1
|
Pan X, Bruch A, Blango MG. Past, Present, and Future of RNA Modifications in Infectious Disease Research. ACS Infect Dis 2024; 10:4017-4029. [PMID: 39569943 DOI: 10.1021/acsinfecdis.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In early 2024, the National Academies of Sciences, Engineering, and Medicine (NASEM) released a roadmap for the future of research into mapping ribonucleic acid (RNA) modifications, which underscored the importance of better defining these diverse chemical changes to the RNA macromolecule. As nearly all mature RNA molecules harbor some form of modification, we must understand RNA modifications to fully appreciate the functionality of RNA. The NASEM report calls for massive mobilization of resources and investment akin to the transformative Human Genome Project of the early 1990s. Like the Human Genome Project, a concerted effort in improving our ability to assess every single modification on every single RNA molecule in an organism will change the way we approach biological questions, accelerate technological advance, and improve our understanding of the molecular world. Consequently, we are also at the start of a revolution in defining the impact of RNA modifications in the context of host-microbe and even microbe-microbe interactions. In this perspective, we briefly introduce RNA modifications to the infection biologist, highlight key aspects of the NASEM report and exciting examples of RNA modifications contributing to host and pathogen biology, and finally postulate where infectious disease research may benefit from this exciting new endeavor in globally mapping RNA modifications.
Collapse
Affiliation(s)
- Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| |
Collapse
|
2
|
Lu Y, Yang L, Feng Q, Liu Y, Sun X, Liu D, Qiao L, Liu Z. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae063. [PMID: 39340806 PMCID: PMC11634542 DOI: 10.1093/gpbjnl/qzae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules. An increasing number of studies have revealed the critical roles of the m5C RNA modification and its regulators in the development, diagnosis, prognosis, and treatment of various human diseases. In this review, we summarized the recent studies on RNA m5C modification and discussed the advances in its detection methodologies, distribution, and regulators. Furthermore, we addressed the significance of RNAs modified with m5C marks in essential biological processes as well as in the development of various human disorders, from neurological diseases to cancers. This review provides a new perspective on the diagnosis, treatment, and monitoring of human diseases by elucidating the complex regulatory network of the epigenetic m5C modification.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Xiaohui Sun
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| |
Collapse
|
3
|
Lin S, Cai K, Feng S, Lin Z. Identification of m5C-Related gene diagnostic biomarkers for sepsis: a machine learning study. Front Genet 2024; 15:1444003. [PMID: 39540021 PMCID: PMC11558340 DOI: 10.3389/fgene.2024.1444003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background Sepsis is a serious condition that occurs when the body's response to infection becomes uncontrolled, resulting in a high risk of death. Despite improvements in healthcare, identifying sepsis early is difficult because of its diverse nature and the absence of distinct biomarkers. Recent studies suggest that 5-methylcytosine (m5C)-related genes play a significant role in immune responses, yet their diagnostic potential in sepsis remains unexplored. Methods This research combined and examined four sepsis-related datasets (GSE95233, GSE57065, GSE100159, and GSE65682) sourced from the Gene Expression Omnibus (GEO)database to discover m5C-related genes with differential expression. Various machine learning methods, such as decision tree, random forest, and XGBoost, were utilized in identifying crucial hub genes. Receiver Operating Characteristic (ROC) curve analysis was used to assess the diagnostic accuracy of these genetic markers. Additionally, single-gene enrichment and immune infiltration analyses were conducted to investigate the underlying mechanisms involving these hub genes in sepsis. Results Three hub genes, DNA Methyltransferase 1 (DNMT1), tumor protein P53 (TP53), and toll-like receptor 8 (TLR8), were identified and validated for their diagnostic efficacy, showing area under the curve (AUC) values above 0.7 in both test and validation sets. Enrichment analyses revealed that these genes are involved in key pathways such as p53 signaling and Toll-like receptor signaling. Immune infiltration analysis indicated significant correlations between hub genes and various immune cell types, suggesting their roles in modulating immune responses during sepsis. Conclusion The study highlights the diagnostic potential of m5C-related genes in sepsis and their involvement in immune regulation. These findings offer new insights into sepsis pathogenesis and suggest that DNMT1, TP53, and TLR8 could serve as valuable biomarkers for early diagnosis. Further studies should prioritize validating these biomarkers in clinical settings and investigating their potential for therapy.
