1
|
Araie H, Hosono N, Yamauchi T. Cellular uptake of CPX-351 by scavenger receptor class B type 1-mediated nonendocytic pathway. Exp Hematol 2024:104651. [PMID: 39362576 DOI: 10.1016/j.exphem.2024.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
The proper uptake of drugs in liposome formulations into target cells markedly impacts therapeutic efficacy. The protein corona (PC), formed by the adsorption of serum proteins onto the liposome surface, binds to specific surface receptors of target cells, influencing the uptake pathway. We investigated the uptake pathway into leukemia cells based on PC analysis of CPX-351, a liposome containing cytarabine and daunorubicin in a fixed 5:1 synergistic molar ratio. The PC of CPX-351 mixed with fetal bovine serum was analyzed by nanoflow liquid chromatography-tandem mass spectrometry. CPX-351 uptake in HL-60, K562, and THP-1 leukemia cell lines was measured by flow cytometry using daunorubicin fluorescence. The major components of CPX-351 PC include apolipoproteins A-I and A-II, which bind to scavenger receptor class B type 1 (SR-BI), a nonendocytic pathway that takes up only liposome contents. SR-BI was expressed in each cell, and its expression correlated with CPX-351 uptake. The uptake was significantly decreased by the inhibition of clathrin-mediated endocytosis and macropinocytosis. Additionally, blocks lipid transport-1 (BLT-1), a selective inhibitor of SR-BI, decreased the uptake; however, high-dose BLT-1 addition significantly increased the uptake, which was more strongly inhibited by macropinocytosis suppression compared with clathrin-mediated endocytosis. BLT-1 enhances the binding of SR-BI to liposomes in a dose-dependent manner. These findings indicate that the enhancement of binding between SR-BI and CPX-351 activates different pathways, such as macropinocytosis, distinct from CPX-351 alone. SR-BI may be a biomarker for CPX-351 therapy, and the combination of CPX-351 with high-dose BLT-1 may augment therapeutic efficacy.
Collapse
Affiliation(s)
- Hiroaki Araie
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Naoko Hosono
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
2
|
Xu J, Wang J, Zhang H, Chen Y, Zhang X, Zhang Y, Xie M, Xiao J, Qiu J, Wang G. Coupled single-cell and bulk RNA-seq analysis reveals the engulfment role of endothelial cells in atherosclerosis. Genes Dis 2024; 11:101250. [PMID: 39022128 PMCID: PMC11252887 DOI: 10.1016/j.gendis.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 07/20/2024] Open
Abstract
The clearance of apoptotic cell debris, containing professional phagocytosis and non-professional phagocytosis, is essential for maintaining the homeostasis of healthy tissues. Here, we discovered that endothelial cells could engulf apoptotic cell debris in atherosclerotic plaque. Single-cell RNA sequencing (RNA-seq) has revealed a unique endothelial cell subpopulation in atherosclerosis, which was strongly associated with vascular injury-related pathways. Moreover, integrated analysis of three vascular injury-related RNA-seq datasets showed that the expression of scavenger receptor class B type 1 (SR-B1) was up-regulated and specifically enriched in the phagocytosis pathway under vascular injury circumstances. Single-cell RNA-seq and bulk RNA-seq indicate that SR-B1 was highly expressed in a unique endothelial cell subpopulation of mouse aorta and strongly associated with the reorganization of cellular adherent junctions and cytoskeleton which were necessary for phagocytosis. Furthermore, SR-B1 was strongly required for endothelial cells to engulf apoptotic cell debris in atherosclerotic plaque of both mouse and human aorta. Overall, this study demonstrated that apoptotic cell debris could be engulfed by endothelial cells through SR-B1 and associated with the reorganization of cellular adherent junctions and cytoskeleton.
Collapse
Affiliation(s)
- Jianxiong Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Hongping Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Yidan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Ying Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
- Chongqing Emergency Medical Center (Chongqing University Central Hospital), Chongqing 400014, China
| | - Ming Xie
- Chongqing Emergency Medical Center (Chongqing University Central Hospital), Chongqing 400014, China
| | - Jun Xiao
- Chongqing Emergency Medical Center (Chongqing University Central Hospital), Chongqing 400014, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering Modern Life Science Experiment Teaching Center of Bioengineering College, Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
3
|
Sharma R, Narum S, Liu S, Dong Y, Baek KI, Jo H, Salaita K. Nanodiscoidal Nucleic Acids for Gene Regulation. ACS Chem Biol 2023; 18:2349-2367. [PMID: 37910400 PMCID: PMC10660333 DOI: 10.1021/acschembio.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Therapeutic nucleic acids represent a powerful class of drug molecules to control gene expression and protein synthesis. A major challenge in this field is that soluble oligonucleotides have limited serum stability, and the majority of nucleic acids that enter the cells are trapped within endosomes. Delivery efficiency can be improved using lipid scaffolds. One such example is the nanodisc (ND), a self-assembled nanostructure composed of phospholipids and peptides and modeled after high density lipoproteins (HDLs). Herein, we describe the development of the nanodiscoidal nucleic acid (NNA) which is a ND covalently modified with nucleic acids on the top and bottom lipid faces as well as the lateral peptide belt. The 13 nm ND was doped with thiolated phospholipids and thiol-containing peptides and coupled in a one-pot reaction with oligonucleotides to achieve ∼30 DNA/NNA nucleic acid density. NNAs showed superior nuclease resistance and enhanced cellular uptake that was mediated through the scavenger receptor B1. Time-dependent Förster resonance energy transfer (FRET) analysis of internalized NNA confirmed that NNAs display increased stability. NNAs modified with clinically validated antisense oligonucleotides (ASOs) that target hypoxia inducible factor 1-α (HIF-1-α) mRNA showed enhanced activity compared with that of the soluble DNA across multiple cell lines as well as a 3D cancer spheroid model. Lastly, in vivo experiments show that ASO-modified NNAs are primarily localized into livers and kidneys, and NNAs were potent in downregulating HIF-1-α using 5-fold lower doses than previously reported. Collectively, our results highlight the therapeutic potential for NNAs.
