1
|
Foo SA, Ross PM, Byrne M. The 2024 roadmap for understanding marine species' resilience in a changing ocean. ADVANCES IN MARINE BIOLOGY 2024; 97:1-9. [PMID: 39307553 DOI: 10.1016/bs.amb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Written to serve as a guideline for future research in this field, this roadmap provides some perspectives on the main developments and remaining challenges in the field of marine animal acclimatisation, adaptive potential and resilience to climate change. There has been extensive research conducted on the impact of climate change stress on marine animals, with studies recognising the potential for cross- and multi- generational impacts. Parents can potentially pass on resilience to offspring. The response of marine animals to climate change stressors is complex where utilising marginal and extreme systems as natural laboratories can help to address key research gaps and provide an understanding of the plastic and adaptive changes necessary for survival under stress.
Collapse
Affiliation(s)
- Shawna A Foo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Burgess SC, Turner AM, Johnston EC. Niche breadth and divergence in sympatric cryptic coral species ( Pocillopora spp.) across habitats within reefs and among algal symbionts. Evol Appl 2024; 17:e13762. [PMID: 39100752 PMCID: PMC11294925 DOI: 10.1111/eva.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
While the presence of morphologically cryptic species is increasingly recognized, we still lack a useful understanding of what causes and maintains co-occurring cryptic species and its consequences for the ecology, evolution, and conservation of communities. We sampled 724 Pocillopora corals from five habitat zones (the fringing reef, back reef, and fore reef at 5, 10, and 20 m) at four sites around the island of Moorea, French Polynesia. Using validated genetic markers, we identified six sympatric species of Pocillopora, most of which cannot be reliably identified based on morphology: P. meandrina (42.9%), P. tuahiniensis (25.1%), P. verrucosa (12.2%), P. acuta (10.4%), P. grandis (7.73%), and P. cf. effusa (2.76%). For 423 colonies (58% of the genetically identified hosts), we also used psbA ncr or ITS2 markers to identify symbiont species (Symbiodiniaceae). The relative abundance of Pocillopora species differed across habitats within the reef. Sister taxa P. verrucosa and P. tuahiniensis had similar niche breadths and hosted the same specialist symbiont species (mostly Cladocopium pacificum) but the former was more common in the back reef and the latter more common deeper on the fore reef. In contrast, sister taxa P. meandrina and P. grandis had the highest niche breadths and overlaps and tended to host the same specialist symbiont species (mostly C. latusorum). Pocillopora acuta had the narrowest niche breadth and hosted the generalist, and more thermally tolerant, Durusdinium gynnii. Overall, there was a positive correlation between reef habitat niche breadth and symbiont niche breadth-Pocillopora species with a broader habitat niche also had a broader symbiont niche. Our results show how fine-scale variation within reefs plays an important role in the generation and coexistence of cryptic species. The results also have important implications for how niche differences affect community resilience, and for the success of coral restoration practices, in ways not previously appreciated.
Collapse
Affiliation(s)
- Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Alyssa M. Turner
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
- Present address:
Hawai‘i Institute of Marine BiologyKāne‘oheHawaiiUSA
| |
Collapse
|
3
|
McCarthy OS, Winston Pomeroy M, Smith JE. Corals that survive repeated thermal stress show signs of selection and acclimatization. PLoS One 2024; 19:e0303779. [PMID: 39083457 PMCID: PMC11290665 DOI: 10.1371/journal.pone.0303779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024] Open
Abstract
Climate change is transforming coral reefs by increasing the frequency and intensity of marine heatwaves, often leading to coral bleaching and mortality. Coral communities have demonstrated modest increases in thermal tolerance following repeated exposure to moderate heat stress, but it is unclear whether these shifts represent acclimatization of individual colonies or mortality of thermally susceptible individuals. For corals that survive repeated bleaching events, it is important to understand how past bleaching responses impact future growth potential. Here, we track the bleaching responses of 1,832 corals in leeward Maui through multiple marine heatwaves and document patterns of coral growth and survivorship over a seven-year period. While we find limited evidence of acclimatization at population scales, we document reduced bleaching over time in specific individuals that is indicative of acclimatization, primarily in the stress-tolerant taxa Porites lobata. For corals that survived both bleaching events, we find no relationship between bleaching response and coral growth in three of four taxa studied. This decoupling suggests that coral survivorship is a better indicator of future growth than is a coral's bleaching history. Based on these results, we recommend restoration practitioners in Hawai'i focus on colonies of Porites and Montipora with a proven track-record of growth and survivorship, rather than devote resources toward identifying and cultivating bleaching-resistant phenotypes in the lab. Survivorship followed a latitudinal thermal stress gradient, but because this gradient was small, it is likely that local environmental factors also drove differences in coral performance between sites. Efforts to reduce human impacts at low performing sites would likely improve coral survivorship in the future.
