1
|
Hughes JJ, Lagunas-Robles G, Campbell P. The role of conflict in the formation and maintenance of variant sex chromosome systems in mammals. J Hered 2024; 115:601-624. [PMID: 38833450 DOI: 10.1093/jhered/esae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
The XX/XY sex chromosome system is deeply conserved in therian mammals, as is the role of Sry in testis determination, giving the impression of stasis relative to other taxa. However, the long tradition of cytogenetic studies in mammals documents sex chromosome karyotypes that break this norm in myriad ways, ranging from fusions between sex chromosomes and autosomes to Y chromosome loss. Evolutionary conflict, in the form of sexual antagonism or meiotic drive, is the primary predicted driver of sex chromosome transformation and turnover. Yet conflict-based hypotheses are less considered in mammals, perhaps because of the perceived stability of the sex chromosome system. To address this gap, we catalog and characterize all described sex chromosome variants in mammals, test for family-specific rates of accumulation, and consider the role of conflict between the sexes or within the genome in the evolution of these systems. We identify 152 species with sex chromosomes that differ from the ancestral state and find evidence for different rates of ancestral to derived transitions among families. Sex chromosome-autosome fusions account for 79% of all variants whereas documented sex chromosome fissions are limited to three species. We propose that meiotic drive and drive suppression provide viable explanations for the evolution of many of these variant systems, particularly those involving autosomal fusions. We highlight taxa particularly worthy of further study and provide experimental predictions for testing the role of conflict and its alternatives in generating observed sex chromosome diversity.
Collapse
Affiliation(s)
- Jonathan J Hughes
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - German Lagunas-Robles
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Polly Campbell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Grégoire É, De Cian MC, Detti M, Gillot I, Perea-Gomez A, Chaboissier MC. [Sex determination, it is all about timing]. Med Sci (Paris) 2024; 40:627-633. [PMID: 39303114 DOI: 10.1051/medsci/2024095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
The sex of an individual is determined at the time of fertilization. The mother passes on one sex chromosome, the X chromosome, and the father transmits the second sex chromosome, X or Y. Thus, an XX embryo becomes a female, whereas an XY individual becomes a male. A process known as "primary sex determination" allows the bipotential gonad to become a testis or an ovary in XY and XX embryos, respectively. In 1990, the Sry gene, located on the Y chromosome, was found to be necessary and sufficient to induce the male developmental program. At this time, the scientific community thought that other genes involved in the process of sex determination would be rapidly identified. However, it took more than 30 years to identify the ovarian determining factor. This factor is one variant of WT1, denoted -KTS, which is required to induce ovarian development in XX mice and can prevent male development of the gonad when it is prematurely activated in XY embryos. Because the -KTS variant of WT1 acts very early during development, this discovery opens new avenues for research on ovarian development, as it happened for SRY for testis development. It will also lead to a better understanding of the regulatory gene networks implicated in many unresolved cases of sex development disorders.
Collapse
Affiliation(s)
- Élodie Grégoire
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | - Marie-Cécile De Cian
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | - Mélanie Detti
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | - Isabelle Gillot
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | - Aitana Perea-Gomez
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | | |
Collapse
|
3
|
Hayashi S, Abe T, Igawa T, Katsura Y, Kazama Y, Nozawa M. Sex chromosome cycle as a mechanism of stable sex determination. J Biochem 2024; 176:81-95. [PMID: 38982631 PMCID: PMC11289310 DOI: 10.1093/jb/mvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.
Collapse
Affiliation(s)
- Shun Hayashi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takuya Abe
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yukako Katsura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji, Fukui 910-1195, Japan
| | - Masafumi Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
4
|
Zhu Z, Younas L, Zhou Q. Evolution and regulation of animal sex chromosomes. Nat Rev Genet 2024:10.1038/s41576-024-00757-3. [PMID: 39026082 DOI: 10.1038/s41576-024-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Animal sex chromosomes typically carry the upstream sex-determining gene that triggers testis or ovary development and, in some species, are regulated by global dosage compensation in response to functional decay of the Y chromosome. Despite the importance of these pathways, they exhibit striking differences across species, raising fundamental questions regarding the mechanisms underlying their evolutionary turnover. Recent studies of non-model organisms, including insects, reptiles and teleosts, have yielded a broad view of the diversity of sex chromosomes that challenges established theories. Moreover, continued studies in model organisms with recently developed technologies have characterized the dynamics of sex determination and dosage compensation in three-dimensional nuclear space and at single-cell resolution. Here, we synthesize recent insights into sex chromosomes from a variety of species to review their evolutionary dynamics with respect to the canonical model, as well as their diverse mechanisms of regulation.
