1
|
Wirthlin M, Lovell PV, Jarvis ED, Mello CV. Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genomics 2014; 15:1082. [PMID: 25494627 PMCID: PMC4377847 DOI: 10.1186/1471-2164-15-1082] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/09/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Songbirds (oscine Passeriformes) are among the most diverse and successful vertebrate groups, comprising almost half of all known bird species. Identifying the genomic innovations that might be associated with this success, as well as with characteristic songbird traits such as vocal learning and the brain circuits that underlie this behavior, has proven difficult, in part due to the small number of avian genomes available until recently. Here we performed a comparative analysis of 48 avian genomes to identify genomic features that are unique to songbirds, as well as an initial assessment of function by investigating their tissue distribution and predicted protein domain structure. RESULTS Using BLAT alignments and gene synteny analysis, we curated a large set of Ensembl gene models that were annotated as novel or duplicated in the most commonly studied songbird, the Zebra finch (Taeniopygia guttata), and then extended this analysis to 47 additional avian and 4 non-avian genomes. We identified 10 novel genes uniquely present in songbird genomes. A refined map of chromosomal synteny disruptions in the Zebra finch genome revealed that the majority of these novel genes localized to regions of genomic instability associated with apparent chromosomal breakpoints. Analyses of in situ hybridization and RNA-seq data revealed that a subset of songbird-unique genes is expressed in the brain and/or other tissues, and that 2 of these (YTHDC2L1 and TMRA) are highly differentially expressed in vocal learning-associated nuclei relative to the rest of the brain. CONCLUSIONS Our study reveals novel genes unique to songbirds, including some that may subserve their unique vocal control system, substantially improves the quality of Zebra finch genome annotations, and contributes to a better understanding of how genomic features may have evolved in conjunction with the emergence of the songbird lineage.
Collapse
Affiliation(s)
| | | | | | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97214, USA.
| |
Collapse
|
2
|
Sinnott R, Winters L, Larson B, Mytsa D, Taus P, Cappell KM, Whitehurst AW. Mechanisms promoting escape from mitotic stress-induced tumor cell death. Cancer Res 2014; 74:3857-69. [PMID: 24860162 DOI: 10.1158/0008-5472.can-13-3398] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is notorious for its paltry responses to first-line therapeutic regimens. In contrast to acquired chemoresistance, little is known about the molecular underpinnings of the intrinsic resistance of chemo-naïve NSCLC. Here we report that intrinsic resistance to paclitaxel in NSCLC occurs at a cell-autonomous level because of the uncoupling of mitotic defects from apoptosis. To identify components that permit escape from mitotic stress-induced death, we used a genome-wide RNAi-based strategy, which combines a high-throughput toxicity screen with a live-cell imaging platform to measure mitotic fate. This strategy revealed that prolonging mitotic arrest with a small molecule inhibitor of the APC/cyclosome could sensitize otherwise paclitaxel-resistant NSCLC. We also defined novel roles for CASC1 and TRIM69 in supporting resistance to spindle poisons. CASC1, which is frequently co-amplified with KRAS in lung tumors, is essential for microtubule polymerization and satisfaction of the spindle assembly checkpoint. TRIM69, which associates with spindle poles and promotes centrosomal clustering, is essential for formation of a bipolar spindle. Notably, RNAi-mediated attenuation of CASC1 or TRIM69 was sufficient to inhibit tumor growth in vivo. On the basis of our results, we hypothesize that tumor evolution selects for a permissive mitotic checkpoint, which may promote survival despite chromosome segregation errors. Attacking this adaptation may restore the apoptotic consequences of mitotic damage to permit the therapeutic eradication of drug-resistant cancer cells.
Collapse
Affiliation(s)
- Rebecca Sinnott
- Authors' Affiliations: Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill
| | - Leah Winters
- Department of Anesthesiology, University of Colorado, Aurora, Colorado; and
| | - Brittany Larson
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Daniela Mytsa
- Authors' Affiliations: Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill
| | - Patrick Taus
- Authors' Affiliations: Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill
| | | | - Angelique W Whitehurst
- Authors' Affiliations: Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill;
| |
Collapse
|
3
|
The superfamily of mitochondrial Complex1_LYR motif-containing (LYRM) proteins. Biochem Soc Trans 2013; 41:1335-41. [DOI: 10.1042/bst20130116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial LYRM (leucine/tyrosine/arginine motif) proteins are members of the Complex1_LYR-like superfamily. Individual LYRM proteins have been identified as accessory subunits or assembly factors of mitochondrial OXPHOS (oxidative phosphorylation) complexes I, II, III and V respectively, and they play particular roles in the essential Fe–S cluster biogenesis and in acetate metabolism. LYRM proteins have been implicated in mitochondrial dysfunction, e.g. in the context of insulin resistance. However, the functional significance of the common LYRM is still unknown. Analysis of protein–protein interaction screens suggests that LYRM proteins form protein complexes with phylogenetically ancient proteins of bacterial origin. Interestingly, the mitochondrial FAS (fatty acid synthesis) type II acyl-carrier protein ACPM associates with some of the LYRM protein-containing complexes. Eukaryotic LYRM proteins interfere with mitochondrial homoeostasis and might function as adaptor-like ‘accessory factors’.
Collapse
|
4
|
Kreisel D, Gelman AE, Higashikubo R, Lin X, Vikis HG, White JM, Toth KA, Deshpande C, Carreno BM, You M, Taffner SM, Yokoyama WM, Bui JD, Schreiber RD, Krupnick AS. Strain-specific variation in murine natural killer gene complex contributes to differences in immunosurveillance for urethane-induced lung cancer. Cancer Res 2012; 72:4311-7. [PMID: 22751136 DOI: 10.1158/0008-5472.can-12-0908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide and results from a complex interaction between carcinogen exposure and inherent susceptibility. Despite its prevalence, genetic factors that predispose to the development of lung cancer remain elusive. Inbred mouse models offer a unique and clinically relevant tool to study genetic factors that contribute to lung carcinogenesis due to the development of tumors that resemble human adenocarcinoma and broad strain-specific variation in cancer incidence after carcinogen administration. Here, we set out to investigate whether strain-specific variability in tumor immunosurveillance contributes to differences in lung cancer. Using bone marrow transplantation, we determined that hematopoietic cells from lung cancer-resistant mice could significantly impede the development of cancer in a susceptible strain. Furthermore, we show that this is not due to differences in tumor-promoting inflammatory changes or variability in immunosurveillance by the adaptive immune system but results from strain-specific differences in natural killer (NK) cell cytotoxicity. Using a newly discovered congenic strain of mice, we show a previously unrecognized role for strain-specific polymorphisms in the natural killer gene complex (NKC) in immunosurveillance for carcinogen-induced lung cancer. Because polymorphisms in the NKC are highly prevalent in man, our data may explain why certain individuals without obvious risk factors develop lung cancer whereas others remain resistant to the disease despite heavy environmental carcinogen exposure.