Collapse
Affiliation(s)
- Orion S. McCarthy
- Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of California San Diego, La Jolla, California, United States of America
| | - Morgan Winston Pomeroy
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona, United States of America
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, Hawai‘i, United States of America
| | - Jennifer E. Smith
- Scripps Institution of Oceanography, Center for Marine Biodiversity and Conservation, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Ng MS, Soon N, Afiq-Rosli L, Kunning I, Mana RR, Chang Y, Wainwright BJ. Highly Diverse Symbiodiniaceae Types Hosted by Corals in a Global Hotspot of Marine Biodiversity. MICROBIAL ECOLOGY 2024; 87:92. [PMID: 38987492 PMCID: PMC11236936 DOI: 10.1007/s00248-024-02407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Symbiotic dinoflagellates in the genus Symbiodiniaceae play vital roles in promoting resilience and increasing stress tolerance in their coral hosts. While much of the world's coral succumb to the stresses associated with increasingly severe and frequent thermal bleaching events, live coral cover in Papua New Guinea (PNG) remains some of the highest reported globally despite the historically warm waters surrounding the country. Yet, in spite of the high coral cover in PNG and the acknowledged roles Symbiodiniaceae play within their hosts, these communities have not been characterized in this global biodiversity hotspot. Using high-throughput sequencing of the ITS2 rDNA gene, we profiled the endosymbionts of four coral species, Diploastrea heliopora, Pachyseris speciosa, Pocillopora acuta, and Porites lutea, across six sites in PNG. Our findings reveal patterns of Cladocopium and Durusdinium dominance similar to other reefs in the Coral Triangle, albeit with much greater intra- and intergenomic variation. Host- and site-specific variations in Symbiodiniaceae type profiles were observed across collection sites, appearing to be driven by environmental conditions. Notably, the extensive intra- and intergenomic variation, coupled with many previously unreported sequences, highlight PNG as a potential hotspot of symbiont diversity. This work represents the first characterization of the coral-symbiont community structure in the PNG marine biodiversity hotspot, serving as a baseline for future studies.
Collapse
Affiliation(s)
- Ming Sheng Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nathaniel Soon
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
- Thrive Conservation, Jl. Subak Sari No. 13, Kuta Utara, Badung, Bali, 80361, Indonesia
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ismael Kunning
- School of Natural and Physical Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Ralph R Mana
- School of Natural and Physical Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Ying Chang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
| |
Collapse
|
5
|
Nitschke MR, Abrego D, Allen CE, Alvarez-Roa C, Boulotte NM, Buerger P, Chan WY, Fae Neto WA, Ivory E, Johnston B, Meyers L, Parra V C, Peplow L, Perez T, Scharfenstein HJ, van Oppen MJH. The use of experimentally evolved coral photosymbionts for reef restoration. Trends Microbiol 2024:S0966-842X(24)00139-2. [PMID: 38942718 DOI: 10.1016/j.tim.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
The heat tolerance of corals is largely determined by their microbial photosymbionts (Symbiodiniaceae, colloquially known as zooxanthellae). Therefore, manipulating symbiont communities may enhance the ability of corals to survive summer heatwaves. Although heat-tolerant and -sensitive symbiont species occur in nature, even corals that harbour naturally tolerant symbionts have been observed to bleach during summer heatwaves. Experimental evolution (i.e., laboratory selection) of Symbiodiniaceae cultures under elevated temperatures has been successfully used to enhance their upper thermal tolerance, both in vitro and, in some instances, following their reintroduction into corals. In this review, we present the state of this intervention and its potential role within coral reef restoration, and discuss the next critical steps required to bridge the gap to implementation.
