1
|
Kim MS, Ma S, Chelariu-Raicu A, Leuschner C, Alila HW, Lee S, Coleman RL, Sood AK. Enhanced Immunotherapy with LHRH-R Targeted Lytic Peptide in Ovarian Cancer. Mol Cancer Ther 2020; 19:2396-2406. [PMID: 32943548 DOI: 10.1158/1535-7163.mct-20-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/08/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Here, we examined the role of EP-100 [luteinizing hormone-releasing hormone (LHRH) ligand joined to a lytic peptide], improving the efficacy of immune checkpoint blockade. LHRH-R-positive murine ovarian cancer cells (ID8, IG10, IF5, and 2C12) were sensitive to EP-100 and were specifically killed at low micromolar levels through LHRH-R. EP-100 increased PD-L1 levels on murine ovarian cancer cells. In vivo syngeneic mouse models (ID8 and IG10) demonstrated that single-agent EP-100 reduced tumor volume, tumor weight, and ascites volume. The greatest reductions in tumor and ascites volume were observed with the combination of EP-100 with an anti-PD-L1 antibody. Immune profiling analysis showed that the population of CD8+ T cells, natural killer cells, dendritic cells, and macrophages were significantly increased in tumor and ascitic fluid samples treated with anti-PD-L1, EP-100, and the combination. However, monocytic myeloid suppressor cells, B cells, and regulatory T cells were decreased in tumors treated with anti-PD-L1, EP-100, or the combination. In vitro cytokine arrays revealed that EP-100 induced IL1α, IL33, CCL20, VEGF, and Low-density lipoprotein receptor (LDLR) secretion. Of these, we validated increasing IL33 levels following EP-100 treatment in vitro and in vivo; we determined the specific biological role of CD8+ T-cell activation with IL33 gene silencing using siRNA and Cas9-CRISPR approaches. In addition, we found that CD8+ T cells expressed very low level of LHRH-R and were not affected by EP-100. Taken together, EP-100 treatment had a substantial antitumor efficacy, particularly in combination with an anti-PD-L1 antibody. These results warrant further clinical development of this combination.
Collapse
Affiliation(s)
- Mark Seungwook Kim
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Obstetrics and Gynecology, University of Hospital, LMU Munich, Germany
| | | | | | - Sanghoon Lee
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Stefaniak A, Domitrz J, Siewko K, Szelachowska M, Krętowski A, Stachura-Matyjewicz A. Pituitary adenoma and apoplexy during GnRH agonist treatment for IVF - case report. Gynecol Endocrinol 2020; 36:561-563. [PMID: 31868050 DOI: 10.1080/09513590.2019.1706086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In vitro fertilization is commonly used for treating infertility. One stage of this process is controlled hyperstimulation of the ovaries, achieved by administering gonadotropins. There are several stimulation protocols utilized that increase the number of ovarian follicles during IVF. The most common protocol employs desensitization - the inhibition of follicle-stimulating hormone and luteinizing hormone secretion by the pituitary gland. This is achieved by administering a gonadotropin-releasing hormone (GnRH) analog that is agonistic for the GnRH receptor. However the use of a this drug during therapy carries a risk of complications. This case report deals with a rare case of a woman who underwent pituitary tumor growth as a result of the treatment of GnRH analog.
Collapse
Affiliation(s)
- Aneta Stefaniak
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Jan Domitrz
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Szelachowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
3
|
Sipos E, Hegyi K, Treszl A, Steiber Z, Mehes G, Dobos N, Fodor K, Olah G, Szekvolgyi L, Schally AV, Halmos G. Concurrence of chromosome 3 and 4 aberrations in human uveal melanoma. Oncol Rep 2017; 37:1927-1934. [PMID: 28350068 PMCID: PMC5367339 DOI: 10.3892/or.2017.5496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy with a very poor prognosis. The most frequent chromosome aberration in UM is the monosomy of chromosome 3. Previously, we demonstrated that ~50% of UMs express type-I receptor for luteinizing hormone‑releasing hormone (LH-RH-R). The gene encoding LH-RH-R is located in chromosome 4 (location: 4q21.2); however, the occurrence of numerical aberrations of chromosome 4 have never been studied in UM. In the present study, we investigated the abnormalities of chromosome 3 and 4, and the possible correlation between them, as well as with LH-RH-R expression. Forty-six specimens of UM were obtained after enucleation. Numerical aberrations of chromosome 3 and 4 were studied by fluorescence in situ hybridization (FISH). Chromosome 4 was detected in normal biparental disomy only in 14 (30%) samples; however, 32 cases (70%) showed more than 2 signals/nucleus. Monosomy of chromosome 3 could be found in 16 (35%) samples. In 6 specimens (13%), more than 2 copies of chromosome 3 were found, while normal biparental disomy was detected in 24 (52%) samples. Statistical analysis indicated a statistically significant (p<0.05) correlation between the copy number of chromosome 3 and 4. Moreover, moderate difference was revealed in the survival rate of the UM patients with various pathological profiles. No correlation was found between chromosome aberrations and LH-RH-R expression. Our results clearly demonstrate abnormalities in chromosome 3 and 4 and the incidence of the monosomy of chromosome 3 in human UM. In summary, our results provide new incite concerning the genetic background of this tumor. Our findings could contribute to a more precise determination of the prognosis of human UM and to the development of new therapeutic approaches to this malignancy.