Collapse
Affiliation(s)
- Daniel Kreisel
- Departments of Surgery, Pathology and Immunology, and Internal Medicine,The Alvin Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yang Z, Wang JR, Niu T, Gao S, Yin T, You M, Jiang ZH, Hu M. Inhibition of P-glycoprotein leads to improved oral bioavailability of compound K, an anticancer metabolite of red ginseng extract produced by gut microflora. Drug Metab Dispos 2012; 40:1538-44. [PMID: 22584255 DOI: 10.1124/dmd.111.044008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ginsenosides are hydrolyzed extensively by gut microflora after oral administration, and their metabolites are pharmacologically active against lung cancer cells. In this study, we measured the metabolism of various ginsenosides by gut microflora and determined the mechanisms responsible for the observed pharmacokinetic behaviors of its active metabolite, Compound K (C-K). The results showed that biotransformation into C-K is the major metabolic pathway of ginsenosides after the oral administration of the red ginseng extract containing both protopanaxadiol and protopanaxatriol ginsenosides. Pharmacokinetic studies in normal mice showed that C-K exhibited low oral bioavailability. To define the mechanisms responsible for this low bioavailability, two P-glycoprotein (P-gp) inhibitors, verapamil and cyclosporine A, were used, and their presence substantially decreased C-K's efflux ratio in Caco-2 cells (from 26.6 to <3) and significantly increased intracellular concentrations (by as much as 40-fold). Similar results were obtained when transcellular transport of C-K was determined using multidrug resistance 1 (MDR1)-overexpressing Madin-Darby canine kidney II cells. In MDR1a/b(-/-) FVB mice, its plasma C(max) and AUC(0-24h) were increased substantially by 4.0- and 11.7-fold, respectively. These increases appear to be due to slower elimination and faster absorption of C-K in MDR1a/b(-/-) mice. In conclusion, C-K is the major active metabolite of ginsenosides after microflora hydrolysis of primary ginsenosides in the red ginseng extract, and inhibition/deficiency of P-gp can lead to large enhancement of its absorption and bioavailability.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund St., Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Quan L, Stassen APM, Ruivenkamp CAL, van Wezel T, Fijneman RJA, Hutson A, Kakarlapudi N, Hart AAM, Demant P. Most lung and colon cancer susceptibility genes are pair-wise linked in mice, humans and rats. PLoS One 2011; 6:e14727. [PMID: 21390212 PMCID: PMC3044722 DOI: 10.1371/journal.pone.0014727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 01/31/2011] [Indexed: 12/02/2022] Open
Abstract
Genetic predisposition controlled by susceptibility quantitative trait loci (QTLs) contributes to a large proportion of common cancers. Studies of genetics of cancer susceptibility, however, did not address systematically the relationship between susceptibility to cancers in different organs. We present five sets of data on genetic architecture of colon and lung cancer susceptibility in mice, humans and rats. They collectively show that the majority of genes for colon and lung cancer susceptibility are linked pair-wise and are likely identical or related. Four CcS/Dem recombinant congenic strains, each differing from strain BALB/cHeA by a different small random subset of ±12.5% of genes received from strain STS/A, suggestively show either extreme susceptibility or extreme resistance for both colon and lung tumors, which is unlikely if the two tumors were controlled by independent susceptibility genes. Indeed, susceptibility to lung cancer (Sluc) loci underlying the extreme susceptibility or resistance of such CcS/Dem strains, mapped in 226 (CcS-10×CcS-19)F2 mice, co-localize with susceptibility to colon cancer (Scc) loci. Analysis of additional Sluc loci that were mapped in OcB/Dem strains and Scc loci in CcS/Dem strains, respectively, shows their widespread pair-wise co-localization (P = 0.0036). Finally, the majority of published human and rat colon cancer susceptibility genes map to chromosomal regions homologous to mouse Sluc loci. 12/12 mouse Scc loci, 9/11 human and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus or its homologous site, forming 21 clusters of lung and colon cancer susceptibility genes from one, two or three species. Our data shows that cancer susceptibility QTLs can have much broader biological effects than presently appreciated. It also demonstrates the power of mouse genetics to predict human susceptibility genes. Comparison of molecular mechanisms of susceptibility genes that are organ-specific and those with trans-organ effects can provide a new dimension in understanding individual cancer susceptibility.
Collapse
Affiliation(s)
- Lei Quan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dwyer-Nield LD, McQuillan J, Hill-Baskin A, Radcliffe RA, You M, Nadeau JH, Malkinson AM. Epistatic interactions govern chemically-induced lung tumor susceptibility and Kras mutation site in murine C57BL/6J-ChrA/J chromosome substitution strains. Int J Cancer 2009; 126:125-32. [PMID: 19609923 DOI: 10.1002/ijc.24743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cancer susceptibility results from interactions between sensitivity and resistance alleles. We employed murine chromosome substitution strains to study how resistance alleles affected sensitive alleles during chemically-induced lung carcinogenesis. The C57BL/6J-Chr#(A/J) strains, constructed by selectively breeding sensitive A/J and resistant C57BL/6J (B6) mice, each contain one pair of A/J chromosomes within an otherwise B6 genome. Pas1, the major locus responsible for this differential strain response to urethane carcinogenesis, resides on Chr 6, but C57BL/6J-Chr6(A/J) mice (hereafter CSS-6) developed few tumors following a single urethane injection, which demonstrates epistatic interactions with other B6 alleles. CSS6 mice developed dozens of lung tumors after chronic urethane exposure, however, indicating that these epistatic interactions could be overcome by repeated carcinogen administration. Unlike A/J, but similar to B6 mice, CSS6 mice were resistant to lung carcinogenesis induced by 3-methylcholanthrene (MCA). Tumor multiplicity increased if BHT administration followed urethane exposure, showing that a Chr 6 gene(s) regulates sensitivity to chemically-induced tumor promotion. Unlike A/J tumors (predominantly codon 61 A-->T transversions), Kras mutations in tumors induced by urethane in CSS-6 mice were similar to B6 tumors (codon 61 A-->G transitions). DNA repair genes not located on Chr 6 may determine the nature of Kras mutations. CSS-6 mice are a valuable resource for testing the ability of candidate genes to modulate lung carcinogenesis.