Collapse
Affiliation(s)
- Radhika Sharma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Steven Narum
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Shuhong Liu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Kyung In Baek
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Hanjoong Jo
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Yang ASP, Dutta D, Kretzschmar K, Hendriks D, Puschhof J, Hu H, Boonekamp KE, van Waardenburg Y, Chuva de Sousa Lopes SM, van Gemert GJ, de Wilt JHW, Bousema T, Clevers H, Sauerwein RW. Development of Plasmodium falciparum liver-stages in hepatocytes derived from human fetal liver organoid cultures. Nat Commun 2023; 14:4631. [PMID: 37532704 PMCID: PMC10397232 DOI: 10.1038/s41467-023-40298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Plasmodium falciparum (Pf) parasite development in liver represents the initial step of the life-cycle in the human host after a Pf-infected mosquito bite. While an attractive stage for life-cycle interruption, understanding of parasite-hepatocyte interaction is inadequate due to limitations of existing in vitro models. We explore the suitability of hepatocyte organoids (HepOrgs) for Pf-development and show that these cells permitted parasite invasion, differentiation and maturation of different Pf strains. Single-cell messenger RNA sequencing (scRNAseq) of Pf-infected HepOrg cells has identified 80 Pf-transcripts upregulated on day 5 post-infection. Transcriptional profile changes are found involving distinct metabolic pathways in hepatocytes with Scavenger Receptor B1 (SR-B1) transcripts highly upregulated. A novel functional involvement in schizont maturation is confirmed in fresh primary hepatocytes. Thus, HepOrgs provide a strong foundation for a versatile in vitro model for Pf liver-stages accommodating basic biological studies and accelerated clinical development of novel tools for malaria control.
Collapse
Affiliation(s)
- Annie S P Yang
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Devanjali Dutta
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Merus, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Microbiome and Cancer Devision, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Huili Hu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Research Center of Stem Cell and Regenerative Medicine, Department of Systems Biomedicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kim E Boonekamp
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Signaling and Functional Genomics Devision, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Youri van Waardenburg
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Geert-Jan van Gemert
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Teun Bousema
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- Princess Maxima Center (PMC) for Pediatric Oncology, Utrecht, the Netherlands.
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Robert W Sauerwein
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
- TropIQ Health Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Lee WE, Genetzakis E, Figtree GA. Novel Strategies in the Early Detection and Treatment of Endothelial Cell-Specific Mitochondrial Dysfunction in Coronary Artery Disease. Antioxidants (Basel) 2023; 12:1359. [PMID: 37507899 PMCID: PMC10376062 DOI: 10.3390/antiox12071359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although elevated cholesterol and other recognised cardiovascular risk factors are important in the development of coronary artery disease (CAD) and heart attack, the susceptibility of humans to this fatal process is distinct from other animals. Mitochondrial dysfunction of cells in the arterial wall, particularly the endothelium, has been strongly implicated in the pathogenesis of CAD. In this manuscript, we review the established evidence and mechanisms in detail and explore the potential opportunities arising from analysing mitochondrial function in patient-derived cells such as endothelial colony-forming cells easily cultured from venous blood. We discuss how emerging technology and knowledge may allow us to measure mitochondrial dysfunction as a potential biomarker for diagnosis and risk management. We also discuss the "pros and cons" of animal models of atherosclerosis, and how patient-derived cell models may provide opportunities to develop novel therapies relevant for humans. Finally, we review several targets that potentially alleviate mitochondrial dysfunction working both via direct and indirect mechanisms and evaluate the effect of several classes of compounds in the cardiovascular context.
