1
|
Hesse E, Luján AM, O'Brien S, Newbury A, McAvoy T, Soria Pascual J, Bayer F, Hodgson DJ, Buckling A. Parallel ecological and evolutionary responses to selection in a natural bacterial community. Proc Natl Acad Sci U S A 2024; 121:e2403577121. [PMID: 39190353 PMCID: PMC11388356 DOI: 10.1073/pnas.2403577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.
Collapse
Affiliation(s)
- Elze Hesse
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Adela M Luján
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba X5004ASK, Argentina
| | - Siobhan O'Brien
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Arthur Newbury
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Terence McAvoy
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Jesica Soria Pascual
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Florian Bayer
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - David J Hodgson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
2
|
Xu F, Jiang M, Li D, Yu P, Ma H, Lu H. Protective effects of antibiotic resistant bacteria on susceptibles in biofilm: Influential factors, mechanism, and modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172668. [PMID: 38663625 DOI: 10.1016/j.scitotenv.2024.172668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
In environmental biofilms, antibiotic-resistant bacteria facilitate the persistence of susceptible counterparts under antibiotic stresses, contributing to increased community-level resistance. However, there is a lack of quantitative understanding of this protective effect and its influential factors, hindering accurate risk assessment of biofilm resistance in diverse environment. This study isolated an opportunistic Escherichia coli pathogen from soil, and engineered it with plasmids conferring antibiotic resistance. Protective effects of the ampicillin resistant strain (AmpR) on their susceptible counterparts (AmpS) were observed in ampicillin-stress colony biofilms. The concentration of ampicillin delineated protective effects into 3 zones: continuous protection (<1 MIC of AmpS), initial AmpS/R dependent (1-8 MIC of AmpS), and ineffective (>8 MIC of AmpS). Intriguingly, Zone 2 exhibited a surprising "less is more" phenomenon tuned by the initial AmpS/R ratio, where biofilm with an initially lower AmpR (1:50 vs 50:1) harbored 30-90 % more AmpR after 24 h growth under antibiotic stress. Compared to AmpS, AmpR displayed superiority in adhesion, antibiotic degradation, motility, and quorum sensing, allowing them to preferentially colonize biofilm edge and areas with higher ampicillin. An agent-based model incorporating protective effects successfully simulated tempo-spatial dynamics of AmpR and AmpS influenced by antibiotic stress and initial AmpS/R. This study provides a holistic view on the pervasive but poorly understood protective effects in biofilm, enabling development of better risk assessment and precisely targeted control strategies of biofilm resistance in diverse environment.
Collapse
Affiliation(s)
- Fengqian Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Minxi Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Pingfeng Yu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - He Ma
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Galdino ACM, Vaillancourt M, Celedonio D, Huse K, Doi Y, Lee JS, Jorth P. Siderophores promote cooperative interspecies and intraspecies cross-protection against antibiotics in vitro. Nat Microbiol 2024; 9:631-646. [PMID: 38409256 PMCID: PMC11239084 DOI: 10.1038/s41564-024-01601-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
The antibiotic cefiderocol hijacks iron transporters to facilitate its uptake and resists β-lactamase degradation. While effective, resistance has been detected clinically with unknown mechanisms. Here, using experimental evolution, we identified cefiderocol resistance mutations in Pseudomonas aeruginosa. Resistance was multifactorial in host-mimicking growth media, led to multidrug resistance and paid fitness costs in cefiderocol-free environments. However, kin selection drove some resistant populations to cross-protect susceptible individuals from killing by increasing pyoverdine secretion via a two-component sensor mutation. While pyochelin sensitized P. aeruginosa to cefiderocol killing, pyoverdine and the enterobacteria siderophore enterobactin displaced iron from cefiderocol, preventing uptake by susceptible cells. Among 113 P. aeruginosa intensive care unit clinical isolates, pyoverdine production directly correlated with cefiderocol tolerance, and high pyoverdine producing isolates cross-protected susceptible P. aeruginosa and other Gram-negative bacteria. These in vitro data show that antibiotic cross-protection can occur via degradation-independent mechanisms and siderophores can serve unexpected protective cooperative roles in polymicrobial communities.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Diana Celedonio
