1
|
Silverman A, Melamed S. Biological Insights from RNA-RNA Interactomes in Bacteria, as Revealed by RIL-seq. Methods Mol Biol 2025; 2866:189-206. [PMID: 39546204 DOI: 10.1007/978-1-0716-4192-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Bacteria reside in constantly changing environments and require rapid and precise adjustments of gene expression to ensure survival. Small regulatory RNAs (sRNAs) are a crucial element that bacteria utilize to achieve this. sRNAs are short RNA molecules that modulate gene expression usually through base-pairing interactions with target RNAs, primarily mRNAs. These interactions can lead to either negative outcomes such as mRNA degradation or translational repression or positive outcomes such as mRNA stabilization or translation enhancement. In recent years, high-throughput approaches such as RIL-seq (RNA interaction by ligation and sequencing) revolutionized the sRNA field by enabling the identification of sRNA targets on a global scale, unveiling intricate sRNA-RNA networks. In this review, we discuss the insights gained from investigating sRNA-RNA networks in well-studied bacterial species as well as in understudied bacterial species. Having a complete understanding of sRNA-mediated regulation is critical for the development of new strategies for controlling bacterial growth and combating bacterial infections.
Collapse
Affiliation(s)
- Aviezer Silverman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Liu YJ, Wang X, Sun Y, Feng Y. Bacterial 5' UTR: A treasure-trove for post-transcriptional regulation. Biotechnol Adv 2025; 78:108478. [PMID: 39551455 DOI: 10.1016/j.biotechadv.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In bacteria, where gene transcription and translation occur concurrently, post-transcriptional regulation is acknowledged to be effective and precise. The 5' untranslated regions (5' UTRs) typically harbor diverse post-transcriptional regulatory elements, like riboswitches, RNA thermometers, small RNAs, and upstream open reading frames, that serve to modulate transcription termination, translation initiation, and mRNA stability. Consequently, exploring 5' UTR-derived regulatory elements is vital for synthetic biology and metabolic engineering. Over the past few years, the investigation of successive mechanisms has facilitated the development of various genetic tools from bacterial 5' UTRs. This review consolidates current understanding of 5' UTR regulatory functions, presents recent progress in 5' UTR-element design and screening, updates the tools and regulatory strategies developed, and highlights the challenges and necessity of establishing reliable bioinformatic analysis methods and non-model bacterial chassis in the future.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Kar A, Saha P, De R, Bhattacharya S, Mukherjee SK, Hossain ST. Unveiling the role of PA0730.1 sRNA in Pseudomonas aeruginosa virulence and biofilm formation: Exploring rpoS and mucA regulation. Int J Biol Macromol 2024; 279:135130. [PMID: 39214208 DOI: 10.1016/j.ijbiomac.2024.135130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Small RNA (sRNA) in bacteria serve as the key messengers in regulating genes associated with quorum sensing controlled bacterial virulence. This study was aimed to unveil the regulatory role of sRNA PA0730.1 on the expression of various traits of Pseudomonas aeruginosa linked to pathogenicity, with special emphasis on the growth, colony morphology, cell motility, biofilm formation, and the expression of diverse virulence factors. PA0730.1 sRNA was found to be upregulated both during planktonic stationary growth phase and at biofilm state of P. aeruginosa PAO1. PA0730.1 deleted strain showed significant growth retardation with increased doubling time. Overexpression of PA0730.1 led to enhanced motility and biofilm formation, while the ∆PA0730.1 strain displayed significant inhibition in motility and biofilm formation. Furthermore, PA0730.1 was found to regulate the synthesis of selected virulence factors of P. aeruginosa. These observations in PA0730.1+ and ∆PA0730.1 were found to be correlated with the PA0730.1-mediated repression of transcription regulators, mucA and rpoS, both at transcriptional and translational levels. The results suggest that PA0730.1 sRNA might be a promising target for developing new drug to counter P. aeruginosa pathogenesis, and could also help in RNA oligonucleotide based therapeutic research for formulating a novel therapeutant.