Collapse
Affiliation(s)
- Weiqian E. Lee
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Elijah Genetzakis
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (W.E.L.); (E.G.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|
6
|
Dib S, Loiola RA, Sevin E, Saint-Pol J, Shimizu F, Kanda T, Pahnke J, Gosselet F. TNFα Activates the Liver X Receptor Signaling Pathway and Promotes Cholesterol Efflux from Human Brain Pericytes Independently of ABCA1. Int J Mol Sci 2023; 24:ijms24065992. [PMID: 36983062 PMCID: PMC10056409 DOI: 10.3390/ijms24065992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroinflammation and brain lipid imbalances are observed in Alzheimer's disease (AD). Tumor necrosis factor-α (TNFα) and the liver X receptor (LXR) signaling pathways are involved in both processes. However, limited information is currently available regarding their relationships in human brain pericytes (HBP) of the neurovascular unit. In cultivated HBP, TNFα activates the LXR pathway and increases the expression of one of its target genes, the transporter ATP-binding cassette family A member 1 (ABCA1), while ABCG1 is not expressed. Apolipoprotein E (APOE) synthesis and release are diminished. The cholesterol efflux is promoted, but is not inhibited, when ABCA1 or LXR are blocked. Moreover, as for TNFα, direct LXR activation by the agonist (T0901317) increases ABCA1 expression and the associated cholesterol efflux. However, this process is abolished when LXR/ABCA1 are both inhibited. Neither the other ABC transporters nor the SR-BI are involved in this TNFα-mediated lipid efflux regulation. We also report that inflammation increases ABCB1 expression and function. In conclusion, our data suggest that inflammation increases HBP protection against xenobiotics and triggers an LXR/ABCA1 independent cholesterol release. Understanding the molecular mechanisms regulating this efflux at the level of the neurovascular unit remains fundamental to the characterization of links between neuroinflammation, cholesterol and HBP function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Shiraz Dib
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Rodrigo Azevedo Loiola
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Emmanuel Sevin
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Julien Saint-Pol
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| |
Collapse
|
7
|
Castleberry M, Raby CA, Ifrim A, Shibata Y, Matsushita S, Ugawa S, Miura Y, Hori A, Miida T, Linton MF, Michell DL, Tsujita M, Vickers KC. High-density lipoproteins mediate small RNA intercellular communication between dendritic cells and macrophages. J Lipid Res 2023; 64:100328. [PMID: 36626966 PMCID: PMC9929858 DOI: 10.1016/j.jlr.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
HDL are dynamic transporters of diverse molecular cargo and play critical roles in lipid metabolism and inflammation. We have previously reported that HDL transport both host and nonhost small RNAs (sRNA) based on quantitative PCR and sRNA sequencing approaches; however, these methods require RNA isolation steps which have potential biases and may not isolate certain forms of RNA molecules from samples. HDL have also been reported to accept functional sRNAs from donor macrophages and deliver them to recipient endothelial cells; however, using PCR to trace HDL-sRNA intercellular communication has major limitations. The present study aims to overcome these technical barriers and further understand the pathways involved in HDL-mediated bidirectional flux of sRNAs between immune cells. To overcome these technical limitations, SYTO RNASelect, a lipid-penetrating RNA dye, was used to quantify a) overall HDL-sRNA content, b) bidirectional flux of sRNAs between HDL and immune cells, c) HDL-mediated intercellular communication between immune cells, and d) HDL-mediated RNA export changes in disease. Live cell imaging and loss-of-function assays indicate that the endo-lysosomal system plays a critical role in macrophage storage and export of HDL-sRNAs. These results identify HDL as a substantive mediator of intercellular communication between immune cells and demonstrate the importance of endocytosis for recipient cells of HDL-sRNAs. Utilizing a lipid-penetrating RNA-specific fluorescence dye, we were able to both quantify the absolute concentration of sRNAs transported by HDL and characterize HDL-mediated intercellular RNA transport between immune cells.
Collapse
Affiliation(s)
- Mark Castleberry
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Chase A. Raby
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anca Ifrim
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasuhiro Shibata
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Sachi Matsushita
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yutaka Miura
- Department of Nutrition, Shigakkan University, Obu, Aichi, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - MacRae F. Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danielle L. Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maki Tsujita
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,For correspondence: Kasey C. Vickers; Mark Castleberry
| |
Collapse
|
8
|
Li W, Gonzalez KM, Chung J, Kim M, Lu J. Surface-modified nanotherapeutics targeting atherosclerosis. Biomater Sci 2022; 10:5459-5471. [PMID: 35980230 PMCID: PMC9529904 DOI: 10.1039/d2bm00660j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atherosclerosis is a chronic and metabolic-related disease that is a serious threat to human health. Currently available diagnostic and therapeutic measures for atherosclerosis lack adequate efficiency which requires promising alternative approaches. Nanotechnology-based nano-delivery systems allow for new perspectives for atherosclerosis therapy. Surface-modified nanoparticles could achieve highly effective therapeutic effects by binding to specific receptors that are abnormally overexpressed in atherosclerosis, with less adverse effects on non-target tissues. The main purpose of this review is to summarize the research progress and design ideas to target atherosclerosis using a variety of ligand-modified nanoparticle systems, discuss the shortcomings of current vector design, and look at future development directions. We hope that this review will provide novel research strategies for the design and development of nanotherapeutics targeting atherosclerosis.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jinha Chung
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Minhyeok Kim
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, USA.
