1
|
Saha S, Pandiyathuray M. Depletion of iodide in ageing aerosols and the role of humidity: A case study of mixed sodium iodide-malonic acid aerosol. CHEMOSPHERE 2024; 365:143411. [PMID: 39332584 DOI: 10.1016/j.chemosphere.2024.143411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Global sea to air iodine emissions, along with organic emissions and their oxidation products, have increased tremendously. This work presents a comprehensive analysis of the humidity mediated changes in ageing aerosols comprising iodide and water soluble dicarboxylic acid using aerosol micro-Raman spectroscopy. The studies in the model system, sodium iodide-malonic acid mixed aerosols, unveiled the depletion in iodide. Mechanistic insights gleaned through comparative studies conducted under inert (nitrogen) and oxidative (air) atmospheres reveal the iodide depletion occurs possibly via oxidation to molecular iodine. The reaction involves gaseous components, diffusion of which across the particles will be impacted by the physical state of the particles, such as viscosity, which in turn is intricately linked to ambient humidity levels. To this end, studies on the temporal evolution of the reaction at three distinct RHs covering 30-80% revealed the enhanced progression of the reaction with increasing humidity. Given that geographical locations serving as major sources for atmospheric iodine typically experience high humidity, these reactions could emerge as an additional process controlling iodine speciation in ageing aerosols.
Collapse
Affiliation(s)
- Subhamoy Saha
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 095, India.
| | - Mathi Pandiyathuray
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 095, India.
| |
Collapse
|
2
|
Frederiks NC, Johnson CJ. Photochemical Mechanisms in Atmospherically Relevant Iodine Oxide Clusters. J Phys Chem Lett 2024; 15:6306-6314. [PMID: 38856106 DOI: 10.1021/acs.jpclett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Atmospheric new particle formation events can be driven by iodine oxides or oxoacids via both neutral and ionic mechanisms. Photolysis of new particles likely plays a significant role in their growth mechanisms, but their spectra and photolysis mechanisms remain difficult to characterize. We recorded ultraviolet (UV) photodissociation spectra of (I2O5)0-3(IO3-) clusters, observing loss of an O atom, I2O4, and (I2O5)1,2 in the atmospherically relevant range of 300-340 nm. With increasing cluster size, the intensity of absorption red shifts and generally increases, suggesting particles photolyze more frequently as they grow. Estimates of the rates indicate that even relatively small clusters are likely to undergo photolysis under high-UV conditions. Vibrational spectra identify the covalent moiety I3O8- as the likely chromophore, not IO3-. The I2O5 loss pathway competes with particle growth, while the slower O loss pathway likely produces 3O + 3(cluster) products that could drive subsequent intraparticle chemistry, particularly with co-adsorbed organic or amine species.
Collapse
Affiliation(s)
- Nicoline C Frederiks
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Zhang R, Ma F, Zhang Y, Chen J, Elm J, He XC, Xie HB. HIO 3-HIO 2-Driven Three-Component Nucleation: Screening Model and Cluster Formation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:649-659. [PMID: 38131199 DOI: 10.1021/acs.est.3c06098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Iodine oxoacids (HIO3 and HIO2)-driven nucleation has been suggested to efficiently contribute to new particle formation (NPF) in marine atmospheres. Abundant atmospheric nucleation precursors may further enhance HIO3-HIO2-driven nucleation through various multicomponent nucleation mechanisms. However, the specific enhancing potential (EP) of different precursors remains largely unknown. Herein, the EP-based screening model of precursors and enhancing mechanism of the precursor with the highest EP on HIO3-HIO2 nucleation were investigated. The formation free energies (ΔG), as critical parameters for evaluating EP, were calculated for the dimers of 63 selected precursors with HIO2. Based on the ΔG values, (1) a quantitative structure-activity relationship model was developed for evaluating ΔG of other precursors and (2) atmospheric concentrations of 63 (precursor)1(HIO2)1 dimer clusters were assessed to identify the precursors with the highest EP for HIO3-HIO2-driven nucleation by combining with earlier results for the nucleation with HIO3 as the partner. Methanesulfonic acid (MSA) was found to be one of the precursors with the highest EP. Finally, we found that MSA can effectively enhance HIO3-HIO2 nucleation at atmospheric conditions by studying larger MSA-HIO3-HIO2 clusters. These results augment our current understanding of HIO3-HIO2 and MSA-driven nucleation and may suggest a larger impact of HIO2 in atmospheric aerosol nucleation.
