for hematopoietic support depending on stage of differentiation. Here, we review populations of osteoblasts at differing stages of differentiation and summarize the current understanding of the role of the osteoblast lineage in supporting hematopoiesis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Matthew J Kim
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rodrigo J Valderrábano
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joy Y Wu
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
14
|
Oliveira CS, Nadine S, Gomes MC, Correia CR, Mano JF. Bioengineering the human bone marrow microenvironment in liquefied compartments: A promising approach for the recapitulation of osteovascular niches. Acta Biomater 2022; 149:167-178. [PMID: 35811072 DOI: 10.1016/j.actbio.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Recreating the biological complexity of living bone marrow (BM) in a single in vitro strategy has faced many challenges. Most bioengineered strategies propose the co-culture of BM cellular components entrapped in different matrices limiting their migration and self-organization capacity or in open scaffolds enabling their escaping. We propose a methodology for fabricating a "human bone marrow-in-a-liquefied-capsule" to overcome these challenges, embracing the most important BM components in a single platform. Since free dispersion of the cells within the BM is an essential feature to maintain their in vivo properties, this platform provides a liquefied environment for the encapsulated cells to move freely and self-organize. Inside liquefied capsules, an engineered endosteal niche (eEN) is co-cultured with human umbilical cord cells, including endothelial cells and hematopoietic stem and progenitor cells (HSPCs). Two different human-like BM niches were recreated under static and dynamic systems. Although the culture of the engineered BM capsules (eBMC) in these different environments did not change the structural and compositional features of the BM niches, the biophysical stimulation potentiated the cellular intercommunication and the biomolecules secretion, demonstrating an enhanced in vitro bio performance. Moreover, while the eBMC without HSPCs provided the secretion of hematopoietic supportive factors, the presence of these cells recapitulated more closely the biological complexity of the native BM niches. This functional eBMC approach is an innovative platform capable of investigating several components and interactions of BM niches and how they regulate BM homeostasis and hematopoiesis. STATEMENT OF SIGNIFICANCE: The recapitulation of the multifaceted bone marrow (BM) microenvironment under in vitro conditions has gained intensive recognition to understand the intrinsic complexity of the native BM. While conventional strategies do not recapitulate the BM osteovascular niches nor give the cellular components a free movement, we report for the first time the development of human bone marrow-in-a-liquefied-capsule to overcome such limitations. Our engineered BM capsules (eBMC) partially mimic the complex structure, composition, and spatial organization of the native osteovascular niches present in the BM. This strategy offers a platform with physiological relevance to exploit the niches' components/networks and how they regulate the hematopoiesis and the initiation/progression of various BM-related pathologies.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sara Nadine
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria C Gomes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
16
|
Combined Application of Patient-Derived Cells and Biomaterials as 3D In Vitro Tumor Models. Cancers (Basel) 2022; 14:cancers14102503. [PMID: 35626107 PMCID: PMC9139582 DOI: 10.3390/cancers14102503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary For years, cancer has remained the second leading cause of death in U.S. and Europe even though cancer mortality has decreased, as new advances in medical treatment have made this decrease possible. Chemotherapy has remained the gold standard and “one-size-fits-all” treatment for cancer, yet this approach has lacked precision and, at times, failed. Recent studies attempt to mimic the spatial microenvironment of cancer tissue to better study chemotherapy agents by combining patient-derived cells and three-dimensional (3D) scaffold, bioprinting, spheroid, and hydrogel culturing. This commentary aims to collect and discuss recent findings concerning the combined application of biomaterials with patient-derived cancer cells to better study and test therapies in vitro, that will further personalize and facilitate the treatment of various cancers, and also address the limitation and challenges in developing these 3D models. Abstract Although advances have been made in cancer therapy, cancer remains the second leading cause of death in the U.S. and Europe, and thus efforts to continue to study and discover better treatment methods are ongoing. Three-dimensional (3D) tumor models have shown advantages over bi-dimensional (2D) cultures in evaluating the efficacy of chemotherapy. This commentary aims to highlight the potential of combined application of biomaterials with patient-derived cancer cells as a 3D in vitro model for the study and treatment of cancer patients. Five studies were discussed which demonstrate and provided early evidence to create 3D models with accurate microenvironments that are comparable to in vivo tumors. To date, the use of patient-derived cells for a more personalized approach to healthcare in combination with biomaterials to create a 3D tumor is still relatively new and uncommon for application in clinics. Although highly promising, it is important to acknowledge the current limitations and challenges of developing these innovative in vitro models, including the need for biologists and laboratory technicians to become familiar with biomaterial scaffolds, and the effort for bioengineers to create easy-to-handle scaffolds for routine assessment.