Collapse
Affiliation(s)
- Siming Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kexin Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaodan Feng
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhihong Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Dai Q, Ye C, Irkliyenko I, Wang Y, Sun HL, Gao Y, Liu Y, Beadell A, Perea J, Goel A, He C. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nat Biotechnol 2024; 42:1559-1570. [PMID: 38168991 PMCID: PMC11217147 DOI: 10.1038/s41587-023-02034-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
Bisulfite sequencing (BS-seq) to detect 5-methylcytosine (5mC) is limited by lengthy reaction times, severe DNA damage, overestimation of 5mC level and incomplete C-to-U conversion of certain DNA sequences. We present ultrafast BS-seq (UBS-seq), which uses highly concentrated bisulfite reagents and high reaction temperatures to accelerate the bisulfite reaction by ~13-fold, resulting in reduced DNA damage and lower background noise. UBS-seq allows library construction from small amounts of purified genomic DNA, such as from cell-free DNA or directly from 1 to 100 mouse embryonic stem cells, with less overestimation of 5mC level and higher genome coverage than conventional BS-seq. Additionally, UBS-seq quantitatively maps RNA 5-methylcytosine (m5C) from low inputs of mRNA and allows the detection of m5C stoichiometry in highly structured RNA sequences. Our UBS-seq results identify NSUN2 as the major 'writer' protein responsible for the deposition of ~90% of m5C sites in HeLa mRNA and reveal enriched m5C sites in 5'-regions of mammalian mRNA, which may have functional roles in mRNA translation regulation.
Collapse
Affiliation(s)
- Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Iryna Irkliyenko
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yiding Wang
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics & System Biology, The University of Chicago, Chicago, IL, USA
| | - Hui-Lung Sun
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yun Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yushuai Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Alana Beadell
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - José Perea
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Cai P, Li J, An M, Li M, Guo J, Li J, Li X, Chen S, Zhang A, Li P, Liu Y, Zhang W, Fu B. Comprehensive analysis of RNA-5-methylcytosine modification in breast cancer brain metastasis. Future Oncol 2024; 20:2993-3008. [PMID: 39345093 PMCID: PMC11572191 DOI: 10.1080/14796694.2024.2405459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Aim: To delineate the RNA-5-methylcytosine (m5C) modification of breast cancer brain metastasis (BCBM).Methods: Methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) was performed to obtain RNA-m5C patterns of BCBM.Results: 1048 hypermethylation and 1866 hypomethylation m5C peaks were identified in BCBM compared with those in breast cancer. The most significant m5C hypermethylated genes included ENG, SHANK1, IGFN1, EVL and MMP9, whereas the most significant m5C hypomethylated genes included AREG, SAA2, TP53I11, KRT7 and LCN2. MeRIP-qPCR data were concordant with the corresponding MeRIP-seq results in terms of the observed m5C levels. Conjoint analysis identified 190 hyper-up genes characterized by concurrent m5C hypermethylation and up-regulation, alongside 284 hypo-down genes exhibiting both m5C hypomethylation and down-regulation.Conclusion: This study presents the first comprehensive analysis of RNA-m5C modification in BCBM.
