1
|
Atmore LM, van der Jagt I, Boilard A, Häberle S, Blevis R, Dierickx K, Quinlan LM, Orton DC, Hufthammer AK, Barrett JH, Star B. The Once and Future Fish: Assessing a Millennium of Atlantic Herring Exploitation Through Mixed-Stock Analysis and Ancient DNA. GLOBAL CHANGE BIOLOGY 2024; 30:e70010. [PMID: 39723543 DOI: 10.1111/gcb.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Small pelagic fish support profitable fisheries and are important for food security around the world. Yet, their sustainable management can be hindered by the indiscriminate impacts of simultaneous exploitation of fish from multiple distinct biological populations over extended periods of time. The quantification of such impacts is greatly facilitated by recently developed molecular tools-including diagnostic single nucleotide polymorphism (SNP) panels for mixed-stock analysis (MSA)-that can accurately detect the population identity of individual fish. However, the biological relevance of such tools over longer periods of time remains unknown. Here, we demonstrate that diagnostic SNP panels designed for contemporary MSA in Atlantic herring have a millennium-long biological relevance and applicability. We assign the population identity of ancient Atlantic herring specimens-obtained through famously profitable historic fisheries-up to 1300 years old from eight archaeological sites across Europe. Analyzing contemporary and ancient whole-genome data, we obtain evidence for the long-term mixed-stock exploitation of Atlantic herring. Despite such mixed-stock exploitation, we exclusively identify autumn-spawning herring amongst these archaeological remains, indicative of a specific biological availability or cultural preference for certain herring ecotypes in the past. Moreover, our results show that herring demographic patterns were relatively stable until the dramatic disruptions and stock collapses during the 20th century. We find small but significant reductions in genetic diversity over time, indicating long-term evolutionary consequences from 20th-century stock declines. The long-term applicability of diagnostic SNP panels underscores their biological relevance and cost-effective application for the genetic monitoring of herring stocks and highlights the utility of ancient DNA to obtain insights in herring ecology and population dynamics.
Collapse
Affiliation(s)
- Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis, Institute of Biosciences, University of Oslo, Oslo, Norway
- Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Inge van der Jagt
- Cultural Heritage Agency of the Netherlands, Amersfoort, The Netherlands
| | - Aurélie Boilard
- Centre for Ecological and Evolutionary Synthesis, Institute of Biosciences, University of Oslo, Oslo, Norway
| | - Simone Häberle
- Integrative Prehistory and Archaeological Science, Department of Environmental Sciences, Basel University, Basel, Switzerland
| | - Rachel Blevis
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Katrien Dierickx
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Archaeology, University of York, York, UK
| | - Liz M Quinlan
- Department of Archaeology, University of York, York, UK
| | - David C Orton
- Department of Archaeology, University of York, York, UK
| | | | - James H Barrett
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Institute of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Alves Monteiro HJ, Bekkevold D, Pacheco G, Mortensen S, Lou RN, Therkildsen NO, Tanguy A, Robert C, De Wit P, Meldrup D, Laugen AT, Zu Ermgassen PSE, Strand Å, Saurel C, Hemmer-Hansen J. Genome-Wide Population Structure in a Marine Keystone Species, the European Flat Oyster (Ostrea edulis). Mol Ecol 2024:e17573. [PMID: 39533801 DOI: 10.1111/mec.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Ostrea edulis, the European flat oyster, was once a widespread economically and ecologically important marine species, but has suffered dramatic declines over the past two centuries. Consequently, there has been a surge in European restoration efforts, many of which focus on restocking as a conservation measure. In this study, we used whole-genome sequencing (WGS) data to investigate the population structure, demographic history, and patterns of local adaptation of O. edulis across its natural distribution with increased sampling densities at Scandinavian localities. Results revealed seven distinct genetic clusters, including previously undescribed complex population structure in Norway, and evidence for introgression between genetic clusters in Scandinavia. We detected large structural variants (SVs) on three pseudo-chromosomes. These megabase long regions were characterised by strong linkage disequilibrium and clear geographical differentiation, suggestive of chromosomal inversions potentially associated with local adaptation. The results indicated that genomic traces of past translocations of non-native O. edulis were still present in some individuals, but overall, we found limited evidence of major impacts of translocations on the scale of contemporary population structure. Our findings highlight the importance of considering population structure and signatures of selection in the design of effective conservation strategies to preserve and restore wild native European flat oyster populations, and we provide direct knowledge safeguarding sustainable mitigation actions in this important species.