Collapse
Affiliation(s)
- Zexian Zhu
- Evolutionary and Organismal Biology Research Center and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Vitale M, Kranjc N, Leigh J, Kyrou K, Courty T, Marston L, Grilli S, Crisanti A, Bernardini F. Y chromosome shredding in Anopheles gambiae: Insight into the cellular dynamics of a novel synthetic sex ratio distorter. PLoS Genet 2024; 20:e1011303. [PMID: 38848445 PMCID: PMC11189259 DOI: 10.1371/journal.pgen.1011303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/20/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Despite efforts to explore the genome of the malaria vector Anopheles gambiae, the Y chromosome of this species remains enigmatic. The large number of repetitive and heterochromatic DNA sequences makes the Y chromosome exceptionally difficult to fully assemble, hampering the progress of gene editing techniques and functional studies for this chromosome. In this study, we made use of a bioinformatic platform to identify Y-specific repetitive DNA sequences that served as a target site for a CRISPR/Cas9 system. The activity of Cas9 in the reproductive organs of males caused damage to Y-bearing sperm without affecting their fertility, leading to a strong female bias in the progeny. Cytological investigation allowed us to identify meiotic defects and investigate sperm selection in this new synthetic sex ratio distorter system. In addition, alternative promoters enable us to target the Y chromosome in specific tissues and developmental stages of male mosquitoes, enabling studies that shed light on the role of this chromosome in male gametogenesis. This work paves the way for further insight into the poorly characterised Y chromosome of Anopheles gambiae. Moreover, the sex distorter strain we have generated promises to be a valuable tool for the advancement of studies in the field of developmental biology, with the potential to support the progress of genetic strategies aimed at controlling malaria mosquitoes and other pest species.
Collapse
Affiliation(s)
- Matteo Vitale
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jessica Leigh
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kyrous Kyrou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Thomas Courty
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Louise Marston
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Silvia Grilli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Matiz-Ceron L, Okuno M, Itoh T, Yoshida I, Mizushima S, Toyoda A, Jogahara T, Kuroiwa A. Loss of One X and the Y Chromosome Changes the Configuration of the X Inactivation Center in the Genus Tokudaia. Cytogenet Genome Res 2024; 164:23-32. [PMID: 38754392 DOI: 10.1159/000539294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION X chromosome inactivation (XCI) is an essential mechanism for dosage compensation between females and males in mammals. In females, XCI is controlled by a complex, conserved locus termed the X inactivation center (Xic), in which the lncRNA Xist is the key regulator. However, little is known about the Xic in species with unusual sex chromosomes. The genus Tokudaia includes three rodent species endemic to Japan. Tokudaia osimensis and Tokudaia tokunoshimensis lost the Y chromosome (XO/XO), while Tokudaia muenninki (TMU) acquired a neo-X region by fusion of the X chromosome and an autosome (XX/XY). We compared the gene location and structure in the Xic among Tokudaia species. METHODS Gene structure of nine genes in Xic was predicted, and the gene location and genome sequences of Xic were compared between mouse and Tokudaia species. The expression level of the gene was confirmed by transcripts per million calculation using RNA-seq data. RESULTS Compared to mouse, the Xic gene order and location were conserved in Tokudaia species. However, remarkable structure changes were observed in lncRNA genes, Xist and Tsix, in the XO/XO species. In Xist, important functional repeats, B-, C-, D-, and E-repeats, were partially or completely lost due to deletions in these species. RNA-seq data showed that female-specific expression patterns of Xist and Tsix were confirmed in TMU, however, not in the XO/XO species. Additionally, three deletions and one inversion were confirmed in the intergenic region between Jpx and Ftx in the XO/XO species. CONCLUSION Our findings indicate that even if the Xist and Tsix lncRNAs are expressed, they are incapable of producing a successful and lasting XCI in the XO/XO species. We hypothesized that the significant structure change in the intergenic region of Jpx-Ftx resulted in the inability to perform the XCI, and, as a result, a lack of Xist expression. Our results collectively suggest that structural changes in the Xic occurred in the ancestral lineage of XO/XO species, likely due to the loss of one X chromosome and the Y chromosome as a consequence of the degradation of the XCI system.