Collapse
Affiliation(s)
- Peiying Cai
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Jichao Li
- Department of Clinical Laboratory, Liaocheng Women & Children Hospital, Liaocheng, P.R. China
| | - Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Min Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital; Shandong Provincial Key Medical & Health Laboratory of Precision Medicine for Aging Intervention & Active Health, Liaocheng, P.R. China
| | - Jianran Guo
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital; Shandong Provincial Key Medical & Health Laboratory of Precision Medicine for Aging Intervention & Active Health, Liaocheng, P.R. China
| | - Jun Li
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital; Shandong Provincial Key Medical & Health Laboratory of Precision Medicine for Aging Intervention & Active Health, Liaocheng, P.R. China
| | - Xuan Li
- Department of Molecular Pharmacology Key Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Shen Chen
- Department of Breast & Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Anqi Zhang
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Peng Li
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Yan Liu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Wei Zhang
- Department of Breast & Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Liaocheng People's Hospital; Shandong Provincial Key Medical & Health Laboratory of Precision Medicine for Aging Intervention & Active Health, Liaocheng, P.R. China
| |
Collapse
|
6
|
Teng S, Han C, Zhou J, He Z, Qian W. m 5C RNA methylation: a potential mechanism for infectious Alzheimer's disease. Front Cell Dev Biol 2024; 12:1440143. [PMID: 39175875 PMCID: PMC11338875 DOI: 10.3389/fcell.2024.1440143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by a variety of factors, including age, genetic susceptibility, cardiovascular disease, traumatic brain injury, and environmental factors. The pathogenesis of AD is largely associated with the overproduction and accumulation of amyloid-β peptides and the hyperphosphorylation of tau protein in the brain. Recent studies have identified the presence of diverse pathogens, including viruses, bacteria, and parasites, in the tissues of AD patients, underscoring the critical role of central nervous system infections in inducing pathological changes associated with AD. Nevertheless, it remains unestablished about the specific mechanism by which infections lead to the occurrence of AD. As an important post-transcriptional RNA modification, RNA 5-methylcytosine (m5C) methylation regulates a wide range of biological processes, including RNA splicing, nuclear export, stability, and translation, therefore affecting cellular function. Moreover, it has been recently demonstrated that multiple pathogenic microbial infections are associated with the m5C methylation of the host. However, the role of m5C methylation in infectious AD is still uncertain. Therefore, this review discusses the mechanisms of pathogen-induced AD and summarizes research on the molecular mechanisms of m5C methylation in infectious AD, thereby providing new insight into exploring the mechanism underlying infectious AD.
Collapse
Affiliation(s)
- Sisi Teng
- Department of Neurology, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cunqiao Han
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Weiwei Qian
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Wang D, Booth JL, Wu W, Kiger N, Lettow M, Bates A, Pan C, Metcalf J, Schroeder SJ. Nanopore Direct RNA Sequencing Reveals Virus-Induced Changes in the Transcriptional Landscape in Human Bronchial Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600852. [PMID: 38979243 PMCID: PMC11230378 DOI: 10.1101/2024.06.26.600852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Direct RNA nanopore sequencing reveals changes in gene expression, polyadenylation, splicing, m6A methylation, and pseudouridylation in response to influenza virus exposure in primary human bronchial epithelial cells. This study focuses on the epitranscriptomic profile of genes in the host immune response. In addition to polyadenylated noncoding RNA, we purified and sequenced nonpolyadenylated noncoding RNA and observed changes in expression, N6-methyl-adenosine (m6A), and pseudouridylation (Ψ) in these novel RNA. Two recently discovered lincRNA with roles in immune response, Chaserr and LEADR , became highly methylated in response to influenza exposure. Several H/ACA type snoRNAs that guide pseudouridylation are decreased in expression in response to influenza, and there is a corresponding decrease in the pseudouridylation of two novel lncRNA. Thus, novel epitranscriptomic changes revealed by direct RNA sequencing with nanopore technology provides unique insights into the host epitranscriptomic changes in epithelial gene networks that respond to influenza virus infection.