Collapse
Affiliation(s)
- Amiya Kar
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Piyali Saha
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Rakesh De
- Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | | | | | | |
Collapse
|
4
|
Hamrock F, Ryan D, Shaibah A, Ershova A, Mogre A, Sulimani M, Ben Taarit S, Reichardt S, Hokamp K, Westermann A, Kröger C. Global analysis of the RNA-RNA interactome in Acinetobacter baumannii AB5075 uncovers a small regulatory RNA repressing the virulence-related outer membrane protein CarO. Nucleic Acids Res 2024; 52:11283-11300. [PMID: 39149883 PMCID: PMC11472050 DOI: 10.1093/nar/gkae668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen that infects critically ill patients. The emergence of antimicrobial resistant A. baumannii has exacerbated the need to characterize environmental adaptation, antibiotic resistance and pathogenicity and their genetic regulators to inform intervention strategies. Critical to adaptation to changing environments in bacteria are small regulatory RNAs (sRNAs), however, the role that sRNAs play in the biology of A. baumannii is poorly understood. To assess the regulatory function of sRNAs and to uncover their RNA interaction partners, we employed an RNA proximity ligation and sequencing method (Hi-GRIL-seq) in three different environmental conditions. Forty sRNAs were ligated to sRNA-RNA chimeric sequencing reads, suggesting that sRNA-mediated gene regulation is pervasive in A. baumannii. In-depth characterization uncovered the sRNA Aar to be a post-transcriptional regulator of four mRNA targets including the transcript encoding outer membrane protein CarO. Aar initiates base-pairing with these mRNAs using a conserved seed region of nine nucleotides, sequestering the ribosome binding sites and inhibiting translation. Aar is differentially expressed in multiple stress conditions suggesting a role in fine-tuning translation of the Aar-target molecules. Our study provides mechanistic insights into sRNA-mediated gene regulation in A. baumannii and represents a valuable resource for future RNA-centric research endeavours.
Collapse
Affiliation(s)
- Fergal J Hamrock
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Daniel Ryan
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Ali Shaibah
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Anna S Ershova
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aalap Mogre
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Maha M Sulimani
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Safa Ben Taarit
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Karsten Hokamp
- Department of Genetics, School of Genetics & Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alexander J Westermann
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Carsten Kröger
- Department of Microbiology, School of Genetics & Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Intorcia V, Sava RL, Schroeder GP, Gebhardt MJ. A series of vectors for inducible gene expression in multidrug-resistant Acinetobacter baumannii. Appl Environ Microbiol 2024; 90:e0047424. [PMID: 39162403 PMCID: PMC11409637 DOI: 10.1128/aem.00474-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
The continued emergence of antibiotic resistance among bacterial pathogens remains a significant challenge. Indeed, the enhanced antibiotic resistance profiles of contemporary pathogens often restrict the number of suitable molecular tools that are available. We have constructed a series of plasmids that confer resistance to two infrequently used antibiotics with variants of each plasmid backbone incorporating several regulatory control systems. The regulatory systems include both commonly used systems based on the lac- and arabinose-controlled promoters found in Escherichia coli, as well as less frequently used systems that respond to tetracycline/anhydrotetracycline and toluic acid. As a test case, we demonstrate the utility of these plasmids for regulated and tunable gene expression in a multidrug-resistant (MDR) isolate of Acinetobacter baumannii, strain AB5075-UW. The plasmids include derivatives of a freely replicating, broad-host-range plasmid allowing for inducible gene expression as well as a set of vectors for introducing genetic material at the highly conserved Tn7-attachment site. We also modified a set of CRISPR-interference plasmids for use in MDR organisms, thus allowing researchers to more readily interrogate essential genes in currently circulating clinical isolates. These tools will enhance molecular genetic analyses of bacterial pathogens in situations where existing plasmids cannot be used due to their antibiotic resistance determinants or lack of suitable regulatory control systems. IMPORTANCE Clinical isolates of bacterial pathogens often harbor resistance to multiple antibiotics, with Acinetobacter baumannii being a prime example. The drug-resistance phenotypes associated with these pathogens represent a significant hurdle to researchers who wish to study modern isolates due to the limited availability of plasmid tools. Here, we present a series of freely replicating and Tn7-insertion vectors that rely on selectable markers to less frequently encountered antibiotics, apramycin, and hygromycin. We demonstrate the utility of these plasmid tools through a variety of experiments looking at a multidrug-resistant strain of A. baumannii, strain AB5075. Strain AB5075 is an established model strain for present-day A. baumannii, due in part to its genetic tractability and because it is a representative isolate of the globally disseminated multidrug-resistant clade of A. baumannii, global clone 1. In addition to the drug-selection markers facilitating use in strains resistant to more commonly used antibiotics, the vectors allow for controllable expression driven by several regulatory systems, including isopropyl β-D-1-thiogalactopyranoside (IPTG), arabinose, anhydrotetracycline, and toluic acid.