Collapse
Affiliation(s)
- Lori D Dwyer-Nield
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang M, Wang Y, You M, Devereux TR. ANALYSIS OF THEPar2MODIFIER OF PULMONARY ADENOMA FORMATION IN MICE. Exp Lung Res 2009; 31:193-204. [PMID: 15828125 DOI: 10.1080/01902140490495598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Inbred strains of mouse show various susceptibilities to spontaneous and chemical-induced lung tumorigenesis. Genetic analyses have revealed that lung tumor susceptibilities of inbred mouse strains are governed by quantitative trait loci (QLTs) located on multiple chromosomes. A major lung tumor resistance QLT, designated pulmonary adenoma resistance 2 (Par2), was mapped to the mouse chromosome 18 independently by several groups and accounted for up to 60% phenotype variance between susceptible A/J and more resistant BALB/c strains. The authors recently conducted studies to positionally clone the Par2 gene. This review summarizes the effort and progress towards the identification of Par2 candidates.
Collapse
Affiliation(s)
- Min Wang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
9
|
Wirschell M, Yang C, Yang P, Fox L, Yanagisawa HA, Kamiya R, Witman GB, Porter ME, Sale WS. IC97 is a novel intermediate chain of I1 dynein that interacts with tubulin and regulates interdoublet sliding. Mol Biol Cell 2009; 20:3044-54. [PMID: 19420136 DOI: 10.1091/mbc.e09-04-0276] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Our goal is to understand the assembly and regulation of flagellar dyneins, particularly the Chlamydomonas inner arm dynein called I1 dynein. Here, we focus on the uncharacterized I1-dynein IC IC97. The IC97 gene encodes a novel IC without notable structural domains. IC97 shares homology with the murine lung adenoma susceptibility 1 (Las1) protein--a candidate tumor suppressor gene implicated in lung tumorigenesis. Multiple, independent biochemical assays determined that IC97 interacts with both alpha- and beta-tubulin subunits within the axoneme. I1-dynein assembly mutants suggest that IC97 interacts with both the IC138 and IC140 subunits within the I1-dynein motor complex and that IC97 is part of a regulatory complex that contains IC138. Microtubule sliding assays, using axonemes containing I1 dynein but devoid of IC97, show reduced microtubule sliding velocities that are not rescued by kinase inhibitors, revealing a critical role for IC97 in I1-dynein function and control of dynein-driven motility.
Collapse
Affiliation(s)
- Maureen Wirschell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The Pas1 locus is the major tumor modifier of lung tumorigenesis in mouse inbred strains. Of six genes contained in a conserved haplotype, three (Casc1, Kras and Ifltd1) have been proposed as Pas1 candidates, but mechanistic evidence is sparse. Herein, we examined urethane-induced lung tumorigenesis in a new mouse model developed by replacing the Kras gene with an Hras gene in the susceptible A/J-type Pas1 locus and crossing these mice with either C57BL/6J or A/J mice. Heterozygous mice carrying the Hras-replacement gene were more susceptible than wild-type mice to lung carcinogenesis, indicating that Hras replacement not only compensates for Kras functions, but is more active. Indeed, most lung tumors carried a Gln61Leu mutation in the Hras-replacement gene, whereas no mutations were observed in the endogenous Hras gene. Thus, the context of the Kras locus determined mutability of ras genes. In mice carrying the Hras-replacement gene, the mutation frequency affecting the wild-type Kras gene was much higher when this gene was located in the A/J type than in the C57BL/6J-type Pas1 locus (12 versus 0%, -log P=5.0). These findings identify cis-acting elements in the Pas1 locus as the functional components controlling genetic susceptibility to lung tumorigenesis by modulating mutability of the Kras gene.
Collapse
|
11
|
Chang XZ, Li DQ, Hou YF, Wu J, Lu JS, Di GH, Jin W, Ou ZL, Shen ZZ, Shao ZM. Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res 2008; 9:R76. [PMID: 17980029 PMCID: PMC2246172 DOI: 10.1186/bcr1789] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/19/2007] [Accepted: 11/02/2007] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The molecular mechanisms involved in breast cancer metastasis still remain unclear to date. In our previous study, differential expression of peroxiredoxin 6 was found between the highly metastatic MDA-MB-435HM cells and their parental counterparts, MDA-MB-435 cells. In this study, we investigated the effects of peroxiredoxin 6 on the proliferation and metastatic potential of human breast cancer cells and their potential mechanism. METHODS Expression of peroxiredoxin 6 in the highly metastatic MDA-MB-231HM cells was investigated by RT-PCR, real-time PCR and western blot. A recombinant expression plasmid of the human peroxiredoxin 6 gene was constructed and transfected into MDA-MB-231 and MDA-MB-435 cells. The effects of peroxiredoxin 6 on the proliferation and invasion of MDA-MB-231 and MDA-MB-435 cells were investigated by the Cell Counting Kit-8 method, colony-formation assay, adhesion assay, flow cytometry and invasion assay in vitro. miRNA was used to downregulate the expression of peroxiredoxin 6. Genes related to the invasion and metastasis of cancer were determined by RT-PCR, real-time PCR and western blot. The tumorigenicity and spontaneously metastatic capability regulated by peroxiredoxin 6 were determined using an orthotopic xenograft tumor model in athymic mice. RESULTS Overexpression of peroxiredoxin 6 in MDA-MB-231HM cells compared with their parental counterparts was confirmed. Upregulation of peroxiredoxin 6 enhanced the in vitro proliferation and invasion of breast cancer cells. The enhancement was associated with decreasing levels of tissue inhibitor of matrix metalloproteinase (TIMP)-2 and increasing levels of the urokinase-type plasminogen activator receptor (uPAR), Ets-1 (E26 transformation-specific-1), matrix metalloproteinase (MMP)-9 and RhoC (ras homolog gene family, member C) expression. The results were further demonstrated by RNA interference experiments in vitro. In an in vivo study, we also demonstrated that peroxiredoxin 6-transfected breast cancer cells grew much faster and had more pulmonary metastases than control cells. By contrast, peroxiredoxin 6 knockdown breast cancer cells grew more slowly and had fewer pulmonary metastases. Effects similar to those of peroxiredoxin 6 on the uPAR, Ets-1, MMP-9, RhoC and TIMP-2 expression observed in in vitro studies were found in the in vivo study. CONCLUSION Overexpression of peroxiredoxin 6 leads to a more invasive phenotype and metastatic potential in human breast cancer, at least in part, through regulation of the levels of uPAR, Ets-1, MMP-9, RhoC and TIMP-2 expression.