Collapse
|
8
|
Yang S, Kim SH, Yang E, Kang M, Joo JY. Molecular insights into regulatory RNAs in the cellular machinery. Exp Mol Med 2024; 56:1235-1249. [PMID: 38871819 PMCID: PMC11263585 DOI: 10.1038/s12276-024-01239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
It is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions. In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications. Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions. It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eunjeong Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
9
|
Zhang XX, Sun YZ, Wang W, Gao Y, Wei XY, Sun HC, Wang CR, Ni HB, Yang X, Elsheikha HM, Guo HP. Altered landscape of total RNA, tRNA and sncRNA modifications in the liver and spleen of mice infected by Toxoplasma gondii. PLoS Negl Trop Dis 2024; 18:e0012281. [PMID: 38905319 PMCID: PMC11221703 DOI: 10.1371/journal.pntd.0012281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/03/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Pathogens can impact host RNA modification machinery to establish a favorable cellular environment for their replication. In the present study, we investigated the effect of Toxoplasma gondii infection on host RNA modification profiles and explored how these modifications may influence the host-parasite interaction. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the modification levels of ∼ 80 nt tRNA and 17-50 nt sncRNAs in mouse liver, spleen, and serum using liquid chromatography and tandem mass spectrometry analysis. The results revealed alterations in RNA modification profiles, particularly during acute infection. The liver exhibited more differentially abundant RNA modifications than the spleen. RNA modification levels in serum were mostly downregulated during acute infection compared to control mice. Correlations were detected between different RNA modifications in the liver and spleen during infection and between several RNA modifications and many cytokines. Alterations in RNA modifications affected tRNA stability and protein translation. CONCLUSIONS/SIGNIFICANCE These findings provide new insight into the role of RNA modifications in mediating the murine host response to T. gondii infection.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Yu-Zhe Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Wei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Yang Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Xin-Yu Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Hong-Chao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing, PR China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, PR China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Huan-Ping Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
10
|
Huang E, Frydman C, Xiao X. Navigating the landscape of epitranscriptomics and host immunity. Genome Res 2024; 34:515-529. [PMID: 38702197 PMCID: PMC11146601 DOI: 10.1101/gr.278412.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
RNA modifications, also termed epitranscriptomic marks, encompass chemical alterations to individual nucleotides, including processes such as methylation and editing. These marks contribute to a wide range of biological processes, many of which are related to host immune system defense. The functions of immune-related RNA modifications can be categorized into three main groups: regulation of immunogenic RNAs, control of genes involved in innate immune response, and facilitation of adaptive immunity. Here, we provide an overview of recent research findings that elucidate the contributions of RNA modifications to each of these processes. We also discuss relevant methods for genome-wide identification of RNA modifications and their immunogenic substrates. Finally, we highlight recent advances in cancer immunotherapies that aim to reduce cancer cell viability by targeting the enzymes responsible for RNA modifications. Our presentation of these dynamic research avenues sets the stage for future investigations in this field.
Collapse
Affiliation(s)
- Elaine Huang
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Clara Frydman
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California 90095, USA;
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
11
|
Meng S, Jiangtao B, Haisong W, Mei L, Long Z, Shanfeng L. RNA m 5C methylation: a potential modulator of innate immune pathways in hepatocellular carcinoma. Front Immunol 2024; 15:1362159. [PMID: 38807595 PMCID: PMC11131105 DOI: 10.3389/fimmu.2024.1362159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