Collapse
Affiliation(s)
- Eva Sipos
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Kata Hegyi
- Department of Pathology, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Treszl
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Zita Steiber
- Department of Ophthalmology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabor Mehes
- Department of Pathology, University of Debrecen, 4032 Debrecen, Hungary
| | - Nikoletta Dobos
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Klara Fodor
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabor Olah
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Lorant Szekvolgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Research Centre for Molecular Medicine; Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrew V. Schally
- Endocrine, Polypeptide and Cancer Institute and South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL 33125, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Department of Medicine, Divisions of Hematology-Oncology and Endocrinology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Gabor Halmos
- Department of Biopharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Endocrine, Polypeptide and Cancer Institute and South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL 33125, USA
| |
Collapse
|
4
|
Wei S, Guo H, Gong Z, Zhang F, Ma Z. Triptorelin and cetrorelix induce immune responses and affect uterine development and expressions of genes and proteins of ESR1, LHR, and FSHR of mice. Immunopharmacol Immunotoxicol 2016; 38:197-204. [PMID: 27075695 DOI: 10.3109/08923973.2016.1168432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT GnRH immunity can reduce the expression of pituitary GnRH levels, and cause the changes in reproductive behaviors. It is unclear whether triptorelin (TRI) and cetrorelix (CET) immunity influences uterine development and expression of follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), and estradiol receptor 1 (ERS1) in the uterus. OBJECTIVE The study investigated the effects of active immunity of GnRH agonist and antagonist on uterine development, microstructures, expression of hormone receptors mRNAs, and proteins in uteri. MATERIALS AND METHODS One hundred and five mice were assigned into CET, TRI, and control groups (CG). Mice in CET-1, CET-2, and CET-3 (n = 15) were subcutaneously injected with 10, 20, and 40 μg CET antigens for seven days, respectively. Mice in TRI-1, TRI-2, and TRI-3 were injected with 10, 20, and 40 μg TRI antigens for seven days, respectively. The qPCR and Western blot were implemented to determine expressions of ESR1, LHR and FSHR mRNAs, and proteins. RESULTS Compared with CG, the uterine weights of CET-1, CET-2, and CET-3 increased by 42.86, 62.86, and 10.00% on day 35 (p < 0.05), respectively. Uterine weights of TRI-2, TRI-3 reduced by 28.57% and 11.43% (p < 0.05), respectively. The uterine cavity in CET-1, CET-2, and CET-3 increased; the uterine wall became thick. The cytoplasm of endometrial epithelial cells (EEC) increased slightly. In TRI group, the uterine wall thinned. Uterine cavity became narrow slightly in TRI-1. Numbers of uterine glands reduced. The endometrium epithelial thickness (EET) in CET-1 and CET-2 increased by 68.21% and 79.46% (p < 0.05), respectively. EET in TRI-1 was decreased by 13.69%. Uterine wall thicknesses (UWT) in CET-1 and CET-2 were higher than CG, with the increment of 28.59% and 30.72%. UWT of TRI-1, TRI-2, and TRI-3 reduced by 29.35, 15.36, and 14.41%, respectively. Expressions of ESR1, FSHR, and LHR mRNAs in CET and TRI mice increased. ESR1 and FSHR protein levels increased in all experimental mice (p < 0.05), with a maximum of TRI-3. LHR protein levels of the CET decreased. LHR protein levels of TRI group increased, with a maximum of TRI-3 (p < 0.05). ESR1 protein level had significant negative correlations to mRNA expressions of ESR1, LHR, and FSHR. CONCLUSIONS CET immunity promoted the uterine development, improved EET and UWT, and also promoted the expressions of ESR1 and FSHR protein levels. It lessened the LHR protein levels. TRI immunity blocked EET and UWT, inhibited uterine growth and development. The efficacy of CET immunity was more obvious than TRI.
Collapse
Affiliation(s)
- Suocheng Wei
- a Engineering & Technology Research Center of Animal Cells of Gansu Province, Northwest University for Nationalities , Lanzhou , China ;,b Life Science and Engineering College, Northwest University for Nationalities , Lanzhou , China
| | - Huiling Guo
- c Prevention and Control Center for Animal Diseases of Gansu Province , Lanzhou , China
| | - Zhuandi Gong
- d Medicine College, Northwest University for Nationalities , Lanzhou , China
| | - Fengwei Zhang
- b Life Science and Engineering College, Northwest University for Nationalities , Lanzhou , China
| | - Zhongren Ma
- a Engineering & Technology Research Center of Animal Cells of Gansu Province, Northwest University for Nationalities , Lanzhou , China
| |
Collapse
|
5
|
Cetrorelix and Triptorelin active immunization influences follicle development and receptor expressions of ovaries in mice. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Folliculogenesis Is Not Fully Inhibited during GnRH Analogues Treatment in Mice Challenging Their Efficiency to Preserve the Ovarian Reserve during Chemotherapy in This Model. PLoS One 2015; 10:e0137164. [PMID: 26325271 PMCID: PMC4556658 DOI: 10.1371/journal.pone.0137164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/13/2015] [Indexed: 11/27/2022] Open
Abstract
As many chemotherapy regimens induce follicular depletion, fertility preservation became a major concern in young cancer patients. By maintaining follicles at the resting stage, gonadotropin-releasing hormone analogues (GnRHa) were proposed as an ovarian-protective option during chemotherapy. However, their efficacy and mechanisms of action remain to be elucidated. Mice were dosed with cyclophosphamide (Cy, 100–500mg/kg i.p) to quantify follicular depletion and evaluate apoptosis at different times. We observed a dose-dependent depletion of the follicular reserve within 24 hours after Cy injection with a mean follicular loss of 45% at the dose of 200mg/kg. Apoptosis occurs in the granulosa cells of growing follicles within 12 hours after Cy treatment, while no apoptosis was detected in resting follicles suggesting that chemotherapy acutely affects both resting and growing follicles through different mechanisms. We further tested the ability of both GnRH agonist and antagonist to inhibit oestrus cycles, follicular growth and FSH secretion in mice and to protect ovarian reserve against chemotherapy. Although GnRHa were efficient to disrupt oestrus cycles, they failed to inhibit follicular development, irrespective of the doses and injection sites (sc or im). Around 20% of healthy growing follicles were still observed during GnRHa treatment and serum FSH levels were not reduced either by antagonist or agonist. GnRHa had no effect on Cy-induced follicular damages. Thus, we showed that GnRHa were not as efficient at inhibiting the pituitary-gonadal axis in mice as in human. Furthermore, the acute depletion of primordial follicles observed after chemotherapy does not support the hypothesis that the ovary may be protected by gonadotropin suppression.
Collapse
|
7
|
Ballantyne K, Anderson ST, Pyne M, Nicolson V, Mucci A, Lisle A, Johnston SD. Use of the gonadotrophin-releasing hormone antagonist azaline B to control the oestrous cycle in the koala (Phascolarctos cinereus). Reprod Fertil Dev 2015; 28:RD14349. [PMID: 25929179 DOI: 10.1071/rd14349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/25/2015] [Indexed: 02/28/2024] Open
Abstract
The present study examined the effectiveness of the gonadotrophin-releasing hormone (GnRH) antagonist azaline B to suppress plasma LH and 17β-oestradiol concentrations in koalas and its potential application for oestrous synchronisation. In Experiment 1, single subcutaneous injections of azaline B successfully blocked the LH response to exogenous mammalian (m) GnRH in a dose-dependent manner; specifically, 0 mg (n = 4) did not suppress the LH response, 1 mg azaline B (n = 6) suppressed the LH response for 24 h (P < 0.05), 3.3 mg azaline B (n = 8) suppressed the LH response significantly in all animals only for 3 h (P < 0.05), although in half the animals LH remained suppressed for up to 3 days, and 10 mg azaline B (n = 4) suppressed the LH response for 7 days (P < 0.05). In Experiment 2, daily 1 mg, s.c., injections of azaline B over a 10-day period during seasonal anoestrus (June-July; n = 6) suppressed (P < 0.01) the LH response to mGnRH consecutively over the 10-day treatment period and, 4 days after cessation of treatment, the LH response had not recovered. Experiment 3 was designed to test the efficacy of daily 1 mg, s.c., azaline B over 10 days to suppress plasma LH and 17β-oestradiol concentrations and ultimately synchronise timed return to oestrus during the breeding season. Although azaline B treatment did not suppress basal LH or 17β-oestradiol, oestrus was delayed in all treated females by 24.2 days, but with high variability (range 9-39 days). Overall, the present study demonstrates that the GnRH antagonist azaline B is able to inhibit the LH response in koalas to exogenous mGnRH and successfully delay the return to oestrus. However, although azaline B clearly disrupts folliculogenesis, it has not been able to effectively synchronise return to oestrus in the koala.