Collapse
Affiliation(s)
- Homère J Alves Monteiro
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - George Pacheco
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | | | - Runyang Nicolas Lou
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Nina O Therkildsen
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Chloé Robert
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Dorte Meldrup
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Ane T Laugen
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway
| | | | - Åsa Strand
- Department of Environmental Intelligence, IVL Swedish Environmental Research Institute, Fiskebäckskil, Sweden
| | - Camille Saurel
- National Institute of Aquatic Resources, Danish Shellfish Centre, Technical University of Denmark, Nykøbing Mors, Denmark
| | - Jakob Hemmer-Hansen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| |
Collapse
|
3
|
Ketchum RN, Smith EG, Toledo LM, Leach WB, Padillo-Anthemides N, Baxevanis AD, Reitzel AM, Ryan JF. Rapid speciation in the holopelagic ctenophore Mnemiopsis following glacial recession. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617593. [PMID: 39574589 PMCID: PMC11580945 DOI: 10.1101/2024.10.10.617593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Understanding how populations diverge is one of the oldest and most compelling questions in evolutionary biology. An in depth understanding of how this process operates in planktonic marine animals, where barriers for gene flow are seemingly absent, is critical to understanding the past, present, and future of ocean life. Mnemiopsis plays an important ecological role in its native habitat along the Atlantic coast of the Americas and is highly destructive in its non-native habitats in European waters. Although historical literature described three species of Mnemiopsis, the lack of stable morphological characters has led to the collapse of this group into a single species, Mnemiopsis leidyi. We generate high-quality reference genomes and use a whole-genome sequencing approach to reveal that there are two species of Mnemiopsis along its native range and show that historical divergence between the two species coincides with historical glacial melting. We define a hybridization zone between species and highlight that environmental sensing genes likely contribute to the invasive success of Mnemiopsis. Overall, this study provides insights into the fundamental question of how holopelagic species arise without clear barriers to gene flow and sheds light on the genomic mechanisms important for invasion success in a highly invasive species.
Collapse
Affiliation(s)
- Remi N Ketchum
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward G Smith
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Leandra M Toledo
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Whitney B Leach
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| |
Collapse
|
4
|
Martínez-García L, Pulido A, Ferrari G, Hufthammer AK, Vedeler M, Hirons A, Kneale C, Barrett JH, Star B. Tracing 600 years of long-distance Atlantic cod trade in medieval and post-medieval Oslo using stable isotopes and ancient DNA. Proc Biol Sci 2024; 291:20242019. [PMID: 39592000 PMCID: PMC11597396 DOI: 10.1098/rspb.2024.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Marine resources have been important for the survival and economic development of coastal human communities across northern Europe for millennia. Knowledge of the origin of such historic resources can provide key insights into fishing practices and the spatial extent of trade networks. Here, we combine ancient DNA and stable isotopes (δ13C, δ15N, non-exchangeable δ2H and δ34S) to investigate the geographical origin of archaeological cod remains in Oslo from the eleventh to seventeenth centuries CE. Our findings provide genetic evidence that Atlantic cod was obtained from different geographical populations, including a variety of distant-water populations like northern Norway and possibly Iceland. Evidence for such long-distance cod trade is already observed from the eleventh century, contrasting with archaeological and historical evidence from Britain and other areas of Continental Europe around the North and Baltic Seas, where such trade increased during the thirteenth to fourteenth centuries. The genomic assignments of specimens to different populations coincide with significantly different δ13C values between those same specimens, indicating that multiple Atlantic cod populations living in different environments were exploited. This research provides novel information about the exploitation timeline of specific Atlantic cod stocks and highlights the utility of combining ancient DNA (aDNA) methods and stable isotope analysis to describe the development of medieval and post-medieval marine fisheries.
