1
|
Li P, Que Y, Wong C, Lin Y, Qiu J, Gao B, Zhou H, Hu W, Shi H, Peng Y, Huang D, Gao W, Qiu X, Liang A. IL-32 aggravates metabolic disturbance in human nucleus pulposus cells by activating FAT4-mediated Hippo/YAP signaling. Int Immunopharmacol 2024; 141:112966. [PMID: 39178518 DOI: 10.1016/j.intimp.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/21/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Extracellular matrix (ECM) metabolism disorders in the inflammatory microenvironment play a key role in the pathogenesis of intervertebral disc degeneration (IDD). Interleukin-32 (IL-32) has been reported to be involved in the progression of various inflammatory diseases; however, it remains unclear whether it participates in the matrix metabolism of nucleus pulposus (NP) cells. Therefore, this study aimed to investigate the mechanism of IL-32 on regulating the ECM metabolism in the inflammatory microenvironment. RNA-seq was used to identify aberrantly expressed genes in NP cells in the inflammatory microenvironment. Western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence analysis were performed to measure the expression of IL-32 and metabolic markers in human NP tissues or NP cells treated with or without tumor necrosis factor-α (TNF-α). In vivo, an adeno-associated virus overexpressing IL-32 was injected into the caudal intervertebral discs of rats to assess its effect on IDD. Proteins interacting with IL-32 were identified via immunoprecipitation and mass spectrometry. Lentivirus overexpressing IL-32 or knocking down Fat atypical cadherin 4 (FAT4), yes-associated protein (YAP) inhibitor-Verteporfin (VP) were used to treat human NP cells, to explore the pathogenesis of IL-32. Hippo/YAP signaling activity was verified in human NP tissues. IL-32 expression was significantly upregulated in degenerative NP tissues, as indicated in the clinical samples. Furthermore, IL-32 was remarkably overexpressed in TNF-α-induced degenerative NP cells. IL-32 overexpression induced IDD progression in the rat model. Mechanistically, the elevation of IL-32 in the inflammatory microenvironment enhanced its interactions with FAT4 and mammalian sterile 20-like kinase1/2 (MST1/2) proteins, prompting MST1/2 phosphorylation, and activating the Hippo/YAP signaling pathway, causing matrix metabolism disorder in NP cells. Our results suggest that IL-32 mediates matrix metabolism disorders in NP cells in the inflammatory micro-environment via the FAT4/MST/YAP axis, providing a theoretical basis for the precise treatment of IDD.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yichen Que
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthopedic Surgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical Universit, Qingyuan, Guangdong, China
| | - Chipiu Wong
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Minimally Invasive Spine Surgery, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huihong Shi
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongsheng Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Anjing Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Lee SH, Kim S, Lee J, Kim Y, Joo Y, Heo JY, Lee H, Lee C, Hwang GS, Park H. Comprehensive metabolomic analysis identifies key biomarkers and modulators of immunotherapy response in NSCLC patients. Drug Resist Updat 2024; 77:101159. [PMID: 39405736 DOI: 10.1016/j.drup.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 11/12/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized immuno-oncology with effective clinical responses, only 30 to 40 % of patients respond to ICIs, highlighting the need for reliable biomarkers to predict and enhance therapeutic outcomes. This study investigated how amino acid, glycolysis, and bile acid metabolism affect ICI efficacy in non-small cell lung cancer (NSCLC) patients. Through targeted metabolomic profiling and machine learning analysis, we identified amino acid metabolism as a key factor, with histidine (His) linked to favorable outcomes and homocysteine (HCys), phenylalanine (Phe), and sarcosine (Sar) linked to poor outcomes. Importantly, the His/HCys+Phe+Sar ratio emerges as a robust biomarker. Furthermore, we emphasize the role of glycolysis-related metabolites, particularly lactate. Elevated lactate levels post-immunotherapy treatment correlate with poorer outcomes, underscoring lactate as a potential indicator of treatment efficacy. Moreover, specific bile acids, glycochenodeoxycholic acid (GCDCA) and taurolithocholic acid (TLCA), are associated with better survival and therapeutic response. Particularly, TLCA enhances T cell activation and anti-tumor immunity, suggesting its utility as a predictive biomarker and therapeutic agent. We also suggest a connection between gut microbiota and TLCA levels, with the Eubacterium genus modulating this relationship. Therefore, modulating specific metabolic pathways-particularly amino acid, glycolysis, and bile acid metabolism-could predict and enhance the efficacy of ICI therapy in NSCLC patients, with potential implications for personalized treatment strategies in immuno-oncology. ONE SENTENCE SUMMARY: Our study identifies metabolic biomarkers and pathways that could predict and enhance the outcomes of immune checkpoint inhibitor therapy in NSCLC patients.