Collapse
Affiliation(s)
- Rongjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yangjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Xu-Cheng He
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Guo Y, Li K, Perrier S, An T, Donaldson DJ, George C. Spontaneous Iodide Activation at the Air-Water Interface of Aqueous Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15580-15587. [PMID: 37804225 PMCID: PMC10586319 DOI: 10.1021/acs.est.3c05777] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
We present experimental evidence that atomic and molecular iodine, I and I2, are produced spontaneously in the dark at the air-water interface of iodide-containing droplets without any added catalysts, oxidants, or irradiation. Specifically, we observe I3- formation within droplets, and I2 emission into the gas phase from NaI-containing droplets over a range of droplet sizes. The formation of both products is enhanced in the presence of electron scavengers, either in the gas phase or in solution, and it clearly follows a Langmuir-Hinshelwood mechanism, suggesting an interfacial process. These observations are consistent with iodide oxidation at the interface, possibly initiated by the strong intrinsic electric field present there, followed by well-known solution-phase reactions of the iodine atom. This interfacial chemistry could be important in many contexts, including atmospheric aerosols.
Collapse
Affiliation(s)
- Yunlong Guo
- Guangdong
Key Laboratory of Environmental Catalysis and Health Risk Control,
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure
and Health, School of Environmental Science and Engineering, Institute
of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Université
Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Kangwei Li
- Université
Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
- Department
of Environmental Sciences, University of
Basel, Basel 4056, Switzerland
| | - Sebastien Perrier
- Université
Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Taicheng An
- Guangdong
Key Laboratory of Environmental Catalysis and Health Risk Control,
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure
and Health, School of Environmental Science and Engineering, Institute
of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - D. James Donaldson
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Christian George
- Université
Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| |
Collapse
|
5
|
Zhu T, Tang M, Gao M, Bi X, Cao J, Che H, Chen J, Ding A, Fu P, Gao J, Gao Y, Ge M, Ge X, Han Z, He H, Huang RJ, Huang X, Liao H, Liu C, Liu H, Liu J, Liu SC, Lu K, Ma Q, Nie W, Shao M, Song Y, Sun Y, Tang X, Wang T, Wang T, Wang W, Wang X, Wang Z, Yin Y, Zhang Q, Zhang W, Zhang Y, Zhang Y, Zhao Y, Zheng M, Zhu B, Zhu J. Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the "Air Pollution Complex". ADVANCES IN ATMOSPHERIC SCIENCES 2023; 40:1-23. [PMID: 37359906 PMCID: PMC10140723 DOI: 10.1007/s00376-023-2379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023]
Abstract
Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.
Collapse
Affiliation(s)
- Tong Zhu
- Peking University, Beijing, 100871 China
| | - Mingjin Tang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Meng Gao
- Hong Kong Baptist University, Hong Kong SAR, China
| | - Xinhui Bi
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Huizheng Che
- Chinese Academy of Meteorological Sciences, Beijing, 100081 China
| | | | - Aijun Ding
- Nanjing University, Nanjing, 210023 China
| | | | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, 100012 China
| | - Yang Gao
- Ocean University of China, Qingdao, 266100 China
| | - Maofa Ge
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xinlei Ge
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Zhiwei Han
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Ru-Jin Huang
- Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Xin Huang
- Nanjing University, Nanjing, 210023 China
| | - Hong Liao
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Cheng Liu
- University of Science and Technology of China, Hefei, 230026 China
| | - Huan Liu
- Tsinghua University, Beijing, 100084 China
| | - Jianguo Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | | | - Keding Lu
- Peking University, Beijing, 100871 China
| | - Qingxin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Wei Nie
- Nanjing University, Nanjing, 210023 China
| | - Min Shao
- Jinan University, Guangzhou, 510632 China
| | - Yu Song
- Peking University, Beijing, 100871 China
| | - Yele Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Xiao Tang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Tao Wang
- Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Weigang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | | | - Zifa Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Yan Yin
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | | | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Yanlin Zhang
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Yunhong Zhang
- Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Zhao
- Nanjing University, Nanjing, 210023 China
| | - Mei Zheng
- Peking University, Beijing, 100871 China
| | - Bin Zhu
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Jiang Zhu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| |
Collapse
|