Collapse
Affiliation(s)
- Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David Abrego
- Australian Institute of Marine Science, Townsville, QLD, Australia; Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, Australia
| | - Corinne E Allen
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Patrick Buerger
- Australian Institute of Marine Science, Townsville, QLD, Australia; Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Wing Yan Chan
- Australian Institute of Marine Science, Townsville, QLD, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Elizabeth Ivory
- Australian Institute of Marine Science, Townsville, QLD, Australia; Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, Australia
| | - Bede Johnston
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Luka Meyers
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Catalina Parra V
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Lesa Peplow
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Tahirih Perez
- Australian Institute of Marine Science, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Hugo J Scharfenstein
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Cunning R, Lenz EA, Edmunds PJ. Measuring multi-year changes in the Symbiodiniaceae algae in Caribbean corals on coral-depleted reefs. PeerJ 2024; 12:e17358. [PMID: 38827291 PMCID: PMC11141555 DOI: 10.7717/peerj.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.
Collapse
Affiliation(s)
- Ross Cunning
- Conservation Research Department, John G. Shedd Aquarium, Chicago, Illinois, United States
| | - Elizabeth A. Lenz
- University of Hawai‘i Sea Grant College Program, University of Hawai‘i at Mānoa, Honolulu, Hawaii, United States
| | - Peter J. Edmunds
- Department of Biology, California State University, Northridge, Northridge, California, United States
| |
Collapse
|
7
|
Castillo KD, Bove CB, Hughes AM, Powell ME, Ries JB, Davies SW. Gene expression plasticity facilitates acclimatization of a long-lived Caribbean coral across divergent reef environments. Sci Rep 2024; 14:7859. [PMID: 38570591 PMCID: PMC10991280 DOI: 10.1038/s41598-024-57319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Local adaptation can increase fitness under stable environmental conditions. However, in rapidly changing environments, compensatory mechanisms enabled through plasticity may better promote fitness. Climate change is causing devastating impacts on coral reefs globally and understanding the potential for adaptive and plastic responses is critical for reef management. We conducted a four-year, three-way reciprocal transplant of the Caribbean coral Siderastrea siderea across forereef, backreef, and nearshore populations in Belize to investigate the potential for environmental specialization versus plasticity in this species. Corals maintained high survival within forereef and backreef environments, but transplantation to nearshore environments resulted in high mortality, suggesting that nearshore environments present strong environmental selection. Only forereef-sourced corals demonstrated evidence of environmental specialization, exhibiting the highest growth in the forereef. Gene expression profiling 3.5 years post-transplantation revealed that transplanted coral hosts exhibited profiles more similar to other corals in the same reef environment, regardless of their source location, suggesting that transcriptome plasticity facilitates acclimatization to environmental change in S. siderea. In contrast, algal symbiont (Cladocopium goreaui) gene expression showcased functional variation between source locations that was maintained post-transplantation. Our findings suggest limited acclimatory capacity of some S. siderea populations under strong environmental selection and highlight the potential limits of coral physiological plasticity in reef restoration.
Collapse
Affiliation(s)
- Karl D Castillo
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Colleen B Bove
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| | | | - Maya E Powell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Ries
- Department of Marine and Environmental Sciences, Marine Sciences Center, Northeastern University, Nahant, MA, USA
| | - Sarah W Davies
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
8
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
9
|
Bhattacharya D, Stephens TG, Chille EE, Benites LF, Chan CX. Facultative lifestyle drives diversity of coral algal symbionts. Trends Ecol Evol 2024; 39:239-247. [PMID: 37953106 DOI: 10.1016/j.tree.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
The photosynthetic symbionts of corals sustain biodiverse reefs in nutrient-poor, tropical waters. Recent genomic data illuminate the evolution of coral symbionts under genome size constraints and suggest that retention of the facultative lifestyle, widespread among these algae, confers a selective advantage when compared with a strict symbiotic existence. We posit that the coral symbiosis is analogous to a 'bioreactor' that selects winner genotypes and allows them to rise to high numbers in a sheltered habitat prior to release by the coral host. Our observations lead to a novel hypothesis, the 'stepping-stone model', which predicts that local adaptation under both the symbiotic and free-living stages, in a stepwise fashion, accelerates coral alga diversity and the origin of endemic strains and species.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Erin E Chille