Collapse
Affiliation(s)
- Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Yanghyun Joo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jun-Yeong Heo
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Heeyeon Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea; Genome&Company, GWANGGYO FLAX DESIAN 7F, Changnyong-daero 256beon-gil 50, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, South Korea.
| |
Collapse
|
3
|
Papadopoulos MGE, Perhal AF, Medel-Lacruz B, Ladurner A, Selent J, Dirsch VM, Kolb P. Discovery and characterization of small-molecule TGR5 ligands with agonistic activity. Eur J Med Chem 2024; 276:116616. [PMID: 38996653 DOI: 10.1016/j.ejmech.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
The Takeda G protein-coupled receptor 5 (TGR5) is activated endogenously by primary and secondary bile acids. This receptor is considered a candidate target for addressing inflammatory and metabolic disorders. We have targeted TGR5 with structure-based methods for ligand finding using the recently solved experimental structures, as well as structures obtained from molecular dynamics simulations. Through addressing the orthosteric as well as a putative allosteric site, we identified agonists and positive allosteric modulators. While the predicted binding locations were not in line with their efficacy, our work contributes activating small-molecule ligands that we have thoroughly characterized in vitro.
Collapse
Affiliation(s)
| | - Alexander F Perhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Angela Ladurner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Verena M Dirsch
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Sun Q, Jiang N, Yao R, Song Y, Li Z, Wang W, Chen J, Guo W. An agonist of the adenosine A 2A receptor, CGS21680, promotes corneal epithelial wound healing via the YAP signalling pathway. Br J Pharmacol 2024; 181:3779-3795. [PMID: 38877785 DOI: 10.1111/bph.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The adenosine A2A receptor (A2AR) is involved in various physiological and pathological processes in the eye; however, the role of the A2AR signalling in corneal epithelial wound healing is not known. Here, the expression, therapeutic effects and signalling mechanism of A2AR in corneal epithelial wound healing were investigated using the A2AR agonist CGS21680. EXPERIMENTAL APPROACH A2AR localization and expression during wound healing in the murine cornea were determined by immunofluorescence staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The effect of CGS21680 on corneal epithelial wound healing in the lesioned corneal and cultured human corneal epithelial cells (hCECs) by modulating cellular proliferation and migration was critically evaluated. The role of Hippo-YAP signalling in mediating the CGS21680 effect on wound healing by pharmacological inhibition of YAP signalling was explored. KEY RESULTS A2AR expression was up-regulated after corneal epithelial injury. Topical administration of CGS21680 dose-dependently promoted corneal epithelial wound healing in the injured corneal epithelium by promoting cellular proliferation. Furthermore, CGS21680 accelerated the cellular proliferation and migration of hCECs in vitro. A2AR activation promoted early up-regulation and later down-regulation of YAP signalling molecules, and pharmacological inhibition of YAP signalling reverted CGS21680-mediated wound healing effect in vivo and in vitro. CONCLUSION AND IMPLICATIONS A2AR activation promotes wound healing by enhancing cellular proliferation and migration through the YAP signalling pathway. A2ARs play an important role in the maintenance of corneal epithelium integrity and may represent a novel therapeutic target for facilitating corneal epithelial wound healing.