Collapse
|
8
|
Abstract
Current treatment options for adrenal insufficiency are limited to corticosteroid replacement therapies. However, hormone therapy does not replicate circadian rhythms and has unpleasant side effects especially due to the failure to restore normal function of the hypothalamic-pituitary-adrenal (HPA) axis. Adrenal cell transplantation and the restoration of HPA axis function would be a feasible and useful therapeutic strategy for patients with adrenal insufficiency. We created a bioartificial adrenal with 3D cell culture conditions by encapsulation of bovine adrenocortical cells (BACs) in alginate (enBACs). We found that, compared with BACs in monolayer culture, encapsulation in alginate significantly increased the life span of BACs. Encapsulation also improved significantly both the capacity of adrenal cells for stable, long-term basal hormone release as well as the response to pituitary adrenocorticotropic hormone (ACTH) and hypothalamic luteinizing hormone-releasing hormone (LHRH) agonist, [D-Trp6]LHRH. The enBACs were transplanted into adrenalectomized, immunodeficient, and immunocompetent rats. Animals received enBACs intraperitoneally, under the kidney capsule (free cells or cells encapsulated in alginate slabs) or s.c. enclosed in oxygenating and immunoisolating βAir devices. Graft function was confirmed by the presence of cortisol in the plasma of rats. Both types of grafted encapsulated cells, explanted after 21-25 d, preserved their morphology and functional response to ACTH stimulation. In conclusion, transplantation of a bioartificial adrenal with xenogeneic cells may be a treatment option for patients with adrenocortical insufficiency and other stress-related disorders. Furthermore, this model provides a microenvironment that ensures 3D cell-cell interactions as a unique tool to investigate new insights into cell biology, differentiation, tissue organization, and homeostasis.
Collapse
|
9
|
Yin HP, Xu JP, Zhou XQ, Wang Y. Effects of vitamin E on reproductive hormones and testis structure in chronic dioxin-treated mice. Toxicol Ind Health 2011; 28:152-61. [DOI: 10.1177/0748233711408381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to investigate the effects of vitamin E on reproductive hormones and testis structure in mice treated with 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD). Five experimental groups of a combination of TCDD and vitamin E were designed as follows: 0 ng/kg/d and 0 mg/kg/d (control group), 100 ng/kg/d and 0 mg/kg/d (Group I), 100 ng/kg/d and 20 mg/kg/d (Group II), 100 ng/kg/d and 100 mg/kg/d (Group III), and 100 ng/kg/d and 500 mg/kg/d (Group IV) respectively. Vitamin E and TCDD were given by oral gavage for 7 weeks. The results demonstrated that TCDD decreased the levels of brain gonadotropin releasing hormone (GnRH), testis luteinizing hormone (LH) and follicle stimulating hormone (FSH), serum testosterone and testis spermatozoa number, and damaged testis structure. Vitamin E at 20 mg/kg alleviated the decrease of GnRH; vitamin E at 20, 100, and 500 mg/kg antagonized the decline of LH and FSH; vitamin E at 20 and 100 mg/kg reversed the decrease of testosterone and spermatozoa number; and vitamin E at 100 mg/kg decreased the damage of the testis structure caused by TCDD. The results indicate that vitamin E antagonizes the reproductive endocrine toxicity and alleviates the changes in testicular structure caused by TCDD.
Collapse
Affiliation(s)
- Hai-Ping Yin
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Gansu International Traval Healthcare Centre, Entry-Exit Inspection and Quarantine Bureau, Gansu, People’s Republic of China
| | - Jian-Ping Xu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Yanjing Medical College, Capital Medical University, Beijing, People’s Republic of China
| | - Xian-Qing Zhou
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Health Toxicology and Health Chemistry, School of Public Health and Family Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Ying Wang
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liu SV, Liu S, Pinski J. Luteinizing hormone-releasing hormone receptor targeted agents for prostate cancer. Expert Opin Investig Drugs 2011; 20:769-78. [DOI: 10.1517/13543784.2011.574611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
YaQin Mo, Ping Peng, Ran Zhou, ZuanYu He, LiLi Huang, DongZi Yang. Regulation of Gonadotropin-Releasing Hormone (GnRH) Receptor-I Expression in the Pituitary and Ovary by a GnRH Agonist and Antagonist. Reprod Sci 2009; 17:68-77. [DOI: 10.1177/1933719109348026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- YaQin Mo
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ping Peng
- Department of Obstetrics & Gynecology, General hospital of Guangzhou Military Area, Guangzhou, Guangdong, China
| | - Ran Zhou
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - ZuanYu He
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - LiLi Huang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - DongZi Yang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China,
| |
Collapse
|
12
|
Camats N, García F, Parrilla JJ, Calaf J, Martín-Mateo M, Caldés MG. The GnRH analogue triptorelin confers ovarian radio-protection to adult female rats. Mutat Res 2009; 669:67-79. [PMID: 19442673 DOI: 10.1016/j.mrfmmm.2009.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 04/22/2009] [Accepted: 05/05/2009] [Indexed: 05/27/2023]
Abstract
There is a controversy regarding the effects of the analogues of the gonadotrophin-releasing hormone (GnRH) in radiotherapy. This has led us to study the possible radio-protection of the ovarian function of a GnRH agonist analogue (GnRHa), triptorelin, in adult, female rats (Rattus norvegicus sp.). The effects of the X-irradiation on the oocytes of ovarian primordial follicles, with and without GnRHa treatment, were compared, directly in the female rats (F(0)) with reproductive parameters, and in the somatic cells of the resulting foetuses (F(1)) with cytogenetical parameters. In order to do this, the ovaries and uteri from 82 females were extracted for the reproductive analysis and 236 foetuses were obtained for cytogenetical analysis. The cytogenetical study was based on the data from 22,151 metaphases analysed. The cytogenetical parameters analysed to assess the existence of chromosomal instability were the number of aberrant metaphases (2234) and the number (2854) and type of structural chromosomal aberrations, including gaps and breaks. Concerning the reproductive analysis of the ovaries and the uteri, the parameters analysed were the number of corpora lutea, implantations, implantation losses and foetuses. Triptorelin confers radio-protection of the ovaries in front of chromosomal instability, which is different, with respect to the single and fractioned dose. The cytogenetical analysis shows a general decrease in most of the parameters of the triptorelin-treated groups, with respect to their controls, and some of these differences were considered to be statistically significant. The reproductive analysis indicates that there is also radio-protection by the agonist, although minor to the cytogenetical one. Only some of the analysed parameters show a statistically significant decrease in the triptorelin-treated groups.