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA
| |
Collapse
|
9
|
Oberle R, Kührer K, Österreicher T, Weber F, Steinbauer S, Udonta F, Wroblewski M, Ben-Batalla I, Hassl I, Körbelin J, Unseld M, Jauhiainen M, Plochberger B, Röhrl C, Hengstschläger M, Loges S, Stangl H. The HDL particle composition determines its antitumor activity in pancreatic cancer. Life Sci Alliance 2022; 5:e202101317. [PMID: 35577388 PMCID: PMC9112193 DOI: 10.26508/lsa.202101317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/03/2022] Open
Abstract
Despite enormous efforts to improve therapeutic options, pancreatic cancer remains a fatal disease and is expected to become the second leading cause of cancer-related deaths in the next decade. Previous research identified lipid metabolic pathways to be highly enriched in pancreatic ductal adenocarcinoma (PDAC) cells. Thereby, cholesterol uptake and synthesis promotes growth advantage to and chemotherapy resistance for PDAC tumor cells. Here, we demonstrate that high-density lipoprotein (HDL)-mediated efficient cholesterol removal from cancer cells results in PDAC cell growth reduction and induction of apoptosis in vitro. This effect is driven by an HDL particle composition-dependent interaction with SR-B1 and ABCA1 on cancer cells. AAV-mediated overexpression of APOA1 and rHDL injections decreased PDAC tumor development in vivo. Interestingly, plasma samples from pancreatic-cancer patients displayed a significantly reduced APOA1-to-SAA1 ratio and a reduced cholesterol efflux capacity compared with healthy donors. We conclude that efficient, HDL-mediated cholesterol depletion represents an interesting strategy to interfere with the aggressive growth characteristics of PDAC.
Collapse
Affiliation(s)
- Raimund Oberle
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Kristina Kührer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Tamina Österreicher
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Florian Weber
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Stefanie Steinbauer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Florian Udonta
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Wroblewski
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabel Ben-Batalla
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Hassl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Unseld
- Department of Medicine I, Division of Palliative Medicine, Medical University of Vienna, Vienna, Austria
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and Finnish Institute for Health and Welfare, Genomics and Biobank Unit, Biomedicum 2U, Helsinki, Finland
| | - Birgit Plochberger
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Clemens Röhrl
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Sonja Loges
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Han H, Wang Y, Xu S, Han C, Qin Q, Wei S. High-density lipoproteins negatively regulate innate immunity and facilitate red-spotted grouper nervous necrosis virus entry via scavenger receptor B type 1. Int J Biol Macromol 2022; 215:424-433. [PMID: 35752331 DOI: 10.1016/j.ijbiomac.2022.06.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Lipid metabolism plays an important role in viral infections, and it can directly or indirectly affect various stages of viral infection in cells. As an important component of lipid metabolism, high-density lipoprotein (HDL) plays crucial roles in inflammation, immunity, and viral infections. Scavenger receptor B type 1 (SR-B1), a receptor of HDL, cannot be ignored in the regulation of lipid metabolism. Here, we investigate, for the first time, the role of Epinephelus coioides SR-B1 (Ec-SR-B1) in red-spotted grouper nervous necrosis virus (RGNNV) infection. Our results indicate that Ec-SR-B1 could promote RGNNV infection. We also demonstrate that Ec-SR-B1 could facilitate viral entry and interact with capsid protein (CP) of RGNNV. As the natural ligand of SR-B1, HDL significantly increased RGNNV entry in a dose-dependent manner. However, we observed no effect of HDL on Ec-SR-B1 expression. The results of the micro-scale thermophoresis assay did not reveal an association between HDL and CP, suggesting that RGNNV does not enter target cells by using HDL as a ligand to bind to its receptor. In addition, block lipid transport-1, a compound that inhibits HDL-mediated cholesterol transfer, reduced the HDL-induced enhancement of RGNNV infection, indicating a role for lipid transfer in facilitating RGNNV entry. Furthermore, HDL inhibited the expression of pro-inflammatory factors and antiviral genes in a dose-dependent manner. These findings suggest that the HDL-induced enhancement of RGNNV entry involves the complex interplay between Ec-SR-B1, HDL, and RGNNV, as well as the regulation of innate antiviral responses by HDL. In summary, we highlight the crucial role of HDL in RGNNV entry, identify a possible molecular connection between RGNNV and lipoprotein metabolism, and indicate the role of Ec-SR-B1 in RGNNV infection.