Collapse
Affiliation(s)
- Xin-Zhong Chang
- Breast Cancer Institute, Cancer Hospital, Department of Oncology, Shanghai Medical College, Institutes of Biomedical Science, Fudan University, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kohno T, Kunitoh H, Suzuki K, Yamamoto S, Kuchiba A, Matsuno Y, Yanagitani N, Yokota J. Association of KRAS polymorphisms with risk for lung adenocarcinoma accompanied by atypical adenomatous hyperplasias. Carcinogenesis 2008; 29:957-63. [PMID: 18299280 DOI: 10.1093/carcin/bgn048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pulmonary adenoma susceptibility 1 (Pas1) gene affects susceptibility to the development of lung adenomas in mice with a subset of the adenomas progressing to adenocarcinoma (ADC). In this study, genotype distributions for 10 polymorphisms in the human counterparts for three mouse candidate Pas1 genes, KRAS, CASC1/LAS1 and LRMP, were examined in a hospital-based case-control study consisting of 364 lung ADC cases and 253 controls. All the ADC cases were subjected to lobectomy and subsequent pathological investigation of atypical adenomatous hyperplasia (AAH), a putative precursor for peripheral lung ADC, including bronchioloalveolar carcinoma, in the resected lobes. Eighty-one (22%) of the ADC cases carried at least one AAH lesion in addition to the primary ADC and 34 (9%) of them carried multiple AAH lesions. None of the 10 polymorphisms examined showed significant associations with overall lung ADC risk (P > 0.05). However, minor allele carriers for two polymorphisms in the KRAS gene, KRAS-1 and -6, showed significantly increased odds ratios (ORs) for ADC accompanied by multiple AAHs [OR = 3.0; 95% confidence interval (CI) = 1.4-6.2, P = 0.004 and OR = 2.4; 95% CI = 1.1-4.7, P = 0.02, respectively]. Minor haplotypes including the minor allele for the KRAS-6 polymorphism showed increased ORs for ADC accompanied by multiple AAHs, and KRAS transcripts from the minor allele for this polymorphism were more abundantly detected in lung tissues than those from the major allele. Thus, KRAS polymorphisms were indicated to be involved in risk for the development of AAHs that progress to ADC by causing differential KRAS oncogene expression in the lungs.
Collapse
Affiliation(s)
- Takashi Kohno
- Biology Division, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sandercock LE, Hahn JN, Li L, Luchman H, Giesbrecht JL, Peterson LA, Jirik FR. Mgmt deficiency alters the in vivo mutational spectrum of tissues exposed to the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Carcinogenesis 2008; 29:866-74. [DOI: 10.1093/carcin/bgn030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
14
|
Liu Y, Vikis HG, Yi Y, Futamura M, Wang Y, You M. Degradation of lung adenoma susceptibility 1, a major candidate mouse lung tumor modifier, is required for cell cycle progression. Cancer Res 2007; 67:10207-13. [PMID: 17974961 DOI: 10.1158/0008-5472.can-07-2574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously identified murine lung adenoma susceptibility 1 (Las1) as the pulmonary adenoma susceptibility 1 candidate gene. Las1 has two natural alleles, Las1-A/J and Las1-B6. Las1 encodes an 85-kDa protein with uncharacterized biological function. In the present study, we report that Las1 is an unstable protein and the rapid destruction of Las1 depends on the ubiquitin-proteasome pathway. Las1 is a new microtubule-binding protein and Las1 associated with tubulin is not ubiquitinated. We further show that Las1-A/J is a more stable protein than Las1-B6. Las1 is expressed in the G(2) phase of the cell cycle and that ubiquitin-proteasome-mediated Las1 destruction occurs in mitosis. Overexpression of Las1-A/J inhibits normal E10 cell proliferation and induces a defective cytokinesis. The differential degradation of Las1-A/J and Las-B6 has important implications for its intracellular function and may eventually explain Las1-A/J in lung tumorigenesis.
Collapse
Affiliation(s)
- Yan Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
15
|
Identification of the functional role of AF1Q in the progression of breast cancer. Breast Cancer Res Treat 2007; 111:65-78. [PMID: 17929166 DOI: 10.1007/s10549-007-9761-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
A novel highly metastatic MDA-MB-231HM cells, derived from MDA-MB-231, was established in our institute. RT-PCR, real-time PCR and Western blot showed that AF1Q gene was differentially expressed between highly metastatic MDA-MB-231HM cells and its parental MDA-MB-231 cells. However, its molecular mechanisms in breast cancer metastasis remain to be characterized. To investigate the effects of AF1Q on the progression of human breast cancer cells, in the present study, recombinant expression plasmid vectors of the human AF1Q gene was transfected into MDA-MB-231 cells. We demonstrated that AF1Q overexpression enhanced the in vitro proliferation and invasive potential of breast cancer cells. Focused microarray analyses showed that 22 genes were differentially expressed between AF1Q transfected cells and its parental counterparts. Integrin alpha3, accompanied by up-regulation of Ets-1 and MMP-2, significantly enhanced the in vitro invasive potential of human breast cancer cells mediated by AF1Q. Estrogen-responsive ring finger protein gene (EFP), also played a role in the enhancement of in vitro proliferation of human breast cancer cells mediated by AF1Q, accompanied by down-regulation of 14-3-3delta. The association was ERalpha independent. These results were further demonstrated by RNA interference (RNAi) experiment in vitro. In in vivo study, we also demonstrated that AF1Q transfected breast cancer cells grew much faster and had more pulmonary metastases than vector-transfected or its parental counterparts. On the contrary, AF1Q knockdown cells grew slower and had less pulmonary metastasis. Similar effects of AF1Q on integrin alpha3, Ets-1, MMP-2, EFP, and 14-3-3delta expression observed in vitro studies were also found in the in vivo study. Taken together, these results provide functional evidences that overexpression of AF1Q leads to a more progression in human breast cancer, at least in part, through regulating the integrin alpha3, Ets-1, MMP-2, EFP, and 14-3-3delta expression.
Collapse
|
16
|
Liu P, Vikis H, Lu Y, Wang D, You M. Large-scale in silico mapping of complex quantitative traits in inbred mice. PLoS One 2007; 2:e651. [PMID: 17653278 PMCID: PMC1920557 DOI: 10.1371/journal.pone.0000651] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 06/21/2007] [Indexed: 12/02/2022] Open
Abstract
Understanding the genetic basis of common disease and disease-related quantitative traits will aid in the development of diagnostics and therapeutics. The processs of gene discovery can be sped up by rapid and effective integration of well-defined mouse genome and phenome data resources. We describe here an in silico gene-discovery strategy through genome-wide association (GWA) scans in inbred mice with a wide range of genetic variation. We identified 937 quantitative trait loci (QTLs) from a survey of 173 mouse phenotypes, which include models of human disease (atherosclerosis, cardiovascular disease, cancer and obesity) as well as behavioral, hematological, immunological, metabolic, and neurological traits. 67% of QTLs were refined into genomic regions <0.5 Mb with ∼40-fold increase in mapping precision as compared with classical linkage analysis. This makes for more efficient identification of the genes that underlie disease. We have identified two QTL genes, Adam12 and Cdh2, as causal genetic variants for atherogenic diet-induced obesity. Our findings demonstrate that GWA analysis in mice has the potential to resolve multiple tightly linked QTLs and achieve single-gene resolution. These high-resolution QTL data can serve as a primary resource for positional cloning and gene identification in the research community.