Collapse
Affiliation(s)
- Qiuqin Sun
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Nan Jiang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rui Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Song
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zewen Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Ding H, Jiang M, Chan AM, Xia Y, Ma RCW, Yao X, Wang L, Huang Y. Targeting the tyrosine kinase Src in endothelium attenuates inflammation and atherogenesis induced by disturbed flow. Br J Pharmacol 2024. [PMID: 39117589 DOI: 10.1111/bph.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that Src can regulate inflammation and tumour progression. However, the mechanisms by which Src regulates the inflammatory response of vascular endothelium and atherogenesis are currently poorly understood. This study aimed to investigate the role of Src in endothelial inflammation and atherogenesis, as well as the underlying mechanisms. EXPERIMENTAL APPROACH Real-time quantitative PCR was used to measure the mRNA levels of inflammatory genes. The phosphorylation and localization of proteins were examined using western blotting and immunofluorescence, respectively. The level of p-Src Y416 in mouse endothelium was directly determined using en face staining. Endothelial-specific knockdown of Src was achieved by tail vein injection of AAV-sgSrc in ApoE-/-; Cas9LSL/LSL; Cdh5-cre mice. Atherosclerosis was induced by partial ligation of the carotid artery. KEY RESULTS Oscillatory shear stress (OSS) promotes the phosphorylation of Src at Y416 in endothelial cells, and Piezo1 is required for this regulatory process. Overexpression of constitutively active Src promotes endothelial inflammation, as well as phosphorylation of Stat3 (at Y705) and its nuclear translocation. Endothelial inflammation induced by OSS was abolished by the Src inhibitor dasatinib or si-Src. Dasatinib, when administered orally, reduced endothelial inflammation and plaque formation in ApoE-/- mice induced by partial carotid artery ligation. Additionally, plaque formation was decreased in the ligated left carotid artery of mice with endothelial-specific Src knockdown. CONCLUSION AND IMPLICATIONS Disturbed flow promotes endothelial inflammation and atherogenesis through the Piezo1-Src-Stat3 pathway. Therefore, inhibiting Src in endothelial cells could be a promising therapeutic strategy to treat atherogenesis.
Collapse
Affiliation(s)
- Huanyu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Minchun Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Andrew M Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Ye P, Deng Y, Gu Y, Liu P, Luo J, Pu J, Chen J, Huang Y, Wang N, Ji Y, Chen S. GRK2-YAP signaling is implicated in pulmonary arterial hypertension development. Chin Med J (Engl) 2024; 137:846-858. [PMID: 38242702 PMCID: PMC10997289 DOI: 10.1097/cm9.0000000000002946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by excessive proliferation of small pulmonary arterial vascular smooth muscle cells (PASMCs), endothelial dysfunction, and extracellular matrix remodeling. G protein-coupled receptor kinase 2 (GRK2) plays an important role in the maintenance of vascular tone and blood flow. However, the role of GRK2 in the pathogenesis of PAH is unknown. METHODS GRK2 levels were detected in lung tissues from healthy people and PAH patients. C57BL/6 mice, vascular smooth muscle cell-specific Grk2 -knockout mice ( Grk2ΔSM22 ), and littermate controls ( Grk2flox/flox ) were grouped into control and hypoxia mice ( n = 8). Pulmonary hypertension (PH) was induced by exposure to chronic hypoxia (10%) combined with injection of the SU5416 (cHx/SU). The expression levels of GRK2 and Yes-associated protein (YAP) in pulmonary arteries and PASMCs were detected by Western blotting and immunofluorescence staining. The mRNA expression levels of Grk2 and Yes-associated protein ( YAP ) in PASMCs were quantified with real-time polymerase chain reaction (RT-PCR). Wound-healing assay, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, and 5-Ethynyl-2'-deoxyuridine (EdU) staining were performed to evaluate the proliferation and migration of PASMCs. Meanwhile, the interaction among proteins was detected by immunoprecipitation assays. RESULTS The expression levels of GRK2 were upregulated in the pulmonary arteries of patients with PAH and the lungs of PH mice. Moreover, cHx/SU-induced PH was attenuated in Grk2ΔSM22 mice compared with littermate controls. The amelioration of PH in Grk2ΔSM22 mice was accompanied by reduced pulmonary vascular remodeling. In vitro study further confirmed that GRK2 knock-down significantly altered hypoxia-induced PASMCs proliferation and migration, whereas this effect was severely intensified by overexpression of GRK2 . We also identified that GRK2 promoted YAP expression and nuclear translocation in PASMCs, resulting in excessive PASMCs proliferation and migration. Furthermore, GRK2 is stabilized by inhibiting phosphorylating GRK2 on Tyr86 and subsequently activating ubiquitylation under hypoxic conditions. CONCLUSION Our findings suggest that GRK2 plays a critical role in the pathogenesis of PAH, via regulating YAP expression and nuclear translocation. Therefore, GRK2 serves as a novel therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Peng Ye