Collapse
Affiliation(s)
- Honglin Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Strahlhofer-Augsten M, Schliefsteiner C, Cvitic S, George M, Lang-Olip I, Hirschmugl B, Marsche G, Lang U, Novakovic B, Saffery R, Desoye G, Wadsack C. The Distinct Role of the HDL Receptor SR-BI in Cholesterol Homeostasis of Human Placental Arterial and Venous Endothelial Cells. Int J Mol Sci 2022; 23:ijms23105364. [PMID: 35628180 PMCID: PMC9141204 DOI: 10.3390/ijms23105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
As opposed to adults, high-density lipoprotein (HDL) is the main cholesterol carrying lipoprotein in fetal circulation. The major HDL receptor, scavenger receptor class B type I (SR-BI), contributes to local cholesterol homeostasis. Arterial endothelial cells (ECA) from human placenta are enriched with cholesterol compared to venous endothelial cells (ECV). Moreover, umbilical venous and arterial plasma cholesterol levels differ markedly. We tested the hypothesis that the uptake of HDL-cholesteryl esters differs between ECA and ECV because of the differential expression of SR-BI. We aimed to identify the key regulators underlying these differences and the functional consequences. Immunohistochemistry was used for visualization of SR-BI in situ. ECA and ECV were isolated from the chorionic plate of human placenta and used for RT-qPCR, Western Blot, and HDL uptake assays with 3H- and 125I-labeled HDL. DNA was extracted for the methylation profiling of the SR-BI promoter. SR-BI regulation was studied by exposing ECA and ECV to differential oxygen concentrations or shear stress. Our results show elevated SR-BI expression and protein abundance in ECA compared to ECV in situ and in vitro. Immunohistochemistry demonstrated that SR-BI is mainly expressed on the apical side of placental endothelial cells in situ, allowing interaction with mature HDL circulating in the fetal blood. This was functionally linked to a higher increase of selective cholesterol ester uptake from fetal HDL in ECA than in ECV, and resulted in increased cholesterol availability in ECA. SR-BI expression on ECV tended to decrease with shear stress, which, together with heterogeneous immunostaining, suggests that SR-BI expression is locally regulated in the placental vasculature. In addition, hypomethylation of several CpG sites within the SR-BI promoter region might contribute to differential expression of SR-BI between chorionic arteries and veins. Therefore, SR-BI contributes to a local cholesterol homeostasis in ECA and ECV of the human feto-placental vasculature.
Collapse
Affiliation(s)
- Manuela Strahlhofer-Augsten
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
- BioBank Graz, Medical University of Graz, 8036 Graz, Austria
| | - Carolin Schliefsteiner
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
| | - Silvija Cvitic
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Meekha George
- Otto Loewi Research Center, Division of Pathophysiology and Immunology, Medical University of Graz, 8010 Graz, Austria;
| | - Ingrid Lang-Olip
- Gottfried Schatz Research Center, Divison of Cell Biology, Histology and Embryology, Medical University of Graz, 8036 Graz, Austria;
| | - Birgit Hirschmugl
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria;
| | - Uwe Lang
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (B.N.); (R.S.)
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (B.N.); (R.S.)
| | - Gernot Desoye
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
| | - Christian Wadsack
- Research Unit, Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.S.-A.); (C.S.); (S.C.); (B.H.); (G.D.)
- Correspondence:
| |
Collapse
|
12
|
Iso-O N, Komatsuya K, Tokumasu F, Isoo N, Ishigaki T, Yasui H, Yotsuyanagi H, Hara M, Kita K. Malaria Parasites Hijack Host Receptors From Exosomes to Capture Lipoproteins. Front Cell Dev Biol 2021; 9:749153. [PMID: 34858976 PMCID: PMC8631964 DOI: 10.3389/fcell.2021.749153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria parasites cannot multiply in host erythrocytes without cholesterol because they lack complete sterol biosynthesis systems. This suggests parasitized red blood cells (pRBCs) need to capture host sterols, but its mechanism remains unknown. Here we identified a novel high-density lipoprotein (HDL)-delivery pathway operating in blood-stage Plasmodium. In parasitized mouse plasma, exosomes positive for scavenger receptor CD36 and platelet-specific CD41 increased. These CDs were detected in pRBCs and internal parasites. A low molecular antagonist for scavenger receptors, BLT-1, blocked HDL uptake to pRBCs and suppressed Plasmodium growth in vitro. Furthermore, platelet-derived exosomes were internalized in pRBCs. Thus, we presume CD36 is delivered to malaria parasites from platelets by exosomes, which enables parasites to steal HDL for cholesterol supply. Cholesterol needs to cross three membranes (RBC, parasitophorous vacuole and parasite’s plasma membranes) to reach parasite, but our findings can explain the first step of sterol uptake by intracellular parasites.