Collapse
Affiliation(s)
- N Camats
- Institut de Biotecnologia i de Biomedicina (I.B.B.), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Neal-Perry G, Lebesgue D, Lederman M, Shu J, Zeevalk GD, Etgen AM. The excitatory peptide kisspeptin restores the luteinizing hormone surge and modulates amino acid neurotransmission in the medial preoptic area of middle-aged rats. Endocrinology 2009; 150:3699-708. [PMID: 19423763 PMCID: PMC2717872 DOI: 10.1210/en.2008-1667] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproductive success depends on a robust and appropriately timed preovulatory LH surge. The LH surge, in turn, requires ovarian steroid modulation of GnRH neuron activation by the neuropeptide kisspeptin and glutamate and gamma-aminobutyric acid (GABA) neurotransmission in the medial preoptic area (mPOA). Middle-aged females exhibit reduced excitation of GnRH neurons and attenuated LH surges under estrogen-positive feedback conditions, in part, due to increased GABA and decreased glutamate neurotransmission in the mPOA. This study tested the hypothesis that altered kisspeptin regulation by ovarian steroids plays a role in age-related LH surge dysfunction. We demonstrate that middle-aged rats exhibiting delayed and attenuated LH surges have reduced levels of Kiss1 mRNA in the anterior hypothalamus under estrogen-positive feedback conditions. Kisspeptin application directly into the mPOA rescues total LH release and the LH surge amplitude in middle-aged rats and increases glutamate and decreases GABA release to levels seen in the mPOA of young females. Moreover, the N-methyl-D-aspartate receptor antagonist MK801 blocks kisspeptin reinstatement of the LH surge. These observations suggest that age-related LH surge dysfunction results, in part, from reduced kisspeptin drive under estrogen-positive feedback conditions and that kisspeptin regulates GnRH/LH release, in part, through modulation of mPOA glutamate and GABA release.
Collapse
Affiliation(s)
- Genevieve Neal-Perry
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
14
|
Taylor JE, Miller BT, Gray KD, Scott RT, Catherino WH, Segars JH. The mechanism responsible for the supraphysiologic gonadotropin surge in females treated with gonadotropin-releasing hormone (GnRH) agonist and primed with GnRH antagonist. Fertil Steril 2009; 93:1668-75. [PMID: 19200975 DOI: 10.1016/j.fertnstert.2008.12.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/20/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To elucidate the physiologic mechanism responsible for the supraphysiologic gonadotropin release from the pituitary induced by gonadotropin-releasing hormone (GnRH) agonist in female rats primed with GnRH antagonist. DESIGN Controlled experimental intervention. SETTING Government research facility. ANIMAL(S) Forty 8-week-old Sprague-Dawley rats. INTERVENTION(S) Forty oophorectomized rats were randomized into four treatment groups of 10: group A, control vehicles; group B, GnRH agonist (leuprolide acetate; 1.7 microg/kg twice a day) on day 4; group C, GnRH antagonist (Nal-Lys; 3 mg/kg each day) days 1 to 4; or group D, GnRH antagonist (Nal-Lys; 3 mg/kg each day) days 1 to 4 plus GnRH agonist (1.7 microg/kg twice a day) on day 4. MAIN OUTCOME MEASURE(S) Immunohistochemical methods, Northern and in situ hybridization to quantitate pituitary follicle-stimulating hormone beta (FSH-beta), luteinizing hormone beta (LH-beta), and GnRH receptor (GnRH-R) messenger RNA (mRNA), and receptor protein levels in all treatment groups. RESULT(S) Treatment with GnRH antagonist was associated with increased storage of gonadotropin in the pituitary for FSH-beta and LH-beta, but mRNA levels were unchanged. The GnRH-R mRNA decreased after GnRH-agonist treatment but remained stable in the GnRH-antagonist treatment groups. Levels of GnRH-R were decreased after GnRH-antagonist treatment. CONCLUSION(S) These data indicate that the in vivo mechanism responsible for the exaggerated release of gonadotropins in rats primed with GnRH antagonist and treated with GnRH agonist was an increase in releasable gonadotropin pools coupled with a reduction in GnRH-R, but receptor function was preserved.
Collapse
Affiliation(s)
- Joelle E Taylor
- Reproductive Biology and Medicine Branch, National Institutes of Health, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|
15
|
Richard N, Galmiche G, Corvaisier S, Caraty A, Kottler ML. KiSS-1 and GPR54 genes are co-expressed in rat gonadotrophs and differentially regulated in vivo by oestradiol and gonadotrophin-releasing hormone. J Neuroendocrinol 2008; 20:381-93. [PMID: 18208554 DOI: 10.1111/j.1365-2826.2008.01653.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kisspeptin, the product derived from KiSS-1, and its cognate receptor, GPR54, both exert a role in the neuroendocrine control of reproduction by regulating gonadotrophin-releasing hormone (GnRH) secretion. In the present study, we demonstrate, using dual immunofluorescence with specific antibodies, that the KiSS-1 and GPR54 genes are both expressed in rat gonadotrophs. All luteinising hormone beta-immunoreactive (LH beta-ir) cells were stained by the KiSS-1 antibody but some kisspeptin-ir cells were not LH beta positive; thus, we cannot exclude the possibility that kisspeptins are expressed in other pituitary cells. All GPR54-ir are co-localised with LH beta cells, but only a subset of LH beta cells are stained with the GPR54 antibody. Using the real-time reverse transcription-polymerase chain reaction (RT-PCR), we found that the expression of KiSS-1 and GPR54 is differentially regulated by steroids. In the female, KiSS-1 mRNA levels dramatically decreased following ovariectomy (OVX), and this decrease was prevented by administration of 17beta-oestradiol (E(2)), but not by administration of GnRH antagonist or agonist. Administration of E(2) in OVX rats receiving either GnRH antagonist or agonist clearly shows that E(2) acts directly on the pituitary to positively control KiSS-1 expression. In OVX rats, administration of the selective oestrogen receptor (ER)alpha ligand propylpyrazoletriol, but not the selective ER beta ligand diarylpropionitrile, mimics this effect. By contrast, our study shows that GPR54 expression is positively regulated by GnRH and negatively controlled by chronic exposure to E(2). In summary, our data document for the first time that, in the female rat pituitary, KiSS-1 expression is up-regulated by oestradiol, similarly to that seen in the anteroventral periventricular nucleus of the hypothalamus. Conversely, GPR54 is up-regulated by GnRH, which exclusively targets gonadotrophs.