Collapse
Affiliation(s)
- Pengyuan Liu
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Haris Vikis
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yan Lu
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daolong Wang
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ming You
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Havelková H, Badalová J, Svobodová M, Vojtíková J, Kurey I, Vladimirov V, Demant P, Lipoldová M. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun 2007; 7:220-33. [PMID: 16511555 DOI: 10.1038/sj.gene.6364290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Symptoms of human leishmaniasis range from subclinical to extensive systemic disease with splenomegaly, hepatomegaly, skin lesions, anemia and hyperglobulinemia, but the basis of this variation is unknown. Association of progression of the disease with Th2 lymphocyte response was reported in mice but not in humans. As most genetic studies in Leishmania major (L. major)-infected mice were restricted to skin lesions, we analyzed the symptomatology of leishmaniasis in mice by monitoring skin lesions, hepatomegaly, splenomegaly and seven immunological parameters. We detected and mapped 17 Leishmania major response (Lmr) gene loci that control the symptoms of infection. Surprisingly, the individual Lmr loci control 13 different combinations of pathological and immunological symptoms. Seven loci control both pathological and immunological parameters, 10 influence immunological parameters only. Moreover, the genetics of clinical symptoms is also very heterogeneous: loci Lmr13 and Lmr4 determine skin lesions only, Lmr5 and Lmr10 skin lesions and splenomegaly, Lmr14 and Lmr3 splenomegaly and hepatomegaly, Lmr3 (weakly) skin lesions, and Lmr15 hepatomegaly only. Only two immunological parameters, IgE and interferon-gamma serum levels, correlate partly with clinical manifestations. These findings extend the paradigm for the genetics of host response to infection to include numerous genes, each controlling a different set of organ-specific and systemic effects.
Collapse
Affiliation(s)
- H Havelková
- Department of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang M, Zhang Z, Zhang Z, Vikis H, Yan Y, Wang Y, You M. Fine mapping and candidate gene analyses of pulmonary adenoma resistance 1, a major genetic determinant of mouse lung adenoma resistance. Cancer Res 2007; 67:2508-16. [PMID: 17363568 DOI: 10.1158/0008-5472.can-06-3157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary adenoma resistance 1 (Par1) is a major genetic determinant of mouse lung adenoma resistance. Although Par1 was previously mapped to mouse chromosome 11 by conventional linkage analyses, its candidate region was broad and undefined. In our present study, we generated Par1 congenic mice using two mouse strains A/J (Par1/-) and Mus spretus (Par1/+). Analyzing these congenic mice enabled us to fine map the Par1 quantitative trait loci (QTL) into a 2.0-cM (2.2 Mb) chromosomal region between genetic marker D11Mit70 and the gene Hoxb9. We then conducted systematic candidate gene screening through nucleotide polymorphism and expression analyses. Genes showing differential lung tissue expression or carrying nonsynonymous single nucleotide polymorphisms were identified and discussed. In particular, we evaluated tumor suppressor gene Tob1 for its Par1 candidacy. Our findings have narrowed the Par1 QTL region and will greatly facilitate the identification of the major genetic determinant of mouse lung adenoma resistance.
Collapse
Affiliation(s)
- Min Wang
- Department of Surgery and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ross AJ, Dailey LA, Brighton LE, Devlin RB. Transcriptional profiling of mucociliary differentiation in human airway epithelial cells. Am J Respir Cell Mol Biol 2007; 37:169-85. [PMID: 17413031 DOI: 10.1165/rcmb.2006-0466oc] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of airway epithelial biology and differentiation. We have performed microarray analysis on ALI cultures of human bronchial epithelial cells (HBECs) grown over a 28-d period to identify genes involved in mucociliary differentiation. We identified over 2,000 genes that displayed statistically significant 2-fold or greater changes in expression during the time course. Of the genes showing the largest increases, many are involved in processes associated with airway epithelial biology, such as cell adhesion, immunity, transport, and cilia formation; however, many novel genes were also identified. We compared our results with data from proteomic analyses of the ciliary axoneme and identified candidate genes that may have roles in cilia formation or function. Gene networks were generated using Ingenuity Pathways Analysis (Ingenuity Systems, Redwood City, CA) to identify signaling pathways involved in mucociliary cell differentiation or function. Networks containing genes involved in TGF-beta, WNT/beta-catenin, and epidermal growth factor receptor (EGFR) pathways were identified, suggesting potential roles for these families in airway epithelia. Microarray results were validated by real-time RT-PCR for a number of representative genes. This work has provided extensive information about gene expression changes during differentiation of airway epithelial cells, and will be a useful resource for researchers interested in respiratory function, pathology, and toxicology.
Collapse
Affiliation(s)
- Andrea J Ross
- Clinical Research Branch, Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, University of North Carolina, Chapel Hill, North Carolina 27599-7315, USA
| | | | | | | |
Collapse
|
20
|
Lonergan KM, Chari R, Deleeuw RJ, Shadeo A, Chi B, Tsao MS, Jones S, Marra M, Ling V, Ng R, Macaulay C, Lam S, Lam WL. Identification of novel lung genes in bronchial epithelium by serial analysis of gene expression. Am J Respir Cell Mol Biol 2006; 35:651-61. [PMID: 16809635 DOI: 10.1165/rcmb.2006-0056oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A description of the transcriptome of human bronchial epithelium should provide a basis for studying lung diseases, including cancer. We have deduced global gene expression profiles of bronchial epithelium and lung parenchyma, based on a vast dataset of nearly two million sequence tags from 21 serial analysis of gene expression (SAGE) libraries from individuals with a history of smoking. Our analysis suggests that the transcriptome of the bronchial epithelium is distinct from that of lung parenchyma and other tissue types. Moreover, our analysis has identified novel bronchial-enriched genes such as MS4A8B, and has demonstrated the use of SAGE for the discovery of novel transcript variants. Significantly, gene expression associated with ciliogenesis is evident in bronchial epithelium, and includes the expression of transcripts specifying axonemal proteins DNAI2, SPAG6, ASP, and FOXJ1 transcription factor. Moreover, expression of potential regulators of ciliogenesis such as MDAC1, NYD-SP29, ARMC3, and ARMC4 were also identified. This study represents a comprehensive delineation of the bronchial and parenchyma transcriptomes, identifying more than 20,000 known and hypothetical genes expressed in the human lung, and constitutes one of the largest human SAGE studies reported to date.