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kara Huse
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Dewar AE, Belcher LJ, Scott TW, West SA. Genes for cooperation are not more likely to be carried by plasmids. Proc Biol Sci 2024; 291:20232549. [PMID: 38412971 PMCID: PMC10898968 DOI: 10.1098/rspb.2023.2549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Cooperation is prevalent across bacteria, but risks being exploited by non-cooperative cheats. Horizontal gene transfer, particularly via plasmids, has been suggested as a mechanism to stabilize cooperation. A key prediction of this hypothesis is that genes which are more likely to be transferred, such as those on plasmids, should be more likely to code for cooperative traits. Testing this prediction requires identifying all genes for cooperation in bacterial genomes. However, previous studies used a method which likely misses some of these genes for cooperation. To solve this, we used a new genomics tool, SOCfinder, which uses three distinct modules to identify all kinds of genes for cooperation. We compared where these genes were located across 4648 genomes from 146 bacterial species. In contrast to the prediction of the hypothesis, we found no evidence that plasmid genes are more likely to code for cooperative traits. Instead, we found the opposite-that genes for cooperation were more likely to be carried on chromosomes. Overall, the vast majority of genes for cooperation are not located on plasmids, suggesting that the more general mechanism of kin selection is sufficient to explain the prevalence of cooperation across bacteria.
Collapse
Affiliation(s)
- Anna E Dewar
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | | - Thomas W Scott
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
5
|
Belcijan Pandur K, Kraigher B, Tomac A, Stefanic P, Mandic Mulec I. Nonkin interactions between Bacillus subtilis soil isolates limit the spread of swarming deficient cheats. THE ISME JOURNAL 2024; 18:wrae199. [PMID: 39375016 DOI: 10.1093/ismejo/wrae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Cooperative behaviours in human, animal, and even microbial societies are vulnerable to exploitation. Kin discrimination has been hypothesized to help stabilize cooperation. However, the mechanisms that sustain cooperative behaviour remain poorly understood. Here, we investigate the role of kin discrimination in limiting the spread of cheats in adjoining populations during surfactant-dependent cooperative swarming over surfaces using the bacterium Bacillus subtilis as a model organism. We show that mixing surfactant secreting cooperators and cheats that do not produce surfactants at 1:1 initial ratio quickly leads to cooperation collapse. However, when such common swarms encounter nonkin B. subtilis swarms, the proportion of the surfactant nonproducers decreases, suggesting that kinship dependent interactions may limit cheats' advantage in an adjoining population. To further validate this finding, we subjected wild-type cooperators to multiple transient encounters with kin and nonkin swarms over 20 cycles of experimental evolution. The evolved populations exposed to nonkin swarms less frequently contained defective swarming phenotypes compared to those encountering kin swarms. Altogether, our results support the prediction that the spread of cheats in an adjoining bacterial population is impeded by kin discrimination interactions, which might have a role in stabilizing cooperative behaviour in evolving populations.
Collapse
Affiliation(s)
| | - Barbara Kraigher
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Tomac
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Stefanic
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Belcher LJ, Dewar AE, Hao C, Katz Z, Ghoul M, West SA. SOCfinder: a genomic tool for identifying social genes in bacteria. Microb Genom 2023; 9:001171. [PMID: 38117204 PMCID: PMC10763506 DOI: 10.1099/mgen.0.001171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.