Collapse
Affiliation(s)
- N Richard
- Département Génétique et Reproduction, Unité de Formation et de Recherche de médecine, Centre Hospitalier Universitaire, Caen, France
| | | | | | | | | |
Collapse
|
16
|
Stangelberger A, Schally AV, Zarandi M, Heinrich E, Groot K, Havt A, Kanashiro CA, Varga JL, Halmos G. The combination of antagonists of LHRH with antagonists of GHRH improves inhibition of androgen sensitive MDA-PCa-2b and LuCaP-35 prostate cancers. Prostate 2007; 67:1339-53. [PMID: 17624923 DOI: 10.1002/pros.20605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Antagonists of growth hormone-releasing hormone (GHRH) could extend the duration of response of androgen sensitive prostate cancers to androgen deprivation. METHODS We investigated the effect of new GHRH antagonists MZ-J-7-118 and MZ-J-7-138 and luteinizing hormone-releasing hormone (LHRH) antagonist Cetrorelix or castration on androgen sensitive MDA-PCa-2b and LuCaP-35 prostate cancer models xenografted into nude mice. Animals bearing androgen-independent LuCaP-35V prostatic cancer model were also treated with MZ-J-7-118. RESULTS Receptors for LHRH and GHRH were present in MDA-PCA-2b, LuCaP-35, and LuCaP-35V tumors. GHRH antagonists increased the inhibitory effect of surgical castration and LHRH antagonists on androgen sensitive MDA-PCa-2b and LuCaP-35 tumors. The time to relapse of androgen-dependent LuCaP-35 tumors was extended by GHRH antagonists. Growth of androgen-independent LuCaP-35V xenografts was also significantly inhibited by MZ-J-7-118. In MDA-PCa-2b tumors treatment with MZ-J-7-118 caused a significant decrease of VEGF and Cetrorelix or its combination with MZ-J-7-118 reduced EGF. The B(max) of EGF receptors was significantly reduced by Cetrorelix, MZ-J-7-118 and their combination. CONCLUSIONS Our findings suggest that the use of a combination of antagonists of GHRH and LHRH could improve the therapy for androgen sensitive prostate cancer. Antagonists of GHRH could be also considered for treatment of androgen-independent prostate cancers.
Collapse
Affiliation(s)
- Anton Stangelberger
- Veterans Affairs Medical Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Weiss JM, König SJ, Polack S, Emons G, Schulz KD, Diedrich K, Ortmann O. Actions of gonadotropin-releasing hormone analogues in pituitary gonadotrophs and their modulation by ovarian steroids. J Steroid Biochem Mol Biol 2006; 101:118-26. [PMID: 16891115 DOI: 10.1016/j.jsbmb.2006.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, GnRH antagonists (GnRHant) like cetrorelix and ganirelix have been introduced in protocols of controlled ovarian hyperstimulation for assisted reproductive techniques to prevent premature luteinizing hormone (LH) surges. Here we tested, whether the actions of cetrorelix and the GnRH agonist (GnRHag) triptorelin in gonadotrophs are dependent on the steroid milieu. Furthermore, we characterized the actions of cetrorelix and triptorelin on LH secretion and the total LH pool. Female rat pituitary cells were treated either with 0.1 nM triptorelin for 1, 2, 4 and 6 days or for 1, 3, 5 and 6 h or with 1, 10 or 100 nM cetrorelix for 1, 2, 3 and 5 h or for 10 min. Cells were stimulated for 3h with different concentrations of GnRH (10 pM-1 microM). For analysis of the total LH pool, which is composed of stored and released LH, cells were lysed with 0.1% Triton X-100 at -80 degrees C overnight. To test, whether the steroid milieu affects the actions of cetrorelix and triptorelin, cells were incubated for 52 h with 1 nM estradiol (E) alone or with combinations of 100 nM progesterone (P) for 4 or 52 h, respectively. Cells were then treated with 0.1 nM triptorelin for 9 h or 1 nM cetrorelix for 3 h and stimulated for 3 h with different concentrations of GnRH (10 pM-1 microM). The suppressive effect of triptorelin on LH secretion was fully accomplished after 3 h of treatment, for cetrorelix only 10 min were sufficient. The concentration of cetrorelix must be at least equimolar to GnRH to block LH secretion. Cetrorelix shifted the EC50s of the GnRH dose-response curve to the right. Triptorelin suppressed total LH significantly (from 137 to 36 ng/ml) after 1 h in a time-dependent manner. In contrast, only high concentrations of cetrorelix increased total LH. In steroid treated cells the suppressive effects of triptorelin were more distinct. One nanomolar cetrorelix suppressed GnRH-stimulated LH secretion of cells not treated with steroids from 10.1 to 3.5 ng/ml. In cells, additionally treated with estradiol alone or estradiol and short-term progesterone, LH levels were higher (from 3.5 to 5.4 or 4.5 ng/ml, respectively). In cells co-treated with estradiol and progesterone for 52 h LH secretion was only suppressed from 10.1 to 9.5 ng/ml. Steroid treatments diminished the suppressive effect of cetrorelix on LH secretion. In conclusion, the depletion of the total LH pool contributes to the desensitizing effect of triptorelin. The actions of cetrorelix and triptorelin are dependent on the steroid milieu.
Collapse
Affiliation(s)
- Juergen M Weiss
- Department of Obstetrics and Gynecology, Medical University Luebeck, Ratzeburger Allee 160, 23538 Luebeck, and Department of Obstetrics and Gynecology, Caritas St. Josef Hospital, Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Galmiche G, Richard N, Corvaisier S, Kottler ML. The expression of aromatase in gonadotropes is regulated by estradiol and gonadotropin-releasing hormone in a manner that differs from the regulation of luteinizing hormone. Endocrinology 2006; 147:4234-44. [PMID: 16763067 DOI: 10.1210/en.2005-1650] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of estrogens is dual: they suppress basal expression of gonadotropins and enhance GnRH responsiveness at the time of the LH surge. Estrogens are synthesized by cytochrome P450 aromatase (P450arom), encoded by the cyp19 gene. We focused on the cyp19 gene in rat and showed that it is expressed in gonadotropes through promoters PII and PI.f, using RT-PCR and dual fluorescence labeling with anti-P450arom and -LH antibodies. Real-time PCR quantification revealed that aromatase mRNA levels varied during the estrous cycle and were significantly increased after ovariectomy. This effect is prevented by estradiol (E2) as well as GnRH antagonist administration, suggesting that GnRH may mediate the steroid effect. Interestingly, the long-acting GnRH agonist that induces LH desensitization does not modify aromatase expression in ovariectomized rats. Administration of E2 in ovariectomized rats receiving either GnRH agonist or GnRH antagonist clearly demonstrated that E2 also reduces cyp19 expression at the pituitary level. The selective estrogen receptor-alpha ligand propyl pyrazole triol and the selective estrogen receptor-beta ligand diarylpropionitrile both mimic the E2 effects. By contrast, propyl pyrazole triol reduces LH beta expression whereas diarylpropionitrile does not. In addition, using transient transfection assays in an L beta T2 gonadotrope cell line, we provided evidence that GnRH agonist stimulated, in a dose-dependant manner, cyp19 promoters PII and PI.f and that E2 decreased the GnRH stimulation. In conclusion, our data demonstrate that GnRH is an important signal in the regulation of cyp19 in gonadotrope cells. Both common and specific intracellular factors were responsible for dissociated variations of LH beta and cyp19 expression.