Collapse
Affiliation(s)
- Lourdes Martínez-García
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, OsloNO-0371, Norway
| | - Angélica Pulido
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, OsloNO-0371, Norway
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
| | - Giada Ferrari
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, OsloNO-0371, Norway
| | - Anne Karin Hufthammer
- Department of Natural History, The University Museum, University of Bergen, BergenNO-5020, Norway
| | - Marianne Vedeler
- Museum of Cultural History, University of Oslo, OsloNO-0164, Norway
| | - Alex Hirons
- Department of Archaeology, McDonald Institute for Archaeological Research, University of Cambridge, CambridgeCB2 3DZ, UK
| | - Catherine Kneale
- Department of Archaeology, McDonald Institute for Archaeological Research, University of Cambridge, CambridgeCB2 3DZ, UK
| | - James H. Barrett
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology, TrondheimNO-7012, Norway
| | - Bastiaan Star
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, OsloNO-0371, Norway
| |
Collapse
|
5
|
Seljestad G, Quintela M, Bekkevold D, Pampoulie C, Farrell E, Kvamme C, Slotte A, Dahle G, Sørvik A, Pettersson M, Andersson L, Folkvord A, Glover K, Berg F. Genetic Stock Identification Reveals Mismatches Between Management Areas and Population Genetic Structure in a Migratory Pelagic Fish. Evol Appl 2024; 17:e70030. [PMID: 39464230 PMCID: PMC11502719 DOI: 10.1111/eva.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Sustainable fisheries management is important for the continued harvest of the world's marine resources, especially as they are increasingly challenged by a range of climatic and anthropogenic factors. One of the pillars of sustainable fisheries management is the accurate identification of the biological units, i.e., populations. Here, we developed and implemented a genetic baseline for Atlantic herring harvested in the Norwegian offshore fisheries to investigate the validity of the current management boundaries. This was achieved by genotyping > 15,000 herring from the northern European seas, including samples of all the known populations in the region, with a panel of population-informative SNPs mined from existing genomic resources. The final genetic baseline consisted of ~1000 herring from 12 genetically distinct populations. We thereafter used the baseline to investigate mixed catches from the North and Norwegian Seas, revealing that each management area consisted of multiple populations, as previously suspected. However, substantial numbers (up to 50% or more within a sample) of herring were found outside of their expected management areas, e.g., North Sea autumn-spawning herring north of 62° N (average = 19.2%), Norwegian spring-spawning herring south of 62° N (average = 13.5%), and western Baltic spring-spawning herring outside their assumed distribution area in the North Sea (average = 20.0%). Based upon these extensive observations, we conclude that the assessment and management areas currently in place for herring in this region need adjustments to reflect the populations present. Furthermore, we suggest that for migratory species, such as herring, a paradigm shift from using static geographic stock boundaries towards spatial dynamic boundaries is needed to meet the requirements of future sustainable management regimes.