Collapse
Affiliation(s)
- Luisa Matiz-Ceron
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Ikuya Yoshida
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shusei Mizushima
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takamichi Jogahara
- Faculty of Law, Economics and Management, Okinawa University, Naha, Okinawa, Japan
| | - Asato Kuroiwa
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
8
|
Li J, Song S, Zhang J. Where Are the Formerly Y-linked Genes in the Ryukyu Spiny Rat that has Lost its Y Chromosome? Genome Biol Evol 2024; 16:evae046. [PMID: 38478711 PMCID: PMC10959550 DOI: 10.1093/gbe/evae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
It has been predicted that the highly degenerate mammalian Y chromosome will be lost eventually. Indeed, Y was lost in the Ryukyu spiny rat Tokudaia osimensis, but the fate of the formerly Y-linked genes is not completely known. We looked for all 12 ancestrally Y-linked genes in a draft T. osimensis genome sequence. Zfy1, Zfy2, Kdm5d, Eif2s3y, Usp9y, Uty, and Ddx3y are putatively functional and are now located on the X chromosome, whereas Rbmy, Uba1y, Ssty1, Ssty2, and Sry are missing or pseudogenized. Tissue expressions of the mouse orthologs of the retained genes are significantly broader/higher than those of the lost genes, suggesting that the destinies of the formerly Y-linked genes are related to their original expressions. Interestingly, patterns of gene retention/loss are significantly more similar than by chance across four rodent lineages where Y has been independently lost, indicating a level of certainty in the fate of Y-linked genes even when the chromosome is gone.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siliang Song
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Behrens KA, Zimmermann H, Blažek R, Reichard M, Koblmüller S, Kocher TD. Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae). Sci Rep 2024; 14:2471. [PMID: 38291228 PMCID: PMC10828463 DOI: 10.1038/s41598-024-53021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Holger Zimmermann
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
10
|
Hirata Y, Mizushima S, Mitsukawa S, Kon M, Kuroki Y, Jogahara T, Shinohara N, Kuroiwa A. Identification of a New Enhancer That Promotes Sox9 Expression by a Comparative Analysis of Mouse and Sry-Deficient Amami Spiny Rat. Cytogenet Genome Res 2024; 163:307-316. [PMID: 38246151 DOI: 10.1159/000536408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION Testis differentiation is initiated by the SRY gene on the Y chromosome in mammalian species. However, the Amami spiny rat, Tokudaia osimensis, lacks both the Y chromosome and the Sry gene and acquired a unique Sox9 regulatory mechanism via a male-specific duplication upstream of Sox9, without Sry. In general mammalian species, the SRY protein binds to a testis-specific enhancer to promote SOX9 gene expression. Several enhancers located upstream of Sox9/SOX9 have been reported in mice and humans. In particular, the binding of SRY to the highly conserved enhancer Enh13 is thought to be a common mechanism underlying testis differentiation and sex determination in mammals. METHODS Sequences of T. osimensis homologues of three Sox9 enhancers that were previously reported in mice, Enh8, Enh14, and Enh13, were determined. We performed in vitro assays to confirm enhancer activity involved in Sox9 regulation in T. osimensis. RESULTS T. osimensis Enh13 showed enhancer activity when co-transfected with NR5A1 and SOX9. Mouse Enh13 was activated by NR5A1 and SRY; however, T. osimensis Enh13 did not respond to SRY, even though the binding sites of SRY and NR5A1 were conserved. To identify the key sequence that is present in mouse but absent from T. osimensis, we performed reporter gene assays using vectors in which partial sequences of T. osimensis Enh13 were replaced with mouse sequences. For T. osimensis Enh13 in which the second half (approximately 430 bp) was replaced with the corresponding mouse sequence, activity in response to NR5A1 and SRY was recovered. Further, reporter assays revealed that multiple regions in the second half of the mouse Enh13 sequence are required for the response to NR5A1 and SRY. The latter 49 bp was particularly important and contained four binding sites for three transcription factors, POU2F1, HOXA3, and GATA1. CONCLUSION We showed that there are unknown sequences responsible for the interaction between NR5A1 and SRY and mEnh13 based on comparative analyses of Sry-dependent and Sry-independent species. Our comparative analyses revealed new molecular mechanisms underlying mammalian sex determination.
Collapse
Affiliation(s)
- Yurie Hirata
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shusei Mizushima
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shoichiro Mitsukawa
- Reproductive and Developmental Sciences, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoko Kuroki
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
- Division of Collaborative Research, National Center for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takamichi Jogahara
- Faculty of Law, Economics and Management, Okinawa University, Naha, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Asato Kuroiwa
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
12
|
Okuno M, Mochimaru Y, Matsuoka K, Yamabe T, Matiz-Ceron L, Jogahara T, Toyoda A, Kuroiwa A, Itoh T. Chromosomal-level assembly of Tokudaia osimensis, Tokudaia tokunoshimensis, and Tokudaia muenninki genomes. Sci Data 2023; 10:927. [PMID: 38129438 PMCID: PMC10739956 DOI: 10.1038/s41597-023-02845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Herein, we present the first high-quality long-read-based chromosome-level genome assemblies and gene annotations of the genomes of three endangered Tokudaia species: Tokudaia osimensis, Tokudaia tokunoshimensis, and Tokudaia muenninki. These species, which are endemic to different islands of the Ryukyu Islands, Japan, exhibited unique karyotypes and sex chromosomal characteristics. The genome assemblies generated using PacBio, Illumina, and Hi-C sequence data consisted of 13 (corresponded to 12 autosomes and one X chromosome), 23 (corresponded to 22 autosomes and one X chromosome), and 23 (corresponded to 21 autosomes and the neo- and ancestral X regions) chromosome-level scaffolds that contained 2,445, 2,477, and 2,661 Mbp of sequence data, respectively. Annotations of protein-coding genes were performed using RNA-Seq-based, homology-based, and Ab initio methods. BUSCO completeness values for every species exceeded 96% for genomes and 98% for genes. These data can be an important resource for contributing to our understanding of species genomes resulting from allopatric speciation and provide insights into mammalian sex-determination mechanisms and sex chromosome evolution.