RNA 5-methylcytosine (m5C) methylation plays a crucial role in hepatocellular carcinoma (HCC). As reported, aberrant m5C methylation is closely associated with the progression, therapeutic efficacy, and prognosis of HCC. The innate immune system functions as the primary defense mechanism in the body against pathogenic infections and tumors since it can activate innate immune pathways through pattern recognition receptors to exert anti-infection and anti-tumor effects. Recently, m5C methylation has been demonstrated to affect the activation of innate immune pathways including TLR, cGAS-STING, and RIG-I pathways by modulating RNA function, unveiling new mechanisms underlying the regulation of innate immune responses by tumor cells. However, research on m5C methylation and its interplay with innate immune pathways is still in its infancy. Therefore, this review details the biological significance of RNA m5C methylation in HCC and discusses its potential regulatory relationship with TLR, cGAS-STING, and RIG-I pathways, thereby providing fresh insights into the role of RNA methylation in the innate immune mechanisms and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Shanfeng
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
12
|
Militello KT, Leigh J, Pusateri M, Read LK, Vogler D. A role for a Trypanosoma brucei cytosine RNA methyltransferase homolog in ribosomal RNA processing. PLoS One 2024; 19:e0298521. [PMID: 38662801 PMCID: PMC11045063 DOI: 10.1371/journal.pone.0298521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/26/2024] [Indexed: 04/28/2024] Open
Abstract
In Trypanosoma brucei, gene expression is primarily regulated posttranscriptionally making RNA metabolism critical. T. brucei has an epitranscriptome containing modified RNA bases. Yet, the identity of the enzymes catalyzing modified RNA base addition and the functions of the enzymes and modifications remain unclear. Homology searches indicate the presence of numerous T. brucei cytosine RNA methyltransferase homologs. One such homolog, TbNop2 was studied in detail. TbNop2 contains the six highly conserved motifs found in cytosine RNA methyltransferases and is evolutionarily related to the Nop2 protein family required for rRNA modification and processing. RNAi experiments targeting TbNop2 resulted in reduced levels of TbNop2 RNA and protein, and a cessation of parasite growth. Next generation sequencing of bisulfite-treated RNA (BS-seq) detected the presence of two methylation sites in the large rRNA; yet TbNop2 RNAi did not result in a significant reduction of methylation. However, TbNop2 RNAi resulted in the retention of 28S internal transcribed spacer RNAs, indicating a role for TbNop2 in rRNA processing.
Collapse
Affiliation(s)
- Kevin T. Militello
- Biology Department, State University of New York at Geneseo, Geneseo, NY, United States of America
| | - Jennifer Leigh
- Biology Department, State University of New York at Geneseo, Geneseo, NY, United States of America
| | - Matthew Pusateri
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Laurie K. Read
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Dineen Vogler
- Biology Department, State University of New York at Geneseo, Geneseo, NY, United States of America
| |
Collapse
|
13
|
Xiong Y, Li Y, Qian W, Zhang Q. RNA m5C methylation modification: a potential therapeutic target for SARS-CoV-2-associated myocarditis. Front Immunol 2024; 15:1380697. [PMID: 38715608 PMCID: PMC11074473 DOI: 10.3389/fimmu.2024.1380697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/03/2024] [Indexed: 05/23/2024] Open
Abstract
The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Yanan Li
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiwei Qian
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Zhang F, Liu S, Qiao Z, Li L, Han Y, Sun J, Ge C, Zhu J, Li D, Yao H, Zhang H, Dai J, Yan Y, Chen Z, Yin L, Ma F. Housekeeping U1 snRNA facilitates antiviral innate immunity by promoting TRIM25-mediated RIG-I activation. Cell Rep 2024; 43:113945. [PMID: 38483900 DOI: 10.1016/j.celrep.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
U1 small nuclear RNA (snRNA) is an abundant and evolutionarily conserved 164-nucleotide RNA species that functions in pre-mRNA splicing, and it is considered to be a housekeeping non-coding RNA. However, the role of U1 snRNA in regulating host antiviral immunity remains largely unexplored. Here, we find that RNVU1-18, a U1 pseudogene, is significantly upregulated in the host infected with RNA viruses, including influenza and respiratory syncytial virus. Overexpression of U1 snRNA protects cells against RNA viruses, while knockdown of U1 snRNA leads to more viral burden in vitro and in vivo. Knockout of RNVU1-18 is sufficient to impair the type I interferon-dependent antiviral innate immunity. U1 snRNA is required to fully activate the retinoic acid-inducible gene I (RIG-I)-dependent antiviral signaling, since it interacts with tripartite motif 25 (TRIM25) and enhances the RIG-I-TRIM25 interaction to trigger K63-linked ubiquitination of RIG-I. Our study reveals the important role of housekeeping U1 snRNA in regulating host antiviral innate immunity and restricting RNA virus infection.