Collapse
Affiliation(s)
| | | | - Dorte Bekkevold
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | | | - Aril Slotte
- Institute of Marine Research (IMR)BergenNorway
| | - Geir Dahle
- Institute of Marine Research (IMR)BergenNorway
| | | | - Mats E. Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Arild Folkvord
- Department of Biological SciencesUniversity of BergenBergenNorway
- Institute of Marine Research (IMR)BergenNorway
| | | | | |
Collapse
|
6
|
Przelomska NAS, Balazik MT, Lin AT, Reeder-Myers LA, Rick TC, Kistler L. Archaeogenomic analysis of Chesapeake Atlantic sturgeon illustrates shaping of its populations in recovery from severe overexploitation. Proc Biol Sci 2024; 291:20241145. [PMID: 39378990 PMCID: PMC11461086 DOI: 10.1098/rspb.2024.1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
Atlantic sturgeon (Acipenser oxyrinchus ssp. oxyrinchus) has been a food resource in North America for millennia. However, industrial-scale fishing activities following the establishment of European colonies led to multiple collapses of sturgeon stocks, driving populations such as those in the Chesapeake area close to extinction. While recent conservation efforts have been successful in restoring census numbers, little is known regarding genomic consequences of the population bottleneck. Here, we characterize its effect on present-day population structuring and genomic diversity in James River populations. To establish a pre-collapse baseline, we collected genomic data from archaeological remains from Middle Woodland Maycock's Point (c. 200-900 CE), as well as Jamestown and Williamsburg colonial sites. Demographic analysis of recovered mitogenomes reveals a historical collapse in effective population size, also reflected in diminished present-day mitogenomic diversity and structure. We infer that James River fall- and spring-spawning populations likely took shape in recent years of population recovery, where genetic drift enhanced the degree of population structure. The mismatch of mitogenomic lineages to geographical-seasonal groupings implies that despite their homing instinct and differential adaptation manifested as season-specific behaviour, colonization of new rivers has been a key ecological strategy for Atlantic sturgeon over evolutionary timescales.
Collapse
Affiliation(s)
- Natalia A. S. Przelomska
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560, USA
- School of the Environment and Life Sciences, University of Portsmouth, PortsmouthPO1 2DY, UK
| | - Matthew T. Balazik
- Environmental Laboratory, Engineer Research and Development Center, Vicksburg, MS39180, USA
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA23284, USA
| | - Audrey T. Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY10024, USA
| | | | - Torben C. Rick
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560, USA
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560, USA
| |
Collapse
|
7
|
Layton KKS, Brieuc MSO, Castilho R, Diaz-Arce N, Estévez-Barcia D, Fonseca VG, Fuentes-Pardo AP, Jeffery NW, Jiménez-Mena B, Junge C, Kaufmann J, Leinonen T, Maes SM, McGinnity P, Reed TE, Reisser CMO, Silva G, Vasemägi A, Bradbury IR. Predicting the future of our oceans-Evaluating genomic forecasting approaches in marine species. GLOBAL CHANGE BIOLOGY 2024; 30:e17236. [PMID: 38519845 DOI: 10.1111/gcb.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
Climate change is restructuring biodiversity on multiple scales and there is a pressing need to understand the downstream ecological and genomic consequences of this change. Recent advancements in the field of eco-evolutionary genomics have sought to include evolutionary processes in forecasting species' responses to climate change (e.g., genomic offset), but to date, much of this work has focused on terrestrial species. Coastal and offshore species, and the fisheries they support, may be even more vulnerable to climate change than their terrestrial counterparts, warranting a critical appraisal of these approaches in marine systems. First, we synthesize knowledge about the genomic basis of adaptation in marine species, and then we discuss the few examples where genomic forecasting has been applied in marine systems. Next, we identify the key challenges in validating genomic offset estimates in marine species, and we advocate for the inclusion of historical sampling data and hindcasting in the validation phase. Lastly, we describe a workflow to guide marine managers in incorporating these predictions into the decision-making process.