Collapse
Affiliation(s)
| | - Anna E. Dewar
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Zohar Katz
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Stuart A. West
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
7
|
Leeks A, Bono LM, Ampolini EA, Souza LS, Höfler T, Mattson CL, Dye AE, Díaz-Muñoz SL. Open questions in the social lives of viruses. J Evol Biol 2023; 36:1551-1567. [PMID: 37975507 PMCID: PMC11281779 DOI: 10.1111/jeb.14203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 11/19/2023]
Abstract
Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Lisa M. Bono
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth A. Ampolini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas S. Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas Höfler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Courtney L. Mattson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
| | - Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| |
Collapse
|
8
|
Belcher LJ, Dewar AE, Hao C, Ghoul M, West SA. Signatures of kin selection in a natural population of the bacteria Bacillus subtilis. Evol Lett 2023; 7:315-330. [PMID: 37829498 PMCID: PMC10565896 DOI: 10.1093/evlett/qrad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 10/14/2023] Open
Abstract
Laboratory experiments have suggested that bacteria perform a range of cooperative behaviors, which are favored because they are directed toward relatives (kin selection). However, there is a lack of evidence for cooperation and kin selection in natural bacterial populations. Molecular population genetics offers a promising method to study natural populations because the theory predicts that kin selection will lead to relaxed selection, which will result in increased polymorphism and divergence at cooperative genes. Examining a natural population of Bacillus subtilis, we found consistent evidence that putatively cooperative traits have higher polymorphism and greater divergence than putatively private traits expressed at the same rate. In addition, we were able to eliminate alternative explanations for these patterns and found more deleterious mutations in genes controlling putatively cooperative traits. Overall, our results suggest that cooperation is favored by kin selection, with an average relatedness of r = .79 between interacting individuals.
Collapse
Affiliation(s)
| | - Anna E Dewar
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Chepsergon J, Moleleki LN. Rhizosphere bacterial interactions and impact on plant health. Curr Opin Microbiol 2023; 73:102297. [PMID: 37002974 DOI: 10.1016/j.mib.2023.102297] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
The rhizosphere is a chemically complex environment that harbors a strikingly diverse microbial community. The past few decades have seen a rapid growth in the body of literature on plant-microbe-microbe interactions and plant health. Thus, the aim of this paper is to review current knowledge on plant-microbe-microbe (specifically bacteria) interactions in the rhizosphere and how these influence rhizosphere microbiomes and impact plant health. This article discusses (i) how the plant recruits beneficial rhizosphere bacteria and ii) how competition between rhizosphere bacteria and mechanisms/weapons employed in bacteria-bacteria competition shapes rhizosphere microbiome and in turn affects plant heath. The discussion mainly focuses on interference competition, characterized by production of specialized metabolites (antibacterial compounds) and exploitative competition where a bacterial strain restricts the competitor's access to nutrients such as through secretion of siderophores that could allude to cooperation. Understanding mechanisms employed in bacteria-bacteria and plant-bacteria interactions could provide insights into how to manipulate microbiomes for improved agricultural outcomes.
Collapse
|
10
|
Cooperation loci are more pleiotropic than private loci in the bacterium Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2022; 119:e2214827119. [PMID: 36191234 PMCID: PMC9564939 DOI: 10.1073/pnas.2214827119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pleiotropy may affect the maintenance of cooperation by limiting cheater mutants if such mutants lose other important traits. If pleiotropy limits cheaters, selection may favor cooperation loci that are more pleiotropic. However, the same should not be true for private loci with functions unrelated to cooperation. Pleiotropy in cooperative loci has mostly been studied with single loci and has not been measured on a wide scale or compared to a suitable set of control loci with private functions. I remedy this gap by comparing genomic measures of pleiotropy in previously identified cooperative and private loci in Pseudomonas aeruginosa. I found that cooperative loci in P. aeruginosa tended to be more pleiotropic than private loci according to the number of protein-protein interactions, the number of gene ontology terms, and gene expression specificity. These results show that pleiotropy may be a general way to limit cheating and that cooperation may shape pleiotropy in the genome.