Collapse
Affiliation(s)
- Guillaume Galmiche
- Département Génétique et Reproduction, UFR de médecine, F-14033 Caen, France.
| | | | | | | |
Collapse
|
19
|
Castellón E, Clementi M, Hitschfeld C, Sánchez C, Benítez D, Sáenz L, Contreras H, Huidobro C. Effect of leuprolide and cetrorelix on cell growth, apoptosis, and GnRH receptor expression in primary cell cultures from human prostate carcinoma. Cancer Invest 2006; 24:261-8. [PMID: 16809153 DOI: 10.1080/07357900600629591] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Contradictory data have been reported regarding the effect of GnRH agonists and antagonists on cell growth and survival, using prostate cancer-derived cell lines expressing either endogenous or exogenous GnRH receptors. We addressed the issue studying the effect of leuprolide (agonist) and cetrorelix (antagonist) on cell growth, apoptosis and GnRH receptor expression using a primary cell coculture system. Also, binding characteristics of prostate GnRH receptor in this culture system are described. Epithelial and stromal cells were obtained from prostate adenocarcinoma samples and cocultured in a bicameral system. Expression of GnRH receptors was evaluated by semiquantitative RT-PCR (transcript level) and Western blot (protein level). Cell growth was estimated by MTT method and apoptosis by DNA fragmentation using COMET assay. Saturation and competition binding studies were carried out using 125I-GnRH as radioligand. GnRH receptors from cell cultures of prostate cancer exhibited a single class of binding sites with a Kd of 1.11 +/- 0.28 nM and a Bmax of 2.81 +/- 0.37 pmol/mg of membrane protein for GnRH. Leuprolide and cetrorelix showed no effect on GnRH receptor expression. Both analogues showed a significant reduction in cell growth rate and an increase in DNA-fragmented cell number. These effects were dependent on the analogue concentrations (from 5-20 ng/mL). Considering that the culture system used in this work represents more closely the in vivo conditions of tumor cells than metastatic derived cell lines, we conclude that GnRH analogues have a significant inhibitory effect on cell viability of cells expressing GnRH receptors. In addition, GnRH receptors expressed in tumor prostatic cells seem not discriminate between agonist and antagonist, both analogues activating these receptors. Also, leuprolide and cetrorelix treatments did not influence GnRH receptor expression in our culture system. These differences with pituitary receptors may be explained by differences in affinity, transduction mechanism and molecular context in prostatic tissue.
Collapse
Affiliation(s)
- Enrique Castellón
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Weiss JM, Polack S, Treeck O, Diedrich K, Ortmann O. Regulation of GnRH I receptor gene expression by the GnRH agonist triptorelin, estradiol, and progesterone in the gonadotroph-derived cell line alphaT3-1. Endocrine 2006; 30:139-44. [PMID: 17185802 DOI: 10.1385/endo:30:1:139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 06/28/2006] [Accepted: 07/06/2006] [Indexed: 11/11/2022]
Abstract
The secretion of luteinizing hormone (LH) and the GnRH receptor (GnRH-R) concentration are modulated by ovarian steroids and GnRH. To elucidate whether this regulation is due to alterations at the transcriptional level, we examined the GnRH I-R mRNA expression in the gonadotroph-derived cell line alphaT3-1 treated with different estradiol and progesterone paradigms and the GnRH I agonist triptorelin. alphaT3-1 cells were treated with different steroid paradigms: 1 nM estradiol or 100 nM progesterone for 48 h alone or in combination. Cells were exposed to 10 nM or 100 pM triptorelin for 30 min, 3 h, 9 h, or, in pulsatile way, with a 5-min pulse per hour. The GnRH I-R mRNA was determined by Northern blot analysis. GnRH I-R mRNA from cells treated with continuous triptorelin decreased in a time- and concentration-dependent manner. Pulsatile triptorelin increased GnRH I-R gene expression. Progesterone alone further enhanced this effect, whereas estradiol and its combination with progesterone diminished it. Continuous combined treatment with estradiol and progesterone lead to a significant decrease of GnRH I-R mRNA by 30% and by 35% for estradiol alone. The addition of 10 nM triptorelin for 30 min or 3 h could not influence that steroid effect. In conclusion, estradiol and progesterone exclusively decreased GnRH I-R mRNA in alphaT3-1 cells no matter whether they are treated additionally with the GnRH I agonist triptorelin. The enhanced sensitivity of gonadotrophs and GnRH I-R upregulation by estradiol is not due to increased GnRH I gene expression because GnRH I-R mRNA is downregulated by estradiol and progesterone. Other pathways of the GnRH I-R signal transduction might be involved.
Collapse
Affiliation(s)
- J M Weiss
- Department of Obstetrics and Gynaecology, Medical University Luebeck, 23538 Luebeck, Germany.