- Ecology and Evolution Graduate Program, Rutgers University, New Brunswick, NJ 08901, USA
| | - L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
10
|
Denis H, Bay LK, Mocellin VJL, Naugle MS, Lecellier G, Purcell SW, Berteaux-Lecellier V, Howells EJ. Thermal tolerance traits of individual corals are widely distributed across the Great Barrier Reef. Proc Biol Sci 2024; 291:20240587. [PMID: 39257340 PMCID: PMC11463214 DOI: 10.1098/rspb.2024.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 09/12/2024] Open
Abstract
Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- ED 129, Sorbonne Université, 4, Place Jussieu, Paris75252, France
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Melissa S. Naugle
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- Institut de Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, NouméaBP R4 98 851, New Caledonia
| | - Steven W. Purcell
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | | | - Emily J. Howells
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
11
|
Guibert I. Assisted evolution of algal symbionts to enhance coral reef bleaching tolerance: A success story. GLOBAL CHANGE BIOLOGY 2024; 30:e17150. [PMID: 38273512 DOI: 10.1111/gcb.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Affiliation(s)
- Isis Guibert
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Hoegh-Guldberg O, Skirving W, Dove SG, Spady BL, Norrie A, Geiger EF, Liu G, De La Cour JL, Manzello DP. Coral reefs in peril in a record-breaking year. Science 2023; 382:1238-1240. [PMID: 38060674 DOI: 10.1126/science.adk4532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Climate change and its impacts on coral reefs have reached unchartered territory.
Collapse
Affiliation(s)
- Ove Hoegh-Guldberg
- School of the Environment, University of Queensland, St Lucia, QLD, Australia
| | - William Skirving
- ReefSense, Townsville, QLD, Australia
- Coral Reef Watch, Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, US National Oceanic and Atmospheric Administration (NOAA), College Park, MD, USA
| | - Sophie G Dove
- School of the Environment, University of Queensland, St Lucia, QLD, Australia
| | - Blake L Spady
- ReefSense, Townsville, QLD, Australia
- Coral Reef Watch, Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, US National Oceanic and Atmospheric Administration (NOAA), College Park, MD, USA
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Andrew Norrie
- ReefSense, Townsville, QLD, Australia
- Coral Reef Watch, Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, US National Oceanic and Atmospheric Administration (NOAA), College Park, MD, USA
| | - Erick F Geiger
- Coral Reef Watch, Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, US National Oceanic and Atmospheric Administration (NOAA), College Park, MD, USA
- Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, USA
- Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, USA
| | - Gang Liu
- Coral Reef Watch, Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, US National Oceanic and Atmospheric Administration (NOAA), College Park, MD, USA
| | - Jacqueline L De La Cour
- Coral Reef Watch, Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, US National Oceanic and Atmospheric Administration (NOAA), College Park, MD, USA
- Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, USA
- Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, USA
| | - Derek P Manzello
- Coral Reef Watch, Satellite Oceanography and Climatology Division, Center for Satellite Applications and Research, US National Oceanic and Atmospheric Administration (NOAA), College Park, MD, USA
| |
Collapse
|
13
|
Chan WY, Meyers L, Rudd D, Topa SH, van Oppen MJH. Heat-evolved algal symbionts enhance bleaching tolerance of adult corals without trade-off against growth. GLOBAL CHANGE BIOLOGY 2023; 29:6945-6968. [PMID: 37913765 DOI: 10.1111/gcb.16987] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023]
Abstract