- Division of Cardiovascular Molecular Laboratory, Third Clinical College, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yunfei Deng
- Division of Cardiovascular Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
- Division of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Yue Gu
- Division of Cardiovascular Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Pengfei Liu
- Division of Cardiovascular Molecular Laboratory, Third Clinical College, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Jie Luo
- Division of Cardiovascular Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Jiangqin Pu
- Division of Cardiovascular Molecular Laboratory, Third Clinical College, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Jingyu Chen
- Division of Pulmonary Surgery, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, Jiangsu 300247, China
| | - Yu Huang
- Institute of Vascular Medicine, The Chinese University of Hong Kong, Hongkong 999077, China
| | - Nanping Wang
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Yong Ji
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210004, China
| | - Shaoliang Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210004, China
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| |
Collapse
|
7
|
Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Mechanism of action of the bile acid receptor TGR5 in obesity. Acta Pharm Sin B 2024; 14:468-491. [PMID: 38322325 PMCID: PMC10840437 DOI: 10.1016/j.apsb.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of membrane protein receptors, and Takeda G protein-coupled receptor 5 (TGR5) is a member of this family. As a membrane receptor, TGR5 is widely distributed in different parts of the human body and plays a vital role in regulating metabolism, including the processes of energy consumption, weight loss and blood glucose homeostasis. Recent studies have shown that TGR5 plays an important role in glucose and lipid metabolism disorders such as fatty liver, obesity and diabetes. With the global obesity situation becoming more and more serious, a comprehensive explanation of the mechanism of TGR5 and filling the gaps in knowledge concerning clinical ligand drugs are urgently needed. In this review, we mainly explain the anti-obesity mechanism of TGR5 to promote the further study of this target, and show the electron microscope structure of TGR5 and review recent studies on TGR5 ligands to illustrate the specific binding between TGR5 receptor binding sites and ligands, which can effectively provide new ideas for ligand research and promote drug research.
Collapse
Affiliation(s)
- Weijun Lun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
8
|
Luan J, Zhang F, Suo L, Zhang W, Li Y, Yu X, Liu B, Cao H. Analyzing lung cancer risks in patients with impaired pulmonary function through characterization of gut microbiome and metabolites. BMC Pulm Med 2024; 24:1. [PMID: 38166904 PMCID: PMC10759599 DOI: 10.1186/s12890-023-02825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lung cancer (LC) is one of the most devastating diseases worldwide, there is growing studies confirm the role of impaired lung function in LC susceptibility. Moreover, gut microbiota dysbiosis is associated with LC severity. Whether alterations in gut microbiota and metabolites are associated with long-term lung dysfunction in LC patients remain unclear. Our study aimed to analyze the risk factors in LC patients with impaired pulmonary function based on the characteristics of the gut microbiome and metabolites. METHODS Fecal samples from 55 LC patients and 28 benign pulmonary nodules patients were collected. Pulmonary ventilation function was graded according to the American Thoracic Society/ European Respiratory Society (ATS/ERS) method. LC patients were divided into 3 groups, including 20 patients with normal lung ventilation, 23 patients with mild pulmonary ventilation dysfunction and 12 patients with moderate or above pulmonary ventilation dysfunction. The fecal samples were analyzed using 16 S rRNA gene amplicon sequencing and metabolomics. RESULTS The gut microbiome composition between LC patients and benign pulmonary nodules patients presented clearly differences based on Partial Least Squares Discriminant Analysis (PLS-DA). Pulmonary ventilation function was positively correlated with LC tumor stage, the richness and diversity of the gut microbiota in LC patients with moderate or above pulmonary ventilation dysfunction increased significantly, characterized by increased abundance of Subdoligranulum and Romboutsia. The metabolomics analysis revealed 69 differential metabolites, which were mainly enriched in beta-Alanine metabolism, styrene degradation and pyrimidine metabolism pathway. The area under the curve (AUC) combining the gut microbiome and metabolites was 90% (95% CI: 79-100%), indicating that the two species and four metabolites might regarded as biomarkers to assess the prediction of LC patients with impaired pulmonary function. CONCLUSIONS Our results showed that microbiome and metabolomics analyses provide important candidate to be used as clinically diagnostic biomarkers and therapeutic targets related to lung cancer with impaired pulmonary function.