Collapse
Affiliation(s)
- Valerie Intorcia
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rosa L. Sava
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Grace P. Schroeder
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael J. Gebhardt
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Jia T, Bi X, Li M, Zhang C, Ren A, Li S, Zhou T, Zhang Y, Liu Y, Liu X, Deng Y, Liu B, Li G, Yang L. Hfq-binding small RNA PqsS regulates Pseudomonas aeruginosa pqs quorum sensing system and virulence. NPJ Biofilms Microbiomes 2024; 10:82. [PMID: 39261499 PMCID: PMC11391009 DOI: 10.1038/s41522-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Pseudomonas aeruginosa is a widespread nosocomial pathogen with a significant to cause both severe planktonic acute and biofilm-related chronic infections. Small RNAs (sRNAs) are noncoding regulatory molecules that are stabilized by the RNA chaperone Hfq to trigger various virulence-related signaling pathways. Here, we identified an Hfq-binding sRNA in P. aeruginosa PAO1, PqsS, which promotes bacterial pathogenicity and pseudomonas quinolone signal quorum sensing (pqs QS) system. Specifically, PqsS enhanced acute bacterial infections by inducing host cell death and promoting rhamnolipid-regulated swarming motility. Meanwhile, PqsS reduced chronic infection traits including biofilm formation and antibiotic resistance. Moreover, PqsS repressed pqsL transcript, increasing PQS levels for pqs QS. A PQS-rich environment promoted PqsS expression, thus forming a positive feedback loop. Furthermore, we demonstrated that the PqsS interacts and destabilizes the pqsL mRNA by recruiting RNase E to drive degradation. These findings provide insights for future research on P. aeruginosa pathogenesis and targeted treatment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Xianbiao Bi
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Menglu Li
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Chenhui Zhang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Anmin Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Shangru Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Tian Zhou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Yingdan Zhang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Yang Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Xue Liu
- Department of Pharmacology, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Guobao Li
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Liang Yang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China.
| |
Collapse
|
7
|
Wu K, Lin X, Lu Y, Dong R, Jiang H, Svensson SL, Zheng J, Shen N, Camilli A, Chao Y. RNA interactome of hypervirulent Klebsiella pneumoniae reveals a small RNA inhibitor of capsular mucoviscosity and virulence. Nat Commun 2024; 15:6946. [PMID: 39138169 PMCID: PMC11322559 DOI: 10.1038/s41467-024-51213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (HvKP) is an emerging bacterial pathogen causing invasive infection in immune-competent humans. The hypervirulence is strongly linked to the overproduction of hypermucoviscous capsule, but the underlying regulatory mechanisms of hypermucoviscosity (HMV) have been elusive, especially at the post-transcriptional level mediated by small noncoding RNAs (sRNAs). Using a recently developed RNA interactome profiling approach iRIL-seq, we interrogate the Hfq-associated sRNA regulatory network and establish an intracellular RNA-RNA interactome in HvKP. Our data reveal numerous interactions between sRNAs and HMV-related mRNAs, and identify a plethora of sRNAs that repress or promote HMV. One of the strongest HMV repressors is ArcZ, which is activated by the catabolite regulator CRP and targets many HMV-related genes including mlaA and fbp. We discover that MlaA and its function in phospholipid transport is crucial for capsule retention and HMV, inactivation of which abolishes Klebsiella virulence in mice. ArcZ overexpression drastically reduces bacterial burden in mice and reduces HMV in multiple hypervirulent and carbapenem-resistant clinical isolates, indicating ArcZ is a potent RNA inhibitor of bacterial pneumonia with therapeutic potential. Our work unravels a novel CRP-ArcZ-MlaA regulatory circuit of HMV and provides mechanistic insights into the posttranscriptional virulence control in a superbug of global concern.