Collapse
Affiliation(s)
- Kim M Lonergan
- Cancer Genetics and Developmental Biology, Department of Cancer Imaging, Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu P, Wang Y, Vikis H, Maciag A, Wang D, Lu Y, Liu Y, You M. Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat Genet 2006; 38:888-95. [PMID: 16862160 DOI: 10.1038/ng1849] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/20/2006] [Indexed: 01/12/2023]
Abstract
We performed a whole-genome association analysis of lung tumor susceptibility using dense SNP maps ( approximately 1 SNP per 20 kb) in inbred mice. We reproduced the pulmonary adenoma susceptibility 1 (Pas1) locus identified in previous linkage studies and further narrowed this quantitative trait locus (QTL) to a region of less than 0.5 Mb in which at least two genes, Kras2 (Kirsten rat sarcoma oncogene 2) and Casc1 (cancer susceptibility candidate 1; also known as Las1), are strong candidates. Casc1 knockout mouse tumor bioassays showed that Casc1-deficient mice were susceptible to chemical induction of lung tumors. We also found three more genetic loci for lung adenoma development. Analysis of one of these candidate loci identified a previously uncharacterized gene Lasc1, bearing a nonsynonymous substitution (D102E). We found that the Lasc1 Glu102 allele preferentially promotes lung tumor cell growth. Our findings demonstrate the prospects for using dense SNP maps in laboratory mice to refine previous QTL regions and identify genetic determinants of complex traits.
Collapse
Affiliation(s)
- Pengyuan Liu
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fenske TS, McMahon C, Edwin D, Jarvis JC, Cheverud JM, Minn M, Mathews V, Bogue MA, Province MA, McLeod HL, Graubert TA. Identification of candidate alkylator-induced cancer susceptibility genes by whole genome scanning in mice. Cancer Res 2006; 66:5029-38. [PMID: 16707424 DOI: 10.1158/0008-5472.can-05-3404] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Secondary malignancies are a serious adverse consequence of alkylator chemotherapy. The risk of developing an alkylator-associated malignancy is influenced by genetic background, although the relevant genetic factors are poorly understood. To screen for novel susceptibility factors, we established a mouse model of alkylator-induced malignancy. We exposed mice from 20 inbred strains to the prototypical alkylating agent, N-nitroso-N-ethylurea (ENU). ENU was a potent carcinogen in many of the strains tested, inducing 140 tumors in 240 ENU-treated mice (66% incidence of at least one tumor in evaluable mice), compared with a background incidence of 8% spontaneous tumors in 240 strain-, age-, and sex-matched control mice (relative risk, 8.4; P < 0.0001). A wide variety of tumor histologies were noted, including epithelial carcinomas, soft tissue sarcomas, and hematopoietic tumors. Cancer susceptibility was a heritable trait for the most common tumor types, lung adenocarcinoma (H(2) = 0.25), T cell lymphoma (H(2) = 0.19), and myeloid malignancies (H(2) = 0.10). Quantitative trait locus mapping identified regions on chromosomes 3, 6, 9, and 15 containing candidate genes associated with lung adenoma, lung carcinoma, and lymphoma susceptibility. This novel mouse model recapitulates many features of human alkylator-associated cancer and supports the hypothesis that susceptibility to this syndrome is influenced by inherited polymorphisms that could be used to make informed clinical treatment decisions.
Collapse
Affiliation(s)
- Timothy S Fenske
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
To MD, Perez-Losada J, Mao JH, Hsu J, Jacks T, Balmain A. A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nat Genet 2006; 38:926-30. [PMID: 16823377 PMCID: PMC4461000 DOI: 10.1038/ng1836] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 06/06/2006] [Indexed: 11/09/2022]
Abstract
Pulmonary adenoma susceptibility 1 (Pas1) is the major mouse lung cancer susceptibility locus on chromosome 6 (ref. 1). Kras2 is a common target of somatic mutation in chemically induced mouse lung tumors and is a candidate Pas1 gene. M. spretus mice (SPRET/Ei) carry a Pas1 resistance haplotype for chemically induced lung tumors. We demonstrate that the SPRET/Ei Pas1 allele is switched from resistance to susceptibility by fixation of the parental origin of the mutant Kras2 allele. This switch correlates with low expression of endogenous Kras2 in SPRET/Ei. We propose that the Pas1 modifier effect is due to Kras2, and that a sensitive balance between the expression levels of wild-type and mutant alleles determines lung tumor susceptibility. These data demonstrate that cancer predisposition should also be considered in the context of somatic events and could have major implications for the design of human association studies to identify cancer susceptibility genes.
Collapse
Affiliation(s)
- Minh D To
- University of California San Francisco (UCSF) Comprehensive Cancer Center, San Francisco, California 94115, USA
| | | | | | | | | | | |
Collapse
|
24
|
Galbiati F, Pettinicchio A, Dragani TA, Manenti G. Allelic effects of mouse Pas1 candidate genes in human lung cancer cell lines. Cancer Lett 2006; 244:176-81. [PMID: 16458428 DOI: 10.1016/j.canlet.2005.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 11/22/2005] [Accepted: 12/05/2005] [Indexed: 11/29/2022]
Abstract
Four of the six genes constituting the mouse Pulmonary adenoma susceptibility 1 (Pas1) locus haplotype carry amino acid variants: Lrmp, Casc1, Ghiso, and Lmna-rs1. In vitro colony formation assay of human lung cancer cell lines A549 and NCI-H520 transfected with the allelic variants of the four genes revealed allele-specific modulations of colony numbers by Lmna-rs1 and Casc1, but not by Lrmp or Ghiso. In A549 and NCI-H520 cells, the A/J allele of Lmna-rs1 produced approximately 4- and approximately 2-fold, respectively, more transfectants than did the C57BL/6J allele, whereas the A/J allele of Casc1 produced approximately 6- and approximately 5-fold fewer transfectants, respectively, as compared to the C57BL/6J allele. Inhibition of clonogenicity by allelic forms of Pas1 candidate genes was not mediated by induction of apoptosis. These findings provide evidence that allelic variants of mouse Pas1 candidate genes differentially modulate growth of human cancer cells.
Collapse
Affiliation(s)
- Federica Galbiati
- Department of Experimental Oncology and Laboratories, Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy
| | | | | | | |
Collapse
|
25
|
Demant P. The genetic factors in cancer development and their implications for cancer prevention and detection. Radiat Res 2005; 164:462-6. [PMID: 16187750 DOI: 10.1667/rr3333.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Experimental data from laboratory animals indicate that the same extent of DNA damage or the same mutations in oncogenes and tumor suppressor genes in different hosts result in widely differing cancer development because of numerous polymorphic tumor susceptibility genes. Similarly, recent epidemiological data indicate that susceptibility to common, "sporadic" cancers in humans is influenced considerably by multiple polymorphic host genes with relatively weak effects. This indicates that in addition to hereditary familial cancer syndromes, the sporadic cancer is also under strong genetic control. The multiplicity of genes involved, variation in exposure to environmental carcinogens, and small sizes of cancer families prevent efficient searches for the responsible genes in humans. Therefore, an alternative strategy based on the definition of susceptibility genes in experimental animals and the subsequent study of their human homologues has been successfully employed by several groups. This strategy also helped reveal several important features of cancer susceptibility, including mutual interactions of cancer susceptibility genes, their functional heterogeneity, and the existence of stage-specific control of cancer development. This latter phenomenon is especially important, because the susceptibility to early stages of cancer development may be quite different from that of late stages of cancer development. This needs to be taken into account when introducing preventive testing of biomarkers of early preneoplastic lesions or early cancers, because their predictive value is greatly influenced by the genetically determined individual tendency to proceed toward a more advanced form of neoplasia. Therefore, genetic testing of persons in danger of being exposed to carcinogenic factors should be an important part of the personnel selection.