Collapse
Affiliation(s)
- Jiahui Luan
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Fuxin Zhang
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Lijun Suo
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Wei Zhang
- Department of General Thoracic Surgery, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Yige Li
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaofeng Yu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Bo Liu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China.
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, 255400, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Hongyun Cao
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
| |
Collapse
|
9
|
Zhou W, Lim A, Edderkaoui M, Osipov A, Wu H, Wang Q, Pandol S. Role of YAP Signaling in Regulation of Programmed Cell Death and Drug Resistance in Cancer. Int J Biol Sci 2024; 20:15-28. [PMID: 38164167 PMCID: PMC10750275 DOI: 10.7150/ijbs.83586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/29/2023] [Indexed: 01/03/2024] Open
Abstract
Although recent advances in cancer treatment significantly improved the prognosis of patients, drug resistance remains a major challenge. Targeting programmed cell death is a major approach of antitumor drug development. Deregulation of programmed cell death (PCD) contributes to resistance to a variety of cancer therapeutics. Yes-associated protein (YAP) and its paralog TAZ, the main downstream effectors of the Hippo pathway, are aberrantly activated in a variety of human malignancies. The Hippo-YAP pathway, which was originally identified in Drosophila, is well conserved in humans and plays a defining role in regulation of cell fate, tissue growth and regeneration. Activation of YAP signaling has emerged as a key mechanism involved in promoting cancer cell proliferation, metastasis, and drug resistance. Understanding the role of YAP/TAZ signaling network in PCD and drug resistance could facilitate the development of effective strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arsen Osipov
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
10
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
11
|
Huang SM, Xiong MY, Liu L, Mu J, Wang MW, Jia YL, Cai K, Tie L, Zhang C, Cao S, Wen X, Wang JL, Guo SC, Li Y, Qu CX, He QT, Cai BY, Xue C, Gan S, Xie Y, Cong X, Yang Z, Kong W, Li S, Li Z, Xiao P, Yang F, Yu X, Guan YF, Zhang X, Liu Z, Yang BX, Du Y, Sun JP. Single hormone or synthetic agonist induces G s/G i coupling selectivity of EP receptors via distinct binding modes and propagating paths. Proc Natl Acad Sci U S A 2023; 120:e2216329120. [PMID: 37478163 PMCID: PMC10372679 DOI: 10.1073/pnas.2216329120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 07/23/2023] Open
Abstract
To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.
Collapse
Affiliation(s)
- Shen-Ming Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Meng-Yao Xiong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Lei Liu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Jianqiang Mu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Ming-Wei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Ying-Li Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Kui Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Sheng Cao
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Jia-Le Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Sheng-Chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Yu Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chang-Xiu Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Bo-Yang Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chenyang Xue
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Shiyi Gan
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Yihe Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Shuo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Zijian Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Research, Beijing100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing100191, P. R. China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian116044, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian116044, China
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Bao-Xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Yang Du
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing100191, P. R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| |
Collapse
|