| | | | | | | | | |
Collapse
|
21
|
Horvath JE, Toller GL, Schally AV, Bajo AM, Groot K. Effect of long-term treatment with low doses of the LHRH antagonist Cetrorelix on pituitary receptors for LHRH and gonadal axis in male and female rats. Proc Natl Acad Sci U S A 2004; 101:4996-5001. [PMID: 15044692 PMCID: PMC387362 DOI: 10.1073/pnas.0400605101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our previous studies showed that treatment of female rats with large doses of Cetrorelix, an antagonist of luteinizing hormone-releasing hormone (LHRH), reduces levels of serum LH, estradiol, progesterone, and the concentration of pituitary LHRH receptors (LHRH-Rs) and their mRNA expression. Serum LH and testosterone levels and pituitary LHRH-R in male rats are also decreased by high doses of Cetrorelix. This approach can be used for therapy of sex hormone-dependent cancers. However, in conditions where an incomplete hormone deprivation is indicated, lower doses of Cetrorelix may suffice. Thus, we investigated the effect of a 30-day treatment with a low-dose depot formulation of Cetrorelix (20-24 microg per kg per day) on the pituitary-gonadal axis of male and female rats. In both sexes, lower serum LH levels were observed on day 4 after administration. In males, LH returned to control levels by day 10, whereas in females, a rebound LH elevation occurred. Testosterone levels in male rats were decreased up to day 20, but on day 30, the values were similar to controls. In females, serum estradiol was reduced on day 4; however, by day 10 it returned to normal. Progesterone levels were diminished through the entire period. Female rats showed diestrous smears during the first week of treatment and prolonged estrous periods thereafter. The weights of testes and ovaries were significantly lower, but not the weights of prostate, seminal vesicles, and uterus. Pituitary LHRH-R mRNA and LHRH-R protein levels were not significantly different from the controls. Thus, the treatment with low doses of Cetrorelix did not seriously impair gonadal functions. The results suggest that Cetrorelix in low doses induces only a partial pituitary-gonadal inhibition and might be indicated for treatment of endometriosis, leiomyomas, and benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Judit E Horvath
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
22
|
Zapatero-Caballero H, Sanchez-Franco F, Fernandez-Mendez C, García-San Frutos M, Botella-Cubells LM, Fernandez-Vazquez G. Gonadotropin-Releasing Hormone Receptor Gene Expression During Pubertal Development of Female Rats1. Biol Reprod 2004; 70:348-55. [PMID: 14561652 DOI: 10.1095/biolreprod.103.020818] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Appropriate expression of the GnRH receptor (GnRH-R) in gonadotrophs is critical for GnRH signaling and hence for gonadotropin secretion and sexual development. In the present work, we have studied the ontogeny of the steady-state GnRH-R mRNA levels in pituitaries of female rats from Day 5 to Day 55, when sexual maturity is attained. Developmental changes of gonadotropin subunit (alpha, FSHbeta, and LHbeta) mRNA levels were also assessed. In addition, the role of the endogenous GnRH on the maturational changes of GnRH-R and gonadotropin subunit gene expression was investigated. Messenger RNA levels were determined by Northern blot analysis of total RNA from anterior pituitaries. Amounts of the most abundant (5.0 kilobase [kb]) GnRH-R mRNA increased slowly from Day 5 through the infantile period, to peak at Day 20 ( approximately 4-fold increase vs. Day 5). Thereafter the levels of the GnRH-R mRNA decline abruptly by Day 25 (75% decrease vs. Day 20) and then fell slightly until Day 35. Parallel changes were observed on the 4.5-kb transcript of the GnRH-R gene. Alpha subunit mRNA was easily detected at Day 5 and its levels increased quickly through the beginning of the infantile period to peak at Day 10 (3.2-fold increase vs. Day 5); then it decreased by 85% at Day 35. FSHbeta and LHbeta mRNA levels rose slowly until Days 15-20, a short time before GnRH-R. Thereafter, the levels of both mRNAs fell until Day 35 (90% decrease vs. Day 15 for FSHbeta and 50% decrease vs. Day 20 for LHbeta). To ascertain whether developmental activation of the GnRH-R and gonadotropin subunit gene expression is GnRH dependent, we have studied the effect of blocking the endogenous GnRH action by treating developing female rats with the specific GnRH antagonist cetrorelix (1.5 mg/kg body weight/wk, s.c.) through the infantile (Days 5-20) and the juvenile period (Days 20-35). Cetrorelix completely blocked the rise of levels of the two most abundant species, 5.0 kb and 4.5 kb, of GnRH-R mRNA during the infantile phase and dropped them to almost undetectable levels during the juvenile prepubertal period. Cetrorelix also abolished the developmental rise of gonadotropin beta subunit mRNAs during the two periods of the study. In contrast, alpha subunit gene expression tended to decrease, but not significantly, with cetrorelix treatment during the two periods. These data demonstrate that sexual maturation of female rats is advanced by an early and strong induction of GnRH-R and gonadotropin subunit gene expression during the infantile period, followed by weaker persistent activation during puberty. Developmental GnRH-R and gonadotropin beta subunit gene expression is almost entirely GnRH dependent, not only in the juvenile prepubertal stage but also during the infantile period.
Collapse
|
23
|
Zapatero-Caballero H, Sanchez-Franco F, Guerra-Perez N, Fernandez-Mendez C, Fernandez-Vazquez G. Gonadotropin-releasing hormone receptor gene expression during pubertal development of male rats. Biol Reprod 2003; 68:1764-70. [PMID: 12606421 DOI: 10.1095/biolreprod.102.008821] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Appropriate expression of the GnRH receptor (GnRH-R) in gonadotropes is critical for GnRH signaling and hence for gonadotropin secretion and sexual development. In the present work, we have studied the ontogeny of the steady-state GnRH-R mRNA levels in pituitaries of male rats from Day 5 to Day 55, when sexual maturity is attained. Developmental changes of gonadotropin subunit (alpha, FSHbeta, and LHbeta) mRNA levels were also assessed. In addition, the role of the endogenous GnRH on the maturational changes of GnRH-R and gonadotropin subunit gene expression was investigated. Messenger RNA levels were determined by Northern blot analysis of total RNA from anterior pituitaries. Amounts of the most abundant (5.0 kb) GnRH-R mRNA increased slowly from Day 5 through the infantile and the juvenile periods, to peak at Day 35 (12-fold increase vs. Day 5). Thereafter, the levels of the GnRH-R mRNA decline slightly until Day 55 (33% decrease vs. Day 35). Parallel changes were observed on the 4.5-kb transcript of the GnRH-R gene. Alpha subunit mRNA was easily detected at Day 5, and its levels increased progressively through the infantile period (2.5-fold increase) and peaked at Day 25 (3.3-fold increase vs. Day 5) with a smooth nonstatistically significant increment until Day 35; then it decreased by 41.5% at Day 55. FSHbeta and LHbeta mRNA levels rose slowly until Day 25. A sharp rise occurred thereafter to reach maximum levels at Day 35 (5.8-fold for FSHbeta and 3.8-fold for LHbeta vs. Day 25). Thereafter, the levels of both mRNAs fell until Day 55 (44.1% decrease for FSHbeta and 37.1% decrease for LHbeta vs. Day 35). To ascertain whether developmental activation of the GnRH-R and gonadotropin subunit gene expression is GnRH dependent, we have studied the effect of blocking the endogenous GnRH action by treating developing male rats with the specific GnRH antagonist cetrorelix (1.5 mg/kg body weight/week, s.c.) through the infantile (Days 5-20) and the juvenile periods (Days 20-35). Cetrorelix completely blocked the rise of levels of the two most abundant species, 5.0 kb and 4.5 kb, of the GnRH-R mRNA, during both the infantile and the juvenile periods. Cetrorelix also abolished the developmental rise of the gonadotropin beta subunit mRNAs during the two periods of the study. In contrast, the alpha subunit gene expression was not altered by cetrorelix treatment during any of the two periods. These data demonstrate that sexual maturation of male rats is accompanied by a progressive and concerted induction of GnRH-R and gonadotropin subunit gene expression. Developmental activation of GnRH-R and gonadotropin beta subunit genes is GnRH dependent. The apparent GnRH-independent regulation of the alpha-glycoprotein subunit mRNA levels may be due to the contribution of thyrotropes and perhaps to the presence of exclusive regulatory signals for this gene.