Collapse
Affiliation(s)
- Fan Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Zigang Qiao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Liang Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yu Han
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jiya Sun
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jingfei Zhu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Dapei Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Huiying Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou 215025, China.
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| |
Collapse
|
16
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
17
|
Avila-Bonilla RG, Martínez-Montero JP. Crosstalk between vault RNAs and innate immunity. Mol Biol Rep 2024; 51:387. [PMID: 38443657 PMCID: PMC10914904 DOI: 10.1007/s11033-024-09305-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Vault (vt) RNAs are noncoding (nc) RNAs transcribed by RNA polymerase III (RNA Pol III) with 5'-triphosphate (5'-PPP) termini that play significant roles and are recognized by innate immune sensors, including retinoic acid-inducible protein 1 (RIG-I). In addition, vtRNAs adopt secondary structures that can be targets of interferon-inducible protein kinase R (PKR) and the oligoadenylate synthetase (OAS)/RNase L system, both of which are important for activating antiviral defenses. However, changes in the expression of vtRNAs have been associated with pathological processes that activate proinflammatory pathways, which influence cellular events such as differentiation, aging, autophagy, apoptosis, and drug resistance in cancer cells. RESULTS In this review, we summarized the biology of vtRNAs and focused on their interactions with the innate immune system. These findings provide insights into the diverse roles of vtRNAs and their correlation with various cellular processes to improve our understanding of their biological functions.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Genética y Biología Molecular, Av. IPN 2508, 07360, Mexico City, Mexico.
| | | |
Collapse
|
18
|
Wu J, Li X, Kong D, Zheng X, Du W, Zhang Y, Jiao Y, Li X. Exploring the importance of m5c in the diagnosis and subtype classification of COPD using the GEO database. Gene 2024; 895:147987. [PMID: 37972696 DOI: 10.1016/j.gene.2023.147987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND 5-Methylcytosine (m5C) is an mRNA modifier that is associated with the occurrence and development of viral infection, pulmonary fibrosis, lung cancer, and other diseases. However, the role of m5C regulators in chronic obstructive pulmonary disease (COPD) remains unknown. METHODS In this study, by analysing the GSE42057 dataset, the differential expression of m5c regulators in the COPD group and control group was obtained, and a correlation analysis was conducted. The random forest model and support vector machine model were used to predict the occurrence of COPD. A nomogram model was also constructed to predict the prevalence of COPD. The COPD patients were divided into subtypes by consistent cluster analysis based on m5c methylation regulators. Immune cell infiltration was performed on the m5c methylation subtypes. Differentially expressed genes (DEGs) between m5c methylation subtypes were screened, and the DEGs were analysed by Gene Ontology (GO) Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we verified the expression of several m5C regulators and related pathways using a COPD cell model. RESULTS Seven m5c methylation regulators were differentially expressed. The random forest model based on the above genes was the most accurate for predicting the occurrence of COPD. A nomogram model based on the above genes could also accurately predict the prevalence of COPD, and the implementation of these models could benefit COPD patients. The consistent cluster analysis divided the COPD patients into two subtypes (Cluster A and Cluster B). The main component analysis algorithm determined the m5c methylation subtypes and found that patients in Cluster A had a higher m5c score than those in Cluster B. GO analysis of the DEGs between the m5c methylation COPD patient subtypes revealed that DEGS were mainly enriched in leukocyte-mediated immunity and regulation of T-cell activation. KEGG analysis revealed that DEGS were mainly enriched in Th1 and Th2 cell differentiation, neutrophil extracellular trap formation, and the NF-κB signalling pathway. Immunocyte correlation analysis revealed that Cluster B was associated with neutrophil- and macrophage-mediated immunity, while Cluster A was associated with CD4 + T-cell- and CD8 + T-cell-mediated immunity. Cell experiments have also verified some of the above research results. CONCLUSION The diagnosis and subtype classification of COPD patients based on m5c regulators may provide a new strategy for the diagnosis and treatment of COPD.