Collapse
Affiliation(s)
- Naoyuki Iso-O
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of 4th Internal Medicine, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fuyuki Tokumasu
- Department of Lipidomics, The University of Tokyo, Tokyo, Japan.,Department of Cellular Architecture Studies, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Noriko Isoo
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomohiro Ishigaki
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yasui
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Masumi Hara
- Department of 4th Internal Medicine, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
13
|
Riscal R, Bull CJ, Mesaros C, Finan JM, Carens M, Ho ES, Xu JP, Godfrey J, Brennan P, Johansson M, Purdue MP, Chanock SJ, Mariosa D, Timpson NJ, Vincent EE, Keith B, Blair IA, Skuli N, Simon MC. Cholesterol Auxotrophy as a Targetable Vulnerability in Clear Cell Renal Cell Carcinoma. Cancer Discov 2021; 11:3106-3125. [PMID: 34244212 PMCID: PMC8741905 DOI: 10.1158/2159-8290.cd-21-0211] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by large intracellular lipid droplets containing free and esterified cholesterol; however, the functional significance of cholesterol accumulation in ccRCC cells is unknown. We demonstrate that, surprisingly, genes encoding cholesterol biosynthetic enzymes are repressed in ccRCC, suggesting a dependency on exogenous cholesterol. Mendelian randomization analyses based on 31,000 individuals indicate a causal link between elevated circulating high-density lipoprotein (HDL) cholesterol and ccRCC risk. Depriving ccRCC cells of either cholesterol or HDL compromises proliferation and survival in vitro and tumor growth in vivo; in contrast, elevated dietary cholesterol promotes tumor growth. Scavenger Receptor B1 (SCARB1) is uniquely required for cholesterol import, and inhibiting SCARB1 is sufficient to cause ccRCC cell-cycle arrest, apoptosis, elevated intracellular reactive oxygen species levels, and decreased PI3K/AKT signaling. Collectively, we reveal a cholesterol dependency in ccRCC and implicate SCARB1 as a novel therapeutic target for treating kidney cancer. SIGNIFICANCE We demonstrate that ccRCC cells are auxotrophic for exogenous cholesterol to maintain PI3K/AKT signaling pathway and ROS homeostasis. Blocking cholesterol import through the HDL transporter SCARB1 compromises ccRCC cell survival and tumor growth, suggesting a novel pharmacologic target for this disease. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caroline J. Bull
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jennifer M. Finan
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Madeleine Carens
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Elaine S. Ho
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jimmy P. Xu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jason Godfrey
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniela Mariosa
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Brian Keith
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- The Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- These authors contributed equally
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- These authors contributed equally
- Lead contact
| |
Collapse
|
14
|
Tello Rubio B, Bugault F, Baudon B, Raynal B, Brûlé S, Morel JD, Saint-Auret S, Blanchard N, Demangel C, Guenin-Macé L. Molecular Mechanisms Underpinning the Circulation and Cellular Uptake of Mycobacterium ulcerans Toxin Mycolactone. Front Pharmacol 2021; 12:733496. [PMID: 34603049 PMCID: PMC8481864 DOI: 10.3389/fphar.2021.733496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mycolactone is a diffusible lipid toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Altough bacterially derived mycolactone has been shown to traffic from cutaneous foci of infection to the bloodstream, the mechanisms underpinning its access to systemic circulation and import by host cells remain largely unknown. Using biophysical and cell-based approaches, we demonstrate that mycolactone specific association to serum albumin and lipoproteins is necessary for its solubilization and is a major mechanism to regulate its bioavailability. We also demonstrate that Scavenger Receptor (SR)-B1 contributes to the cellular uptake of mycolactone. Overall, we suggest a new mechanism of transport and cell entry, challenging the dogma that the toxin enters host cells via passive diffusion.
Collapse
Affiliation(s)
- Bruno Tello Rubio
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Florence Bugault
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Blandine Baudon
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, Paris, France
| | - Sébastien Brûlé
- Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, Paris, France
| | - Jean-David Morel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Sarah Saint-Auret
- CNRS, LIMA, UMR 7042, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
| | - Nicolas Blanchard
- CNRS, LIMA, UMR 7042, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Laure Guenin-Macé
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Good Cholesterol Gone Bad? HDL and COVID-19. Int J Mol Sci 2021; 22:10182. [PMID: 34638523 PMCID: PMC8507803 DOI: 10.3390/ijms221910182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The transmissible respiratory disease COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide since its first reported outbreak in December of 2019 in Wuhan, China. Since then, multiple studies have shown an inverse correlation between the levels of high-density lipoprotein (HDL) particles and the severity of COVID-19, with low HDL levels being associated with an increased risk of severe outcomes. Some studies revealed that HDL binds to SARS-CoV-2 particles via the virus's spike protein and, under certain conditions, such as low HDL particle concentrations, it facilitates SARS-CoV-2 binding to angiotensin-converting enzyme 2 (ACE2) and infection of host cells. Other studies, however, reported that HDL suppressed SARS-CoV-2 infection. In both cases, the ability of HDL to enhance or suppress virus infection appears to be dependent on the expression of the HDL receptor, namely, the Scavenger Receptor Class B type 1 (SR-B1), in the target cells. SR-B1 and HDL represent crucial mediators of cholesterol metabolism. Herein, we review the complex role of HDL and SR-B1 in SARS-CoV-2-induced disease. We also review recent advances in our understanding of HDL structure, properties, and function during SARS-CoV-2 infection and the resulting COVID-19 disease.
Collapse
Affiliation(s)
| | | | | | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute and Department of Biochemistry and Biomedical Sciences, McMaster University and Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; (G.E.G.K.); (J.-A.Y.); (E.H.S.)