Collapse
|
24
|
Abstract
GnRH analogues were introduced into clinical practice more than 20 years ago. The recent development of new GnRH antagonists (GnRHant) has revolutionized the treatment protocols of infertility. Ovarian stimulation has become easier, safer and more convenient for patients. This review presents data on the physiological background of GnRH and its analogues--agonists as well as antagonists--and highlights the different aspects of the clinical use of these substances. Two protocols, the single dose and multiple dose protocol are available and lead to comparable results. Data from prospective, randomized trials as well as meta-analyses suggest, that a more tailored, individualized approach concerning the day of administration of GnRHant may lead to more favorable results with regard to ovarian response, implantation and pregnancy rates. Possible negative effects of GnRHant, mainly based on in vitro models are discussed. The outcome of children born after GnRHant use has shown, that this medication is safe. On the whole, the use of GnRHant is advantageous as compared to the traditional way of ovarian stimulation, i.e., the GnRH agonist long protocol. However, especially the effectiveness of these compounds will have to be clarified in the near future by carefully designed prospective, randomized studies.
Collapse
Affiliation(s)
- Jürgen M Weiss
- Department of Gynecology and Obstetrics, Medical University Luebeck, Luebeck, Germany.
| | | | | | | |
Collapse
|
25
|
Horvath JE, Bajo AM, Schally AV, Kovacs M, Herbert F, Groot K. Effects of long-term treatment with the luteinizing hormone-releasing hormone (LHRH) agonist Decapeptyl and the LHRH antagonist Cetrorelix on the levels of pituitary LHRH receptors and their mRNA expression in rats. Proc Natl Acad Sci U S A 2002; 99:15048-53. [PMID: 12409615 PMCID: PMC137542 DOI: 10.1073/pnas.232579499] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The effects of depot formulations of the luteinizing hormone-releasing hormone (LHRH) agonist Decapeptyl (25 microg/day) for 30 days or LHRH antagonist Cetrorelix pamoate (100 microg/day) for 30 days and daily injections of 100 microg of Decapeptyl for 10 days on the expression of mRNA for pituitary LHRH receptor (LHRH-R) and the levels of LHRH-R protein were evaluated in rats. Serum sex steroid concentrations and the weights of the reproductive organs were greatly reduced in all groups treated with analogs, demonstrating an efficient blockade of the pituitary-gonadal axis. Decapeptyl microcapsules elevated serum LH in female rats, but decreased it in male rats. LHRH-R mRNA expression in female pituitaries was reduced to 41% and 56-65% on days 10 and 30, respectively, whereas LHRH-R protein was 64% of control on day 10 and returned to pretreatment levels on day 30. Decapeptyl microcapsules reduced LHRH-R mRNA expression in male pituitaries to 58% on day 30 but not LHRH-R protein. Daily injections of Decapeptyl caused a desensitization of LH responses in female rats, while raising LHRH-R mRNA expression in female rats by 23% and LHRH-R protein levels by 119%. Cetrorelix pamoate reduced serum LH in female rats and diminished LHRH-R mRNA to 30% and 26% and LHRH-R protein to 57% and 48% on days 10 and 30, respectively. Elevated LHRH-R protein levels of ovariectomized rats were reduced after 10-day treatment with Cetrorelix or 100 microg/day Decapeptyl. Thus, changes in the mRNA expression after treatment with Cetrorelix, but not always Decapeptyl, paralleled those of LHRH-R protein. The inhibitory effect of Cetrorelix on serum LH, pituitary LHRH-R mRNA, and LHRH-R protein was greater than that of Decapeptyl.
Collapse
Affiliation(s)
- Judit E Horvath
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
26
|
Halmos G, Schally AV. Changes in subcellular distribution of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) after treatment with the LH-RH antagonist cetrorelix. Proc Natl Acad Sci U S A 2002; 99:961-5. [PMID: 11805337 PMCID: PMC117413 DOI: 10.1073/pnas.012598399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2001] [Indexed: 11/18/2022] Open
Abstract
Treatment with antagonists of luteinizing hormone-releasing hormone (LH-RH) leads to down-regulation of pituitary LH-RH receptors. Thus, the effect of LH-RH antagonists is similar to that of the LH-RH agonists, but the mode of action of antagonists is not completely understood. The aim of this study was to investigate the effects of LH-RH antagonist cetrorelix on the binding characteristics and subcellular localization of receptors for LH-RH in rat pituitaries. Radioligand binding studies, performed after in vitro desaturation, revealed that a single s.c. injection of cetrorelix at a dose of 100 microg per rat significantly decreased the number of pituitary membrane receptors for LH-RH in a time-dependent manner with the nadir occurring at 6 h. In contrast, 2-6 h after cetrorelix treatment, the concentration of binding sites for LH-RH in the nuclei of rat pituitaries was significantly higher (P < 0.01) than in controls. Chronic administration of cetrorelix also decreased the level of membrane receptors for LH-RH by 83% (P < 0.01) after 7 days, and 86% (P < 0.01) after 14 days. The number of LH-RH binding sites in the nuclear pellet was increased 3-fold (P < 0.01) by days 7 and 14 after the initiation of treatment with cetrorelix. A single injection or prolonged treatment with LH-RH antagonist also decreased the mRNA expression of pituitary receptors for LH-RH. Our results demonstrate that the down-regulation of LH-RH receptors on the cell membranes of rat pituitaries after therapy with antagonist cetrorelix is associated with an increase in receptor concentration in the nuclei. These phenomena could be related to the internalization and subcellular translocation of LH-RH receptors.
Collapse
Affiliation(s)
- Gabor Halmos
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
27
|
Abstract
Gonadotropin-releasing hormone (GnRH) antagonists are now widely used in protocols of patients with controlled ovarian hyperstimulation to treat infertility. By competitively binding to the pituitary GnRH receptor, they lead to a rapid suppression of gonadotropins and consecutively sex hormones. In the past, GnRH agonists have been exclusively used for these patients, with the disadvantage of an initial rise of gonadotropins--the flare-up effect. Several trials comparing the agonistic and antagonistic analogs of GnRH found no significant differences in oocyte quality, fertilization and pregnancy rates. Slightly lower implantation and pregnancy rates, and estradiol levels, in patients treated with GnRH antagonists has raised concern about eventual extrapituitary adverse effects. However, no convincing evidence has yet been found for any detrimental ovarian effects of GnRH antagonists. The lower rate of ovarian hyperstimulation syndrome, a potentially severe disadvantage of infertility treatment, is a positive feature of GnRH antagonists. The key point is that GnRH antagonists have been proven to be as effective and safe as GnRH agonists. This broadens the spectrum of indications for GnRH antagonists to sex hormone-dependent disorders like endometriosis, uterine fibroids, and gynecological cancers such as breast and ovarian cancer.
Collapse
Affiliation(s)
- Juergen M Weiss
- Department of Gynecology and Obstetrics, Medical University of Luebeck, Luebeck, Germany.
| | | | | |
Collapse
|