Collapse
Affiliation(s)
- Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yuta Mochimaru
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kentaro Matsuoka
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Takahiro Yamabe
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Luisa Matiz-Ceron
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Takamichi Jogahara
- Faculty of Law, Economics and Management, Okinawa University, Naha, Okinawa, 902-0075, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Asato Kuroiwa
- Reproductive and Developmental Science, Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| |
Collapse
|
13
|
Sykes NTB, Kolora SRR, Sudmant PH, Owens GL. Rapid turnover and evolution of sex-determining regions in Sebastes rockfishes. Mol Ecol 2023; 32:5013-5027. [PMID: 37548650 DOI: 10.1111/mec.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Nature has evolved a wealth of sex determination (SD) mechanisms, driven by both genetic and environmental factors. Recent studies of SD in fishes have shown that not all taxa fit the classic paradigm of sex chromosome evolution and diverse SD methods can be found even among closely related species. Here, we apply a suite of genomic approaches to investigate sex-biased genomic variation in eight species of Sebastes rockfish found in the northeast Pacific Ocean. Using recently assembled chromosome-level rockfish genomes, we leverage published sequence data to identify disparate sex chromosomes and sex-biased loci in five species. We identify two putative male sex chromosomes in S. diaconus, a single putative sex chromosome in the sibling species S. carnatus and S. chrysomelas, and an unplaced sex determining contig in the sibling species S. miniatus and S. crocotulus. Our study provides evidence for disparate means of sex determination within a recently diverged set of species and sheds light on the diverse origins of sex determination mechanisms present in the animal kingdom.
Collapse
Affiliation(s)
- Nathan T B Sykes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Sree Rohit Raj Kolora
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Center for Computational Biology, University of California, Berkeley, California, USA
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
14
|
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: Squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. J Hered 2023; 114:445-458. [PMID: 37018459 PMCID: PMC10445521 DOI: 10.1093/jhered/esad023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
- Bell Museum of Natural History, University of Minnesota, St Paul, MN, United States
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ, United States
| |
Collapse
|
15
|
Yao HHC, Rodriguez KF. From Enrico Sertoli to freemartinism: the many phases of the master testis-determining cell†. Biol Reprod 2023; 108:866-870. [PMID: 36951956 PMCID: PMC10266947 DOI: 10.1093/biolre/ioad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 03/24/2023] Open
Abstract
Sertoli cells, first identified in the adult testis by Enrico Sertoli in the mid-nineteenth century, are known for their role in fostering male germ cell differentiation and production of mature sperm. It was not until the late twentieth century with the discovery of the testis-determining gene SRY that Sertoli cells' new function as the master regulator of testis formation and maleness was unveiled. Fetal Sertoli cells facilitate the establishment of seminiferous cords, induce appearance of androgen-producing Leydig cells, and cause regression of the female reproductive tracts. Originally thought be a terminally differentiated cell type, adult Sertoli cells, at least in the mouse, retain their plasticity and ability to transdifferentiate into the ovarian counterpart, granulosa cells. In this review, we capture the many phases of Sertoli cell differentiation from their fate specification in fetal life to fate maintenance in adulthood. We also introduce the discovery of a new phase of fetal Sertoli cell differentiation via autocrine/paracrine factors with the freemartin characteristics. There remains much to learn about this intriguing cell type that lay the foundation for the maleness.
Collapse
Affiliation(s)
- Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524006. [PMID: 37034614 PMCID: PMC10081179 DOI: 10.1101/2023.01.20.524006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012-2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
- Department of Biological Sciences, Marquette University, Milwaukee WI USA
- Bell Museum of Natural History, University of Minnesota, St Paul, MN USA
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ USA
| |
Collapse
|
18
|
How to manage without a Y chromosome. Proc Natl Acad Sci U S A 2023; 120:e2218839120. [PMID: 36598951 PMCID: PMC9926260 DOI: 10.1073/pnas.2218839120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|