| |
Collapse
|
16
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|
17
|
Raith M, Kauffman SJ, Asoudeh M, Buczek JA, Kang NG, Mays JW, Dalhaimer P. Elongated PEO-based nanoparticles bind the high-density lipoprotein (HDL) receptor scavenger receptor class B I (SR-BI). J Control Release 2021; 337:448-457. [PMID: 34352314 DOI: 10.1016/j.jconrel.2021.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Targeting cell-surface receptors with nanoparticles (NPs) is a crucial aspect of nanomedicine. Here, we show that soft, flexible, elongated NPs with poly-ethylene-oxide (PEO) exteriors and poly-butadiene (PBD) interiors - PEO-PBD filomicelles - interact directly with the major high-density lipoprotein (HDL) receptor and SARS-CoV-2 uptake factor, SR-BI. Filomicelles have a ~ 6-fold stronger interaction with reconstituted SR-BI than PEO-PBD spheres. HDL, and the lipid transport inhibitor, BLT-1, both block the uptake of filomicelles by macrophages and Idla7 cells, the latter are constitutively expressing SR-BI (Idla7-SR-BI). Co-injections of HDL and filomicelles into wild-type mice reduced filomicelle signal in the liver and increased filomicelle plasma levels. The same was true with SCARB1-/- mice. SR-BI binding is followed by phagocytosis for filomicelle macrophage entry, but only SR-BI is needed for entry into Idla7-SR-BI cells. PEO-PBD spheres did not interact strongly with SR-BI in the above experiments. The results show elongated PEO-based NPs can bind cells via cooperativity among SR-BI receptors on cell surfaces.
Collapse
Affiliation(s)
- Mitch Raith
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Sarah J Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Monireh Asoudeh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Jennifer A Buczek
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Nam-Goo Kang
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Jimmy W Mays
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States of America; Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States of America.
| |
Collapse
|
18
|
Karimi N, Karami Tehrani FS. Expression of SR-B1 receptor in breast cancer cell lines, MDAMB-468 and MCF-7: Effect on cell proliferation and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1069-1077. [PMID: 34804424 PMCID: PMC8591767 DOI: 10.22038/ijbms.2021.56752.12674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES High-density lipoprotein (HDL) is necessary for proliferation of several cells. The growth of many kinds of cells, such as breast cancer cells (BCC) is motivated by HDL. Cellular uptake of cholesterol from HDL which increases cell growth is facilitated by scavenger receptors of the B class (SR-BI). The proliferative effect of HDL might be mediated by this receptor. It is also believed that HDL has an anti-apoptotic effect on various cell types and promotes cell growth. This study was designed to investigate SR-BI expression, proliferation and apoptotic effect of HDL on human BCC lines, MCF-7 and MDA-MB-468. MATERIALS AND METHODS Real-time-PCR method was used to evaluate expression of SR-BI, and cholesterol concentration was measured using a cholesterol assay kits (Pars AZ moon, Karaj, Iran). Cell viability was assessed using the MTT test. To identify cell apoptosis, the annexin V-FITC staining test and caspase-9 activity assay were applied. RESULTS Treatment of both cell lines (MCF-7, MDA-MB-468) with HDL results in augmentation of SR-BI mRNA expression and also elevation of the intracellular cholesterol (P<0.01). HDL induced cell proliferation, cell cycle progression, and prevented activation of caspase-9 (P<0.05). We also demonstrated that inhibition of SR-B1 by BLT-1 could reduce cell proliferation, and induction of SR-B1 receptor by quercetin increased HDL-induced proliferation in both cell lines (P<0.05). CONCLUSION It can be concluded that alteration in HDL levels by SR-B1 activator (Quercetin) or inhibitor (BLT-1) may affect BCC growth and apoptosis induction.
Collapse
Affiliation(s)
- Neamat Karimi
- Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Soghra Karami Tehrani
- Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332:109-126. [DOI: 10.1016/j.jconrel.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
|
20
|
High-Density Lipoprotein Therapy in Stroke: Evaluation of Endothelial SR-BI-Dependent Neuroprotective Effects. Int J Mol Sci 2020; 22:ijms22010106. [PMID: 33374266 PMCID: PMC7796353 DOI: 10.3390/ijms22010106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
High-density lipoproteins (HDLs) display endothelial protective effects. We tested the role of SR-BI, an HDL receptor expressed by endothelial cells, in the neuroprotective effects of HDLs using an experimental model of acute ischemic stroke. After transient intraluminal middle cerebral artery occlusion (tMCAO), control and endothelial SR-BI deficient mice were intravenously injected by HDLs or saline. Infarct volume and blood-brain barrier (BBB) breakdown were assessed 24 h post tMCAO. The potential of HDLs and the role of SR-BI to maintain the BBB integrity was assessed by using a human cellular model of BBB (hCMEC/D3 cell line) subjected to oxygen-glucose deprivation (OGD). HDL therapy limited the infarct volume and the BBB leakage in control mice relative to saline injection. Interestingly, these neuroprotective effects were thwarted by the deletion of SR-BI in endothelial cells and preserved in mice deficient for SR-BI in myeloid cells. In vitro studies revealed that HDLs can preserve the integrity of the BBB in OGD conditions, and that this effect was reduced by the SR-BI inhibitor, BLT-1. The protection of BBB integrity plays a pivotal role in HDL therapy of acute ischemic stroke. Our results show that this effect is partially mediated by the HDL receptor, SR-BI expressed by endothelial cells.