Collapse
|
17
|
Granata V, Crisafulli L, Nastasi C, Ficara F, Sobacchi C. Bone Marrow Niches and Tumour Cells: Lights and Shadows of a Mutual Relationship. Front Immunol 2022; 13:884024. [PMID: 35603212 PMCID: PMC9121377 DOI: 10.3389/fimmu.2022.884024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
The bone marrow (BM) niche is the spatial structure within the intra-trabecular spaces of spongious bones and of the cavity of long bones where adult haematopoietic stem cells (HSCs) maintain their undifferentiated and cellular self-renewal state through the intervention of vascular and nervous networks, metabolic pathways, transcriptional and epigenetic regulators, and humoral signals. Within the niche, HSCs interact with various cell types such as osteoblasts, endothelial cells, macrophages, and mesenchymal stromal cells (MSCs), which maintain HSCs in a quiescent state or sustain their proliferation, differentiation, and trafficking, depending on body needs. In physiological conditions, the BM niche permits the daily production of all the blood and immune cells and their admittance/ingress/progression into the bloodstream. However, disruption of this delicate microenvironment promotes the initiation and progression of malignancies such as those included in the spectrum of myeloid neoplasms, also favouring resistance to pharmacological therapies. Alterations in the MSC population and in the crosstalk with HSCs owing to tumour-derived factors contribute to the formation of a malignant niche. On the other hand, cells of the BM microenvironment cooperate in creating a unique milieu favouring metastasization of distant tumours into the bone. In this framework, the pro-tumorigenic role of MSCs is well-documented, and few evidence suggest also an anti-tumorigenic effect. Here we will review recent advances regarding the BM niche composition and functionality in normal and in malignant conditions, as well as the therapeutic implications of the interplay between its diverse cellular components and malignant cells.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Laura Crisafulli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS Mario Negri Pharmacological Research Institute, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
- *Correspondence: Cristina Sobacchi,
| |
Collapse
|
18
|
Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022; 184:114181. [PMID: 35278521 PMCID: PMC9035134 DOI: 10.1016/j.addr.2022.114181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Major progress in the understanding and treatment of cancer have tremendously improved our knowledge of this complex disease and improved the length and quality of patients' lives. Still, major challenges remain, in particular with respect to cancer metastasis which still escapes effective treatment and remains responsible for 90% of cancer related deaths. In recent years, the advances in cancer cell biology, oncology and tissue engineering converged into the engineered human tissue models of cancer that are increasingly recapitulating many aspects of cancer progression and response to drugs, in a patient-specific context. The complexity and biological fidelity of these models, as well as the specific questions they aim to investigate, vary in a very broad range. When selecting and designing these experimental models, the fundamental question is "how simple is complex enough" to accomplish a specific goal of cancer research. Here we review the state of the art in developing and using the human tissue models in cancer research and developmental drug screening. We describe the main classes of models providing different levels of biological fidelity and complexity, discuss their advantages and limitations, and propose a framework for designing an appropriate model for a given study. We close by outlining some of the current needs, opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Maria Samaritano
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Elisa Cimetta
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; College of Dental Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| |
Collapse
|
19
|
Zippel S, Dilger N, Chatterjee C, Raic A, Brenner-Weiß G, Schadzek P, Rapp BE, Lee-Thedieck C. A parallelized, perfused 3D triculture model of leukemia for in vitro drug testing of chemotherapeutics. Biofabrication 2022; 14. [PMID: 35472717 DOI: 10.1088/1758-5090/ac6a7e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Leukemia patients undergo chemotherapy to combat the leukemic cells (LCs) in the bone marrow. During therapy not only the LCs, but also the blood-producing hematopoietic stem and progenitor cells (HSPCs) may be destroyed. Chemotherapeutics targeting only the LCs are urgently needed to overcome this problem and minimize life-threatening side-effects. Predictive in vitro drug testing systems allowing simultaneous comparison of various experimental settings would enhance the efficiency of drug development. Here, we present a 3D human leukemic bone marrow model perfused using a magnetic, parallelized culture system to ensure media exchange. Chemotherapeutic treatment of the acute myeloid leukemia cell line KG-1a in 3D magnetic hydrogels seeded with mesenchymal stem/stromal cells (MSCs) revealed a greater resistance of KG-1a compared to 2D culture. In 3D tricultures with HSPCs, MSCs and KG-1a, imitating leukemic bone marrow, HSPC proliferation decreased while KG-1a cells remained unaffected post treatment. Non-invasive metabolic profiling enabled continuous monitoring of the system. Our results highlight the importance of using biomimetic 3D platforms with proper media exchange and co-cultures for creating in vivo-like conditions to enable in vitro drug testing. This system is a step towards drug testing in biomimetic, parallelized in vitro approaches, facilitating the discovery of new anti-leukemic drugs.
Collapse
Affiliation(s)
- Sabrina Zippel
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Nadine Dilger
- Institute of Cell Biology and Biophysics, Leibniz University Hanover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Chandralekha Chatterjee
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Annamarija Raic
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| | - Gerald Brenner-Weiß
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Württemberg, 76344, GERMANY
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School, Stadtfelddamm 34, Hannover, Niedersachsen, 30625, GERMANY
| | - Bastian E Rapp
- Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universitat Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, Baden-Württemberg, 79110, GERMANY
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz Universitat Hannover, Herrenhäuser Str. 2, Hannover, 30419, GERMANY
| |
Collapse
|
20
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
21
|
García-García A, Martin I. Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing. Mol Cell Oncol 2021; 8:2007030. [PMID: 35419486 PMCID: PMC8997254 DOI: 10.1080/23723556.2021.2007030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We propose an in vitro 3D culture system combining perfusion bioreactors, scaffolds and human primary cells to engineer fully-humanized, biomimetic and customizable bone marrow tissues. This system could serve as a model to investigate human hematopoietic stem cell niches, but also as a drug testing platform for pharmaceutical research and patient-personalized medicine.
Collapse
Affiliation(s)
- Andrés García-García
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwill, Switzerland
| |
Collapse
|