Collapse
Affiliation(s)
- Jianjun Wu
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xiaoning Li
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Deyu Kong
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xudong Zheng
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weisha Du
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Jiao
- Respiratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China.
| | - Xin Li
- Glaucoma, Eye Hospital China academy of Chinese Medical Sciences, Beijing 100040, China.
| |
Collapse
|
19
|
Ding S, Liu H, Liu L, Ma L, Chen Z, Zhu M, Liu L, Zhang X, Hao H, Zuo L, Yang J, Wu X, Zhou P, Huang F, Zhu F, Guan W. Epigenetic addition of m 5C to HBV transcripts promotes viral replication and evasion of innate antiviral responses. Cell Death Dis 2024; 15:39. [PMID: 38216565 PMCID: PMC10786922 DOI: 10.1038/s41419-023-06412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Eukaryotic five-methylcytosine (m5C) is an important regulator of viral RNA splicing, stability, and translation. However, its role in HBV replication remains largely unknown. In this study, functional m5C sites are identified in hepatitis B virus (HBV) mRNA. The m5C modification at nt 1291 is not only indispensable for Aly/REF export factor (ALYREF) recognition to promote viral mRNA export and HBx translation but also for the inhibition of RIG-I binding to suppress interferon-β (IFN-β) production. Moreover, NOP2/Sun RNA methyltransferase 2 (NSUN2) catalyzes the addition of m5C to HBV mRNA and is transcriptionally downregulated by the viral protein HBx, which suppresses the binding of EGR1 to the NSUN2 promoter. Additionally, NSUN2 expression correlates with m5C modification of type I IFN mRNA in host cells, thus, positively regulating IFN expression. Hence, the delicate regulation of NSUN2 expression induces m5C modification of HBV mRNA while decreasing the levels of m5C in host IFN mRNA, making it a vital component of the HBV life cycle. These findings provide new molecular insights into the mechanism of HBV-mediated IFN inhibition and may inform the development of new IFN-α based therapies.
Collapse
Affiliation(s)
- Shuang Ding
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Li Ma
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Li Zuo
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Jingwen Yang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Fang Huang
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, Hubei, 430071, China.
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China.
- Hubei JiangXia Laboratory, Wuhan, Hubei, 430200, China.
| |
Collapse
|
20
|
Wang H, Feng J, Zeng C, Liu J, Fu Z, Wang D, Wang Y, Zhang L, Li J, Jiang A, He M, Cao Y, Yan K, Tang H, Guo D, Xu K, Zhou X, Zhou L, Lan K, Zhou Y, Chen Y. NSUN2-mediated M 5c methylation of IRF3 mRNA negatively regulates type I interferon responses during various viral infections. Emerg Microbes Infect 2023; 12:2178238. [PMID: 36748584 PMCID: PMC9946332 DOI: 10.1080/22221751.2023.2178238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
5-Methylcytosine (m5C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m5C methyltransferase, negatively regulates type I interferon responses during various viral infections, including SARS-CoV-2. NSUN2 specifically mediates m5C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-β production. Knockout or knockdown of NSUN2 enhanced type I interferon and downstream ISGs during various viral infection in vitro. And in vivo, the antiviral innate response is more dramatically enhanced in Nsun2+/- mice than in Nsun2+/+ mice. The highly m5C methylated cytosines in IRF3 mRNA were identified, and their mutation enhanced cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), or Zika virus (ZIKV) resulted in a reduction of endogenous NSUN2 levels. Especially, SARS-CoV-2 infection (WT strain and BA.1 omicron variant) also decreased endogenous levels of NSUN2 in COVID-19 patients and K18-hACE2 KI mice, further increasing type I interferon and downstream ISGs. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease during SARS-CoV-2 and various viral infections to boost antiviral responses for effective elimination of viruses.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Cong Zeng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jiejie Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Zhiying Fu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Dehe Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Lu Zhang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Jiali Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Ao Jiang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Miao He
- School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuanyuan Cao
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Kun Yan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hao Tang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Deyin Guo
- School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ke Xu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan, People’s Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Yu Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
21
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
22
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
23
|
Ribeiro DR, Nunes A, Ribeiro D, Soares AR. The hidden RNA code: implications of the RNA epitranscriptome in the context of viral infections. Front Genet 2023; 14:1245683. [PMID: 37614818 PMCID: PMC10443596 DOI: 10.3389/fgene.2023.1245683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Emerging evidence highlights the multifaceted roles of the RNA epitranscriptome during viral infections. By modulating the modification landscape of viral and host RNAs, viruses enhance their propagation and elude host surveillance mechanisms. Here, we discuss how specific RNA modifications, in either host or viral RNA molecules, impact the virus-life cycle and host antiviral responses, highlighting the potential of targeting the RNA epitranscriptome for novel antiviral therapies.