Collapse
Affiliation(s)
- Kejing Wu
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Xingyu Lin
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Lu
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Dong
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hongnian Jiang
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sarah L Svensson
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jiajia Zheng
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Yanjie Chao
- Microbial RNA Systems Biology Unit, Center for Microbes, Development and Health (CMDH), Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of RNA Innovation, Science and Engineering (RISE), Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Siemers M, Lippegaus A, Papenfort K. ChimericFragments: computation, analysis and visualization of global RNA networks. NAR Genom Bioinform 2024; 6:lqae035. [PMID: 38633425 PMCID: PMC11023125 DOI: 10.1093/nargab/lqae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
RNA-RNA interactions are a key feature of post-transcriptional gene regulation in all domains of life. While ever more experimental protocols are being developed to study RNA duplex formation on a genome-wide scale, computational methods for the analysis and interpretation of the underlying data are lagging behind. Here, we present ChimericFragments, an analysis framework for RNA-seq experiments that produce chimeric RNA molecules. ChimericFragments implements a novel statistical method based on the complementarity of the base-pairing RNAs around their ligation site and provides an interactive graph-based visualization for data exploration and interpretation. ChimericFragments detects true RNA-RNA interactions with high precision and is compatible with several widely used experimental procedures such as RIL-seq, LIGR-seq or CLASH. We further demonstrate that ChimericFragments enables the systematic detection of novel RNA regulators and RNA-target pairs with crucial roles in microbial physiology and virulence. ChimericFragments is written in Julia and available at: https://github.com/maltesie/ChimericFragments.
Collapse
Affiliation(s)
- Malte Siemers
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Anne Lippegaus
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
| | - Kai Papenfort
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
9
|
Mackinder JR, Hinkel LA, Schutz K, Eckstrom K, Fisher K, Wargo MJ. Sphingosine induction of the Pseudomonas aeruginosa hemolytic phospholipase C/sphingomyelinase (PlcH). J Bacteriol 2024; 206:e0038223. [PMID: 38411048 PMCID: PMC10955842 DOI: 10.1128/jb.00382-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.
Collapse
Affiliation(s)
- Jacob R. Mackinder
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Lauren A. Hinkel
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Kristin Schutz
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Kira Fisher
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
McQuail J, Matera G, Gräfenhan T, Bischler T, Haberkant P, Stein F, Vogel J, Wigneshweraraj S. Global Hfq-mediated RNA interactome of nitrogen starved Escherichia coli uncovers a conserved post-transcriptional regulatory axis required for optimal growth recovery. Nucleic Acids Res 2024; 52:2323-2339. [PMID: 38142457 PMCID: PMC10954441 DOI: 10.1093/nar/gkad1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
The RNA binding protein Hfq has a central role in the post-transcription control of gene expression in many bacteria. Numerous studies have mapped the transcriptome-wide Hfq-mediated RNA-RNA interactions in growing bacteria or bacteria that have entered short-term growth-arrest. To what extent post-transcriptional regulation underpins gene expression in growth-arrested bacteria remains unknown. Here, we used nitrogen (N) starvation as a model to study the Hfq-mediated RNA interactome as Escherichia coli enter, experience, and exit long-term growth arrest. We observe that the Hfq-mediated RNA interactome undergoes extensive changes during N starvation, with the conserved SdsR sRNA making the most interactions with different mRNA targets exclusively in long-term N-starved E. coli. Taking a proteomics approach, we reveal that in growth-arrested cells SdsR influences gene expression far beyond its direct mRNA targets. We demonstrate that the absence of SdsR significantly compromises the ability of the mutant bacteria to recover growth competitively from the long-term N-starved state and uncover a conserved post-transcriptional regulatory axis which underpins this process.
Collapse
Affiliation(s)
- Josh McQuail
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Faculty of Medicine, Imperial College London, UK
| | - Gianluca Matera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Tom Gräfenhan
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, D-69117,Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, D-69117,Heidelberg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Sivaramesh Wigneshweraraj
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
11
|
Ruhland E, Siemers M, Gerst R, Späth F, Vogt LN, Figge MT, Papenfort K, Fröhlich KS. The global RNA-RNA interactome of Klebsiella pneumoniae unveils a small RNA regulator of cell division. Proc Natl Acad Sci U S A 2024; 121:e2317322121. [PMID: 38377209 PMCID: PMC10907235 DOI: 10.1073/pnas.2317322121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The ubiquitous RNA chaperone Hfq is involved in the regulation of key biological processes in many species across the bacterial kingdom. In the opportunistic human pathogen Klebsiella pneumoniae, deletion of the hfq gene affects the global transcriptome, virulence, and stress resistance; however, the ligands of the major RNA-binding protein in this species have remained elusive. In this study, we have combined transcriptomic, co-immunoprecipitation, and global RNA interactome analyses to compile an inventory of conserved and species-specific RNAs bound by Hfq and to monitor Hfq-mediated RNA-RNA interactions. In addition to dozens of RNA-RNA pairs, our study revealed an Hfq-dependent small regulatory RNA (sRNA), DinR, which is processed from the 3' terminal portion of dinI mRNA. Transcription of dinI is controlled by the master regulator of the SOS response, LexA. As DinR accumulates in K. pneumoniae in response to DNA damage, the sRNA represses translation of the ftsZ transcript by occupation of the ribosome binding site. Ectopic overexpression of DinR causes depletion of ftsZ mRNA and inhibition of cell division, while deletion of dinR antagonizes cell elongation in the presence of DNA damage. Collectively, our work highlights the important role of RNA-based gene regulation in K. pneumoniae and uncovers the central role of DinR in LexA-controlled division inhibition during the SOS response.