Collapse
Affiliation(s)
- K K S Layton
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - R Castilho
- University of the Algarve, Faro, Portugal
- Centre for Marine Sciences, University of the Algarve, Faro, Portugal
- Pattern Institute, Faro, Portugal
| | - N Diaz-Arce
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - D Estévez-Barcia
- Department of Fish and Shellfish, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - V G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - A P Fuentes-Pardo
- Department of Immunology, Genetics and Pathology, SciLifeLab Data Centre, Uppsala University, Uppsala, Sweden
| | - N W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - B Jiménez-Mena
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - C Junge
- Institute of Marine Research, Tromso, Norway
| | | | - T Leinonen
- Natural Resources Institute Finland, Helsinki, Finland
| | - S M Maes
- Flanders Research Institute for Agriculture, Fisheries and Food, Ostend, Belgium
| | - P McGinnity
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - T E Reed
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - C M O Reisser
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - G Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, Lisbon, Portugal
| | - A Vasemägi
- Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Estonian University of Life Sciences, Tartu, Estonia
| | - I R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
8
|
Novo I, Ordás P, Moraga N, Santiago E, Quesada H, Caballero A. Impact of population structure in the estimation of recent historical effective population size by the software GONE. Genet Sel Evol 2023; 55:86. [PMID: 38049712 PMCID: PMC10694967 DOI: 10.1186/s12711-023-00859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Effective population size (Ne) is a crucial parameter in conservation genetics and animal breeding. A recent method, implemented by the software GONE, has been shown to be rather accurate in estimating recent historical changes in Ne from a single sample of individuals. However, GONE estimations assume that the population being studied has remained isolated for a period of time, that is, without migration or confluence of other populations. If this occurs, the estimates of Ne can be heavily biased. In this paper, we evaluate the impact of migration and admixture on the estimates of historical Ne provided by GONE through a series of computer simulations considering several scenarios: (a) the mixture of two or more ancestral populations; (b) subpopulations that continuously exchange individuals through migration; (c) populations receiving migrants from a large source; and (d) populations with balanced systems of chromosomal inversions, which also generate genetic structure. RESULTS Our results indicate that the estimates of historical Ne provided by GONE may be substantially biased when there has been a recent mixture of populations that were previously separated for a long period of time. Similarly, biases may occur when the rate of continued migration between populations is low, or when chromosomal inversions are present at high frequencies. However, some biases due to population structuring can be eliminated by conducting population structure analyses and restricting the estimation to the differentiated groups. In addition, disregarding the genomic regions that are involved in inversions can also remove biases in the estimates of Ne. CONCLUSIONS Different kinds of deviations from isolation and panmixia of the populations can generate biases in the recent historical estimates of Ne. Therefore, estimation of past demography could benefit from performing population structure analyses beforehand, by mitigating the impact of these biases on historical Ne estimates.
Collapse
Affiliation(s)
- Irene Novo
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain.
| | - Pilar Ordás
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain
| | - Natalia Moraga
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain
| | - Enrique Santiago
- Departamento de Biología Funcional, Facultad de Biología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Humberto Quesada
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain
| | - Armando Caballero
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310, Vigo, Spain
| |
Collapse
|
9
|
Muschick M, Jemmi E, Lengacher N, Hänsch S, Wales N, Kishe MA, Mwaiko S, Dieleman J, Lever MA, Salzburger W, Verschuren D, Seehausen O. Ancient DNA is preserved in fish fossils from tropical lake sediments. Mol Ecol 2023; 32:5913-5931. [PMID: 37830773 DOI: 10.1111/mec.17159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Tropical freshwater lakes are well known for their high biodiversity, and particularly the East African Great Lakes are renowned for their adaptive radiation of cichlid fishes. While comparative phylogenetic analyses of extant species flocks have revealed patterns and processes of their diversification, little is known about evolutionary trajectories within lineages, the impacts of environmental drivers, or the scope and nature of now-extinct diversity. Time-structured palaeodata from geologically young fossil records, such as fossil counts and particularly ancient DNA (aDNA) data, would help fill this large knowledge gap. High ambient temperatures can be detrimental to the preservation of DNA, but refined methodology now allows data generation even from very poorly preserved samples. Here, we show for the first time that fish fossils from tropical lake sediments yield endogenous aDNA. Despite generally low endogenous content and high sample dropout, the application of high-throughput sequencing and, in some cases, sequence capture allowed taxonomic assignment and phylogenetic placement of 17% of analysed fish fossils to family or tribe level, including remains which are up to 2700 years old or weigh less than 1 mg. The relationship between aDNA degradation and the thermal age of samples is similar to that described for terrestrial samples from cold environments when adjusted for elevated temperature. Success rates and aDNA preservation differed between the investigated lakes Chala, Kivu and Victoria, possibly caused by differences in bottom water oxygenation. Our study demonstrates that the sediment records of tropical lakes can preserve genetic information on rapidly diversifying fish taxa over time scales of millennia.