Collapse
|
11
|
Planet PJ. Adaptation and Evolution of Pathogens in the Cystic Fibrosis Lung. J Pediatric Infect Dis Soc 2022; 11:S23-S31. [PMID: 36069898 PMCID: PMC9451014 DOI: 10.1093/jpids/piac073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
As opposed to acute respiratory infections, the persistent bacterial infections of the lung that characterize cystic fibrosis (CF) provide ample time for bacteria to evolve and adapt. The process of adaptation is recorded in mutations that accumulate over time in the genomes of the infecting bacteria. Some of these mutations lead to obvious phenotypic differences such as antibiotic resistance or the well-known mucoid phenotype of Pseudomonas aeruginosa. Other mutations may be just as important but harder to detect such as increased mutation rates, cell surface changes, and shifts in metabolism and nutrient acquisition. Remarkably, many of the adaptations occur again and again in different patients, signaling that bacteria are adapting to solve specific challenges in the CF respiratory tract. This parallel evolution even extends across distinct bacterial species. This review addresses the bacterial systems that are known to change in long-term CF infections with a special emphasis on cross-species comparisons. Consideration is given to how adaptation may impact health in CF, and the possible evolutionary mechanisms that lead to the repeated parallel adaptations.
Collapse
Affiliation(s)
- Paul J Planet
- Corresponding Author: Paul J. Planet, MD, PhD, 3615 Civic Center Blvd, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
12
|
Trubenová B, Roizman D, Rolff J, Regoes RR. Modeling Polygenic Antibiotic Resistance Evolution in Biofilms. Front Microbiol 2022; 13:916035. [PMID: 35875522 PMCID: PMC9301000 DOI: 10.3389/fmicb.2022.916035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The recalcitrance of biofilms to antimicrobials is a multi-factorial phenomenon, including genetic, physical, and physiological changes. Individually, they often cannot account for biofilm recalcitrance. However, their combination can increase the minimal inhibitory concentration of antibiotics needed to kill bacterial cells by three orders of magnitude, explaining bacterial survival under otherwise lethal drug treatment. The relative contributions of these factors depend on the specific antibiotics, bacterial strain, as well as environmental and growth conditions. An emerging population genetic property—increased biofilm genetic diversity—further enhances biofilm recalcitrance. Here, we develop a polygenic model of biofilm recalcitrance accounting for multiple phenotypic mechanisms proposed to explain biofilm recalcitrance. The model can be used to generate predictions about the emergence of resistance—its timing and population genetic consequences. We use the model to simulate various treatments and experimental setups. Our simulations predict that the evolution of resistance is impaired in biofilms at low antimicrobial concentrations while it is facilitated at higher concentrations. In scenarios that allow bacteria exchange between planktonic and biofilm compartments, the evolution of resistance is further facilitated compared to scenarios without exchange. We compare these predictions to published experimental observations.
Collapse
Affiliation(s)
- Barbora Trubenová
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- *Correspondence: Barbora Trubenová
| | - Dan Roizman
- Institute of Biology – Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Jens Rolff
- Institute of Biology – Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
13
|
Kin selection for cooperation in natural bacterial populations. Proc Natl Acad Sci U S A 2022; 119:2119070119. [PMID: 35193981 PMCID: PMC8892524 DOI: 10.1073/pnas.2119070119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteria secrete many molecules outside the cell, where they provide benefits to other cells. One potential reason for producing these “public goods” is that they benefit closely related cells that share the gene for cooperation (kin selection). While many laboratory studies have supported this hypothesis, there is a lack of evidence that kin selection favors cooperation in natural populations. We examined bacterial genomes from the environment and used population genetics theory to analyze the DNA sequences. Our analyses suggest that public goods cooperation has indeed been favored by kin selection in natural populations. Bacteria produce a range of molecules that are secreted from the cell and can provide a benefit to the local population of cells. Laboratory experiments have suggested that these “public goods” molecules represent a form of cooperation, favored because they benefit closely related cells (kin selection). However, there is a relative lack of data demonstrating kin selection for cooperation in natural populations of bacteria. We used molecular population genetics to test for signatures of kin selection at the genomic level in natural populations of the opportunistic pathogen Pseudomonas aeruginosa. We found consistent evidence from multiple traits that genes controlling putatively cooperative traits have higher polymorphism and greater divergence and are more likely to harbor deleterious mutations relative to genes controlling putatively private traits, which are expressed at similar rates. These patterns suggest that cooperative traits are controlled by kin selection, and we estimate that the relatedness for social interactions in P. aeruginosa is r = 0.84. More generally, our results demonstrate how molecular population genetics can be used to study the evolution of cooperation in natural populations.
Collapse
|