Collapse
|
24
|
Jiang S, Hu J, Bai Y, Hao R, Liu L, Chen H. Transcriptome-wide 5-methylcytosine modification profiling of long non-coding RNAs in A549 cells infected with H1N1 influenza A virus. BMC Genomics 2023; 24:316. [PMID: 37308824 DOI: 10.1186/s12864-023-09432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND In recent years, accumulating evidences have revealed that influenza A virus (IAV) infections induce significant differential expression of host long noncoding RNAs (lncRNAs), some of which play important roles in the regulation of virus-host interactions and determining the virus pathogenesis. However, whether these lncRNAs bear post-translational modifications and how their differential expression is regulated remain largely unknown. In this study, the transcriptome-wide 5-methylcytosine (m5C) modification of lncRNAs in A549 cells infected with an H1N1 influenza A virus was analyzed and compared with uninfected cells by Methylated RNA immunoprecipitation sequencing (MeRIP-Seq). RESULTS Our data identified 1317 upregulated m5C peaks and 1667 downregulated peaks in the H1N1 infected group. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially modified lncRNAs were associated with protein modification, organelle localization, nuclear export and other biological processes. Furthermore, conjoint analysis of the differentially modified (DM) and differentially expressed (DE) lncRNAs identified 143 'hyper-up', 81 'hypo-up', 6 'hypo-down' and 4 'hyper-down' lncRNAs. GO and KEGG analyses revealed that these DM and DE lncRNAs were predominantly associated with pathogen recognition and disease pathogenesis pathways, indicating that m5C modifications could play an important role in the regulation of host response to IAV replication by modulating the expression and/or stability of lncRNAs. CONCLUSION This study presented the first m5C modification profile of lncRNAs in A549 cells infected with IAV and demonstrated a significant alteration of m5C modifications on host lncRNAs upon IAV infection. These data could give a reference to future researches on the roles of m5C methylation in virus infection.
Collapse
Affiliation(s)
- Shengqiang Jiang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Jing Hu
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Yang Bai
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Ruiwei Hao
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, P. R. China
| | - Hongying Chen
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shanxi, P. R. China.
| |
Collapse
|
25
|
Naesens L, Haerynck F, Gack MU. The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol 2023; 44:435-449. [PMID: 37149405 PMCID: PMC10461603 DOI: 10.1016/j.it.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid sensors survey subcellular compartments for atypical or mislocalized RNA or DNA, ultimately triggering innate immune responses. Retinoic acid-inducible gene-I (RIG-I) is part of the family of cytoplasmic RNA receptors that can detect viruses. A growing literature demonstrates that mammalian RNA polymerase III (Pol III) transcribes certain viral or cellular DNA sequences into immunostimulatory RIG-I ligands, which elicits antiviral or inflammatory responses. Dysregulation of the Pol III-RIG-I sensing axis can lead to human diseases including severe viral infection outcomes, autoimmunity, and tumor progression. Here, we summarize the newly emerging role of viral and host-derived Pol III transcripts in immunity and also highlight recent advances in understanding how mammalian cells prevent unwanted immune activation by these RNAs to maintain homeostasis.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| |
Collapse
|