Collapse
Affiliation(s)
- Moritz Muschick
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Eliane Jemmi
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Nicholas Lengacher
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Stephanie Hänsch
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nathan Wales
- Department of Archaeology, University of York, York, UK
| | - Mary A Kishe
- Tanzania Fisheries Research Institute, Dar es Salaam, Tanzania
| | - Salome Mwaiko
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Jorunn Dieleman
- Limnology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Mark Alexander Lever
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
| | | | - Dirk Verschuren
- Limnology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
10
|
Novo I, Pérez-Pereira N, Santiago E, Quesada H, Caballero A. An empirical test of the estimation of historical effective population size using Drosophila melanogaster. Mol Ecol Resour 2023; 23:1632-1640. [PMID: 37455584 DOI: 10.1111/1755-0998.13837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The availability of a large number of high-density markers (SNPs) allows the estimation of historical effective population size (Ne ) from linkage disequilibrium between loci. A recent refinement of methods to estimate historical Ne from the recent past has been shown to be rather accurate with simulation data. The method has also been applied to real data for numerous species. However, the simulation data cannot encompass all the complexities of real genomes, and the performance of any estimation method with real data is always uncertain, as the true demography of the populations is not known. Here, we carried out an experimental design with Drosophila melanogaster to test the method with real data following a known demographic history. We used a population maintained in the laboratory with a constant census size of about 2800 individuals and subjected the population to a drastic decline to a size of 100 individuals. After a few generations, the population was expanded back to the previous size and after a few further generations again expanded to twice the initial size. Estimates of historical Ne were obtained with the software GONE both for autosomal and X chromosomes from samples of 17 individuals sequenced for the whole genome. Estimates of the historical effective size were able to infer the patterns of changes that occurred in the populations showing generally good performance of the method. We discuss the limitations of the method and the application of the software carried out so far.
Collapse
Affiliation(s)
- Irene Novo
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Noelia Pérez-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Enrique Santiago
- Departamento de Biología Funcional, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain
| | - Humberto Quesada
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Armando Caballero
- Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| |
Collapse
|
11
|
Thorogood R, Mustonen V, Aleixo A, Aphalo PJ, Asiegbu FO, Cabeza M, Cairns J, Candolin U, Cardoso P, Eronen JT, Hällfors M, Hovatta I, Juslén A, Kovalchuk A, Kulmuni J, Kuula L, Mäkipää R, Ovaskainen O, Pesonen AK, Primmer CR, Saastamoinen M, Schulman AH, Schulman L, Strona G, Vanhatalo J. Understanding and applying biological resilience, from genes to ecosystems. NPJ BIODIVERSITY 2023; 2:16. [PMID: 39242840 PMCID: PMC11332022 DOI: 10.1038/s44185-023-00022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2024]
Abstract
The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.
Collapse
Affiliation(s)
- Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Ville Mustonen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandre Aleixo
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Fred O Asiegbu
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mar Cabeza
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Jussi T Eronen
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Research Programme in Ecosystems and Environment, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- BIOS Research Unit, Helsinki, Finland
| | - Maria Hällfors
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Aino Juslén
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- Onego Bio Ltd, Helsinki, Finland
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Otso Ovaskainen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Craig R Primmer
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alan H Schulman
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leif Schulman
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Giovanni Strona
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy
| | - Jarno Vanhatalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Ancient DNA reveals how Viking-era fishers helped to make herring scarce. Nature 2022. [DOI: 10.1038/d41586-022-03431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|