Ocean warming has caused coral mass bleaching and mortality worldwide and the persistence of symbiotic reef-building corals requires rapid acclimation or adaptation. Experimental evolution of the coral's microalgal symbionts followed by their introduction into coral is one potential method to enhance coral thermotolerance. Heat-evolved microalgal symbionts of the generalist species, Cladocopium proliferum (strain SS8), were exposed to elevated temperature (31°C) for ~10 years, and were introduced into four genotypes of chemically bleached adult fragments of the scleractinian coral, Galaxea fascicularis. Two of the four coral genotypes acquired SS8. The new symbionts persisted for the 5 months of the experiment and enhanced adult coral thermotolerance, compared with corals that were inoculated with the wild-type C. proliferum strain. Thermotolerance of SS8-corals was similar to that of coral fragments from the same colony hosting the homologous symbiont, Durusdinium sp., which is naturally heat tolerant. However, SS8-coral fragments exhibited faster growth and recovered cell density and photochemical efficiency more quickly following chemical bleaching and inoculation under ambient temperature relative to Durusdinium-corals. Mass spectrometry imaging suggests that algal pigments involved in photobiology and oxidative stress were the greatest contributors to the thermotolerance differences between coral hosting heat-evolved versus wild-type C. proliferum. These pigments may have increased photoprotection in the heat-evolved symbionts. This is the first laboratory study to show that thermotolerance of adult corals (G. fascicularis) can be enhanced via the uptake of exogenously supplied, heat-evolved symbionts, without a trade-off against growth under ambient temperature. Importantly, heat-evolved C. proliferum remained in the corals in moderate abundance 2 years after first inoculation, suggesting long-term stability of this novel symbiosis and potential long-term benefits to coral thermotolerance.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Luka Meyers
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Clayton, Victoria, Australia
| | - Sanjida H Topa
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
14
|
Kemp DW, Hoadley KD, Lewis AM, Wham DC, Smith RT, Warner ME, LaJeunesse TC. Thermotolerant coral-algal mutualisms maintain high rates of nutrient transfer while exposed to heat stress. Proc Biol Sci 2023; 290:20231403. [PMID: 37727091 PMCID: PMC10509592 DOI: 10.1098/rspb.2023.1403] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Symbiotic mutualisms are essential to ecosystems and numerous species across the tree of life. For reef-building corals, the benefits of their association with endosymbiotic dinoflagellates differ within and across taxa, and nutrient exchange between these partners is influenced by environmental conditions. Furthermore, it is widely assumed that corals associated with symbionts in the genus Durusdinium tolerate high thermal stress at the expense of lower nutrient exchange to support coral growth. We traced both inorganic carbon (H13CO3-) and nitrate (15NO3-) uptake by divergent symbiont species and quantified nutrient transfer to the host coral under normal temperatures as well as in colonies exposed to high thermal stress. Colonies representative of diverse coral taxa associated with Durusdinium trenchii or Cladocopium spp. exhibited similar nutrient exchange under ambient conditions. By contrast, heat-exposed colonies with D. trenchii experienced less physiological stress than conspecifics with Cladocopium spp. while high carbon assimilation and nutrient transfer to the host was maintained. This discovery differs from the prevailing notion that these mutualisms inevitably suffer trade-offs in physiological performance. These findings emphasize that many host-symbiont combinations adapted to high-temperature equatorial environments are high-functioning mutualisms; and why their increased prevalence is likely to be important to the future productivity and stability of coral reef ecosystems.
Collapse
Affiliation(s)
- Dustin W. Kemp
- Department of Biology, University of Alabama at Birmingham, AL, USA
| | | | - Allison M. Lewis
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Drew C. Wham
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Robin T. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, VI, USA
| | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Bay LK, Gilmour J, Muir B, Hardisty PE. Management approaches to conserve Australia's marine ecosystem under climate change. Science 2023; 381:631-636. [PMID: 37561873 DOI: 10.1126/science.adi3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Australia's coastal marine ecosystems have a deep cultural significance to Indigenous Australians, include multiple World Heritage sites, and support the nation's rapidly growing blue economy. Yet, increasing local pressures and global climate change are expected to undermine the biological, social, cultural, and economic value of these ecosystems within a human generation. Mitigating the causes of climate change is the most urgent action to secure their future; however, conventional and new management actions will play roles in preserving ecosystem function and value until that is achieved. This includes strategies codeveloped with Indigenous Australians that are guided by traditional ecological knowledge and a modeling and decision support framework. We provide examples of developments at one of Australia's most iconic ecosystems, the Great Barrier Reef, where recent, large block funding supports research, governance, and engagement to accelerate the development of tools for management under climate change.