Collapse
Affiliation(s)
- Eric Ruhland
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
| | - Malte Siemers
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
| | - Ruman Gerst
- Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena07745, Germany
| | - Felix Späth
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
| | - Laura Nicole Vogt
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
| | - Marc Thilo Figge
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena07745, Germany
| | - Kai Papenfort
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
| | - Kathrin Sophie Fröhlich
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
12
|
Song Y, Zhang S, Zhao N, Nong C, He Y, Bao R. Pseudomonas aeruginosa two-component system CprRS regulates HigBA expression and bacterial cytotoxicity in response to LL-37 stress. PLoS Pathog 2024; 20:e1011946. [PMID: 38198506 PMCID: PMC10805311 DOI: 10.1371/journal.ppat.1011946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/23/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Pseudomonas aeruginosa is a highly pathogenic bacterium known for its ability to sense and coordinate the production of virulence factors in response to host immune responses. However, the regulatory mechanisms underlying this process have remained largely elusive. In this study, we investigate the two-component system CprRS in P. aeruginosa and unveil the crucial role of the sensor protein CprS in sensing the human host defense peptide LL-37, thereby modulating bacterial virulence. We demonstrate that CprS acts as a phosphatase in the presence of LL-37, leading to the phosphorylation and activation of the response regulator CprR. The results prove that CprR directly recognizes a specific sequence within the promoter region of the HigBA toxin-antitoxin system, resulting in enhanced expression of the toxin HigB. Importantly, LL-37-induced HigB expression promotes the production of type III secretion system effectors, leading to reduced expression of proinflammatory cytokines and increased cytotoxicity towards macrophages. Moreover, mutations in cprS or cprR significantly impair bacterial survival in both macrophage and insect infection models. This study uncovers the regulatory mechanism of the CprRS system, enabling P. aeruginosa to detect and respond to human innate immune responses while maintaining a balanced virulence gene expression profile. Additionally, this study provides new evidence and insights into the complex regulatory system of T3SS in P. aeruginosa within the host environment, contributing to a better understanding of host-microbe communication and the development of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ninglin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Liu F, Chen Z, Zhang S, Wu K, Bei C, Wang C, Chao Y. In vivo RNA interactome profiling reveals 3'UTR-processed small RNA targeting a central regulatory hub. Nat Commun 2023; 14:8106. [PMID: 38062076 PMCID: PMC10703908 DOI: 10.1038/s41467-023-43632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Small noncoding RNAs (sRNAs) are crucial regulators of gene expression in bacteria. Acting in concert with major RNA chaperones such as Hfq or ProQ, sRNAs base-pair with multiple target mRNAs and form large RNA-RNA interaction networks. To systematically investigate the RNA-RNA interactome in living cells, we have developed a streamlined in vivo approach iRIL-seq (intracellular RIL-seq). This generic approach is highly robust, illustrating the dynamic sRNA interactomes in Salmonella enterica across multiple stages of growth. We have identified the OmpD porin mRNA as a central regulatory hub that is targeted by a dozen sRNAs, including FadZ cleaved from the conserved 3'UTR of fadBA mRNA. Both ompD and FadZ are activated by CRP, constituting a type I incoherent feed-forward loop in the fatty acid metabolism pathway. Altogether, we have established an approach to profile RNA-RNA interactomes in live cells, highlighting the complexity of RNA regulatory hubs and RNA networks.
Collapse
Affiliation(s)
- Fang Liu
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ziying Chen
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200033, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center & Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shuo Zhang
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kejing Wu
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Bei
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200033, China
| | - Chuan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200033, China.
| | - Yanjie Chao
- Microbial RNA Systems Biology Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|