Collapse
Affiliation(s)
- Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| |
Collapse
|
26
|
Zhang S, Lou Y, Amstein TM, Anyango M, Mohibullah N, Osoti A, Stancliffe D, King R, Iraqi F, Gershenfeld HK. Fine mapping of a major locus on chromosome 10 for exploratory and fear-like behavior in mice. Mamm Genome 2005; 16:306-18. [PMID: 16104379 DOI: 10.1007/s00335-004-2427-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advanced intercross lines (AIL) and interval-specific congenic strains (ISCS) were used to fine map previously coarsely defined quantitative trait loci (QTL) on Chromosomes 1, 10, and 19, influencing behaviors in the open Field (OF) and light-dark (LD) paradigms in mice. F12(A x B) AIL mice (N = 1130) were phenotyped, genotyped, and mapped. The ISCS were studied only in the telomeric Chromosome 10 region of interest, containing the exploratory and excitability QTL1 (Exq1). The Chromosome 10 Exq1 and Chromosome 19 Exq4 loci mapped robustly in the AIL. The most significant QTL findings (2.0 LOD score intervals; peak; LOD score) came from the TD15 and LD transitions traits, yielding estimated intervals of 2.2 cM for Exq1 (71.3-73.5 cM; peak 72.3 cM; LOD 11.9) and 9.0 cM for Exq4 (29.0-38.2 cM; peak 34 cM; LOD 4.2). The replicated QTLs on Chromosome 1 failed to map in this AIL population. The ISCS data confirmed Exq1 loci in general. However, the ISCS data were complex and less definitive for localizing the Exq1 loci. These exploratory and fear-like behaviors result from inheriting "many small things," namely, QTL explaining 2%-7% of the phenotypic variance. These results highlight the challenges of positionally cloning loci of small effect for complex traits. In particular, fine-mapping success may depend on the genetic architecture underlying complex traits.
Collapse
Affiliation(s)
- Shumin Zhang
- Department of Psychiatry and Integrative Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen B, Wang Y, You M. Characterization of two protein-binding sites in the second intron of the mouse K-ras gene. Exp Lung Res 2005; 31:179-92. [PMID: 15824020 DOI: 10.1080/0190214049049552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A tandem repeat region in the second intron of the K-ras gene has been reported to be a possible regulatory site for transcription. In this study, a second protein-binding site was identified and characterized. It lies downstream (nucleotides 463 to 509) of the tandem repeat region. A T--> C base variation at nucleotide 494 was found in all K(S) strains (which have K-ras alleles identical to those of susceptible A/J strain) and all K(i) strains (which have K-ras alleles identical to those of the intermediate CBA/J strain). DNase I footprint analysis indicated a protein binding site within the downstream repeated region in the second intron of the K-ras gene. Gel mobility-shift studies showed differential protein-binding patterns between the K(r) strains (which have K-ras alleles identical to those of the resistant C3H/HeJ strain) and the K(s) or K(i) strains. Southwestern blot analysis of DNA-protein complexes indicated that the 2 repeated regions might bind the same regulatory complex.
Collapse
Affiliation(s)
- Bin Chen
- Department of Pathology, Medical College of Ohio, Toledo, Ohio, USA
| | | | | |
Collapse
|
28
|
Wang Y, Zhang Z, Lubet R, You M. Tobacco smoke-induced lung tumorigenesis in mutant A/J mice with alterations in K-ras, p53, or Ink4a/Arf. Oncogene 2005; 24:3042-9. [PMID: 15846305 DOI: 10.1038/sj.onc.1208390] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A/J mice with genetic alterations in K-ras, p53, or Ink4a/Arf were employed to investigate whether mice carrying these germline mutations would be susceptible to tobacco smoke-induced lung tumorigenesis. Transgenic mice of both genders and their wild-type littermates were exposed to environmental cigarette smoke for 6 months, followed by recovery in air for 5 months. A significant increase of lung tumor multiplicity was observed in K-ras, p53, or Ink4a/Arf mutant mice when compared with wild-type mice. Furthermore, an additive effect was observed between the mice with a mutant p53 transgene and an Ink4A/Arf deletion during tobacco smoke-induced lung tumorigenesis. Sequence analysis of the K-ras gene indicated that the mutations had occurred at either codon 12/13 or 61 in both spontaneously occurring (air control) and tobacco smoke-induced lung tumors. K-ras mutations were found in 62% of the tumors from air-control animals and 83% in those exposed to tobacco smoke. The mutation spectrum found in tumors from mice exposed to tobacco smoke is somewhat similar to that in tumors from air-control mice. In addition, we identified three novel mutations at codon 12: GGT (Gly) --> TTT (Phe), ATT (Ile), and CTT (Leu). These findings provide evidence that K-ras, p53, and Ink4a/Arf mutations play a role in tobacco smoke-related lung carcinogenesis. The similarity of the mutation spectra in the K-ras oncogene observed in tobacco smoke-induced tumors, as compared to spontaneous tumors, suggests that tobacco smoke enhances lung tumorigenesis primarily through promoting spontaneously occurring K-ras mutations.
Collapse
Affiliation(s)
- Yian Wang
- Department of Surgery, School of Medicine, Siteman Cancer Center, The Washington University in St Louis, 660 S Euclid Avenue, St Louis, MO, USA
| | | | | | | |
Collapse
|
29
|
Wang M, Futamura M, Wang Y, You M. Pas1c1 is a candidate for the mouse pulmonary adenoma susceptibility 1 locus. Oncogene 2005; 24:1958-63. [PMID: 15688036 DOI: 10.1038/sj.onc.1208295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pas1 candidate 1 (Pas1c1) gene (also named Lmna-rs1) was found to encode two alternatively spliced mRNA transcripts (i.e. Pas1c1-Va and Pas1c1-Vb). In this study, we identified three additional mRNA transcripts encoded by the Pas1c1 gene, which were designated as Pas1c1-Vc, Pas1c1-Vd, and Pas1c1-Ve, respectively. Similar to Pas1c1-Vb, the newly identified transcripts were only expressed in mouse lung tissues from strains carrying the Pas1-susceptible (Pas1/s) allele. Pas1c1 transcripts were also detected in heart, testis, or brain but not in liver, spleen, or kidney. An 11-nucleotide polymorphism was found within the 3'-acceptor splice site of exon 8, which cosegregates with mouse strain Pas1 alleles and may underlie the strain-specific exon 8 skipping. We also found that ectopic expression of the Pas1c1-Va and Pas1c1-Vb in COS7 and NIH3T3 cells exhibited distinct intracellular distributions. These results support that Pas1c1 as a candidate for the Pas1 locus and the strain-specific isoforms may have differential effects on cell proliferation.