Collapse
Affiliation(s)
- Line K Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - James Gilmour
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bob Muir
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul E Hardisty
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
16
|
Starko S, Fifer JE, Claar DC, Davies SW, Cunning R, Baker AC, Baum JK. Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners. SCIENCE ADVANCES 2023; 9:eadf0954. [PMID: 37566650 PMCID: PMC10421036 DOI: 10.1126/sciadv.adf0954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
Climate change-amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected. Here, we tracked the symbiotic associations of reef-building corals for 6 years through a prolonged heatwave, including known survivorship for 79 of 315 colonies. Coral genetics strongly predicted survival of the ubiquitous coral, Porites (massive growth form), with variable survival (15 to 61%) across three morphologically indistinguishable-but genetically distinct-lineages. The heatwave also disrupted strong associations between these coral lineages and their algal symbionts (family Symbiodiniaceae), with symbiotic turnover in some colonies, resulting in reduced specificity across lineages. These results highlight how heatwaves can threaten cryptic genotypes and decouple otherwise tightly coevolved relationships between hosts and symbionts.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - James E. Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Danielle C. Claar
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Washington Department of Natural Resources, Olympia, WA 98504, USA
| | - Sarah W. Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Julia K. Baum
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
17
|
Turnham KE, Aschaffenburg MD, Pettay DT, Paz-García DA, Reyes-Bonilla H, Pinzón J, Timmins E, Smith RT, McGinley MP, Warner ME, LaJeunesse TC. High physiological function for corals with thermally tolerant, host-adapted symbionts. Proc Biol Sci 2023; 290:20231021. [PMID: 37465983 PMCID: PMC10354691 DOI: 10.1098/rspb.2023.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The flexibility to associate with more than one symbiont may considerably expand a host's niche breadth. Coral animals and dinoflagellate micro-algae represent one of the most functionally integrated and widespread mutualisms between two eukaryotic partners. Symbiont identity greatly affects a coral's ability to cope with extremes in temperature and light. Over its broad distribution across the Eastern Pacific, the ecologically dominant branching coral, Pocillopora grandis, depends on mutualisms with the dinoflagellates Durusdinium glynnii and Cladocopium latusorum. Measurements of skeletal growth, calcification rates, total mass increase, calyx dimensions, reproductive output and response to thermal stress were used to assess the functional performance of these partner combinations. The results show both host-symbiont combinations displayed similar phenotypes; however, significant functional differences emerged when exposed to increased temperatures. Negligible physiological differences in colonies hosting the more thermally tolerant D. glynnii refute the prevailing view that these mutualisms have considerable growth tradeoffs. Well beyond the Eastern Pacific, pocilloporid colonies with D. glynnii are found across the Pacific in warm, environmentally variable, near shore lagoonal habitats. While rising ocean temperatures threaten the persistence of contemporary coral reefs, lessons from the Eastern Pacific indicate that co-evolved thermally tolerant host-symbiont combinations are likely to expand ecologically and spread geographically to dominate reef ecosystems in the future.
Collapse
Affiliation(s)
- Kira E. Turnham
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - D. Tye Pettay
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902,USA
| | - David A. Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur 23096, México
| | - Héctor Reyes-Bonilla
- Universidad Autónoma de Baja California Sur, Carretera al Sur 5.5, La Paz, C.P 23080, Mexico
| | - Jorge Pinzón
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ellie Timmins
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Robin T. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Todd C. LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Fong CR, Smith TB, Muthukrishnan R, Fong P. A persistent green macroalgal mat shifts ecological functioning and composition of associated species on an Eastern Tropical Pacific coral reef. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105952. [PMID: 37068436 DOI: 10.1016/j.marenvres.2023.105952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/11/2023]
Abstract
Global evidence of phase shifts to alternate community types is of particular concern because these new communities can provide fundamentally different and often novel ecosystem functions and services compared to the original community. Shifts of a diverse range of marine communities to dominance by green macroalgal mats have occurred worldwide, making it critical to understand their emerging functions and roles. We observed a green algal mat on two reefs in the Eastern Tropical Pacific, with one persisting for >10 years on a reef with stable herbivore populations and no known sources of anthropogenic nutrients. These mats supported a more speciose macroalgal community with fewer taxa present in the adjacent coral community and facilitated growth of an associated understory macroalgal species by reducing herbivory pressure and possibly enhancing nutrient supplies within the mat community state. These results demonstrate a weakening in the processes controlling reef community structure as a result of the shift in composition associated with the macroalgal mat, creating a positive feedback supporting mat persistence. These novel ecosystem functions generated by this alternate community state illustrate the importance of further research on community shifts, which will become increasingly common in the Anthropocene.
Collapse
Affiliation(s)
- Caitlin R Fong
- National Center for Ecological Analysis and Synthesis, USA.
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, USA
| | | | - Peggy Fong
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| |
Collapse
|