Collapse
Affiliation(s)
- Min Wang
- Department of Surgery and The Alvin J Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
30
|
Waalkes MP, Liu J, Kasprzak KS, Diwan BA. Minimal influence of metallothionein over-expression on nickel carcinogenesis in mice. Toxicol Lett 2004; 153:357-64. [PMID: 15454311 DOI: 10.1016/j.toxlet.2004.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 06/14/2004] [Accepted: 06/14/2004] [Indexed: 11/15/2022]
Abstract
Metallothionein (MT) is a metal-binding protein associated with tolerance to metals and oxidative stress. Nickel is a metal carcinogen potentially acting through oxidative attack on critical biomolecules. We investigated the role of MT in nickel carcinogenesis using MT-transgenic mice that constitutively over-express MT-I in all tissues tested. Groups of 25 male MT-transgenic and wild type (C57BL/6; WT) mice received intramuscular injections of nickel subsulfide (Ni3S2) in both thighs at doses of 0 (control), 0.5, or 1.0 mg/site at 12 weeks of age and were observed for 104 weeks. Injection site tumors (ISTs; primarily fibrosarcomas) started occurring 45 weeks after nickel injection and IST incidence was similar in the WT (control - 0%, 0.5 mg/site - 20%, 1.0 mg/site - 40%) and MT-transgenic mice (control - 0%, 0.5mg/site - 28%, 1.0mg/site - 29%.). At the 0.5 mg/site dose the average time to IST in MT-transgenic mice was approximately 13 weeks shorter than in WT mice. Spontaneous lung tumors developed in 25% of control WT mice but none developed in control MT-transgenic mice. A nickel dose-related trend for increased lung tumors occurred in MT-transgenic mice but not in WT mice. Thus, the over-expression of MT did not significantly mitigate the carcinogenic response to nickel.
Collapse
Affiliation(s)
- Michael P Waalkes
- Laboratory of Comparative Carcinogenesis, Inorganic Carcinogenesis Section, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
31
|
Zhao L, Qin LX, Ye QH, Zhu XQ, Zhang H, Wu X, Chen J, Liu YK, Tang ZY. KIAA0008 gene is associated with invasive phenotype of human hepatocellular carcinoma--a functional analysis. J Cancer Res Clin Oncol 2004; 130:719-27. [PMID: 15340842 DOI: 10.1007/s00432-004-0595-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 05/24/2004] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the function of the KIAA0008 gene, one of the leading genes in the signature associated with hepatocellular carcinoma (HCC) metastasis selected by cDNA microarray, and especially its possible roles in invasion and metastasis of hepatocellular carcinoma. METHODS Expression levels of KIAA0008 in 27 primary tumors and 23 matched non-tumor liver tissues from HCC patients, and four HCC cell lines with different metastatic potentials were detected by semi-quantitative RT-PCR and real-time RT-PCR. Recombinant expression plasmid vectors of the KIAA0008 gene were constructed and transfected into HCC cells. The subcellular localization of the KIAA0008 gene product and in vitro effects of KIAA0008 overexpression on proliferation and invasion of HCC cell line were also investigated. RESULTS Expression levels of KIAA0008 in HCC tissues were statistically higher than those of paired non-tumorous liver tissues (P < 0.001, paired Wilcoxon test), and in HCCs with high invasiveness these were statistically higher than those with low invasiveness (P = 0.002, Mann-Whitney test). In the four HCC cell lines with an identical genetic background and stepwise higher invasiveness potentials, its expression was consistent with their invasiveness potential. The KIAA0008 gene product was concentrated on the nucleus and cell membrane of HCC cells, without any distribution in the cytoplasm. Overexpression of KIAA0008 in the MHCC97L cell line resulted in increased cell proliferation, colony formation, and invasion. CONCLUSIONS KIAA0008 expression is associated with invasiveness of HCC; overexpression of KIAA0008 leads to a more invasive phenotype of HCC cell lines.
Collapse
Affiliation(s)
- Lei Zhao
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Manenti G, Galbiati F, Giannì-Barrera R, Pettinicchio A, Acevedo A, Dragani TA. Haplotype sharing suggests that a genomic segment containing six genes accounts for the pulmonary adenoma susceptibility 1 (Pas1) locus activity in mice. Oncogene 2004; 23:4495-504. [PMID: 15064703 DOI: 10.1038/sj.onc.1207584] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pulmonary adenoma susceptibility 1 (Pas1) locus affects inherited predisposition and resistance to chemically induced lung tumorigenesis in mice. The A/J and C57BL/6J mouse strains carry the susceptibility and resistance allele, respectively. We identified and genotyped 65 polymorphisms in the Pas1 locus region in 29 mouse inbred strains, and delimited the Pas1 locus to a minimal region of 468 kb containing six genes. That region defined a core Pas1 haplotype with 42 tightly linked markers, including intragenic polymorphisms in five genes (Bcat1, Lrmp, Las1, Ghiso, and Kras2) and amino-acid changes in three genes (Lrmp, Las1, Lmna-rs1). In (A/J x C57BL/6J)F1 mouse lung tumors, the Lmna-rs1 gene was completely downregulated, whereas allele-specific downregulation of the C57BL/6J-derived allele was observed at the Las1 gene, suggesting the potential role of these genes in tumor suppression. These results indicate a complex multigenic nature of the Pas1 locus, and point to a functional role for both intronic and exonic polymorphisms of the six genes of the Pas1 haplotype in lung tumor susceptibility.
Collapse
MESH Headings
- Adenoma/chemically induced
- Adenoma/genetics
- Adenoma/metabolism
- Alleles
- Amino Acid Substitution
- Animals
- Chromosome Mapping
- Crosses, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease/genetics
- Haplotypes/genetics
- Lung/metabolism
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred A
- Mice, Inbred C57BL
- Multifactorial Inheritance/genetics
- Polymorphism, Single Nucleotide
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Sequence Homology, Amino Acid
- Transaminases/genetics
- Transaminases/physiology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Urethane/toxicity
Collapse
Affiliation(s)
- Giacomo Manenti
- Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | |
Collapse
|