Collapse
|
21
|
Hafiane A, Daskalopoulou SS. Adiponectin's mechanisms in high-density lipoprotein biogenesis and cholesterol efflux. Metabolism 2020; 113:154393. [PMID: 33058851 DOI: 10.1016/j.metabol.2020.154393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
AIM Among adiponectin's beneficial properties is its ability to promote cellular cholesterol efflux, thereby generating high-density lipoprotein (HDL) particles. However, adiponectin's role in the regulation of macrophage lipid metabolism, a crucial process in atherogenesis, remains poorly investigated. The aim of this study was to characterize the adiponectin's role in HDL biogenesis. METHODS AND RESULTS We perform kinetics studies in baby hamster kidney (BHK) and Tamm-Horsfall protein 1 (THP-1) cell lines to elucidate adiponectin's role in HDL biogenesis. In cholesterol-enriched cells, specific molar doses of adiponectin stimulated cholesterol efflux with high efficiency to apoA-I. In the presence of adiponectin, BHK cells expressing ATP binding cassette transporter A1 (ABCA1) or ABCG1 generated lipidated particles having α electrophoretic mobility (α-HDL) and a molecular size of 7.5-20 nm. Interestingly, in THP-1 macrophages, cholesterol efflux was associated with more lipidated preβ1-HDL particles. Direct molecular interaction of adiponectin with apoA-I enhanced the affinity of apoA-I to free cholesterol and resulted in an increase in preβ1-HDL particles from plasma ex vivo. Adiponectin increased ABCA1 and ABCG1 protein expression and activated the formation of ABCA1-linked cholesterol oxidase sensitive plasma membrane domains. CONCLUSION Adiponectin upregulated ABCA1 and ABCG1 protein expression, reduced lipid accumulation, and efficiently promoted nascent HDL formation. These results highlight that these cellular processes are interconnected through adiponectin and ABCA1- and ABCG1-dependent. In this pathway, adiponectin increased the affinity of apoA-I to cholesterol and effectively accelerated cholesterol removal from the plasma membrane to HDL particles. Thus, by accelerating HDL biogenesis, adiponectin may have therapeutic potential for atherosclerotic cardiovascular disease prevention and management.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01.3370H, Montréal, Qc H4A 3J1, Canada.
| | - Stella S Daskalopoulou
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01.3370H, Montréal, Qc H4A 3J1, Canada; Department of Medicine, Division of Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, EM1.2230, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
22
|
Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceut Med 2020; 33:465-498. [PMID: 31933239 PMCID: PMC7101889 DOI: 10.1007/s40290-019-00308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.
Collapse
|
23
|
Tenesaca S, Vasquez M, Fernandez-Sendin M, Di Trani CA, Ardaiz N, Gomar C, Cuculescu D, Alvarez M, Otano I, Melero I, Berraondo P. Scavenger Receptor Class B Type I is Required for 25-Hydroxycholecalciferol Cellular Uptake and Signaling in Myeloid Cells. Mol Nutr Food Res 2020; 64:e1901213. [PMID: 32583974 DOI: 10.1002/mnfr.201901213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/01/2020] [Indexed: 11/12/2022]
Abstract
SCOPE Vitamin D3 is a critical molecule for the properly controlled activity of the immune system. In myeloid-derived cells, vitamin D3 induces the production of the antimicrobial and antitumor peptide cathelicidin. In this study, the mechanism of the entry of 25-hydroxycholecalciferol (25(OH)D) in myeloid-derived cells is explored. METHODS AND RESULTS Here, a novel regulatory pathway of vitamin D3 biology is described. Using a polyclonal antibody, two different chemical inhibitors, and a high-density lipoprotein as a competing ligand, it is demonstrated here that the 25(OH)D signaling pathway in myeloid cells depends on scavenger receptor class B type I (SR-B1). This effect is observed in the THP-1 monocytic cell line and in human primary monocytes. SR-B1 blockade abrogates the cellular uptake of 25(OH)D leading to a general shut down of the gene transcription program modulated by 25(OH)D. The results obtained at the transcriptional level are confirmed at the protein and functional level for CD14 in the THP-1 cell line. CONCLUSION In conclusion, SR-B1 plays a critical role in vitamin D3 biology, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Shirley Tenesaca
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Doina Cuculescu
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Itziar Otano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, 31008, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, 31008, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, 31008, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, 31008, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, 31008, Spain
| |
Collapse
|
24
|
Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci Rep 2020; 10:5264. [PMID: 32210256 PMCID: PMC7093446 DOI: 10.1038/s41598-020-61629-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal physiological (MPH) or supraphysiological hypercholesterolaemia (MSPH) occurs during pregnancy. Cholesterol trafficking from maternal to foetal circulation requires the uptake of maternal LDL and HDL by syncytiotrophoblast and cholesterol efflux from this multinucleated tissue to ApoA-I and HDL. We aimed to determine the effects of MSPH on placental cholesterol trafficking. Placental tissue and primary human trophoblast (PHT) were isolated from pregnant women with total cholesterol <280 md/dL (MPH, n = 27) or ≥280 md/dL (MSPH, n = 28). The lipid profile in umbilical cord blood from MPH and MSPH neonates was similar. The abundance of LDL receptor (LDLR) and HDL receptor (SR-BI) was comparable between MSPH and MPH placentas. However, LDLR was localized mainly in the syncytiotrophoblast surface and was associated with reduced placental levels of its ligand ApoB. In PHT from MSPH, the uptake of LDL and HDL was lower compared to MPH, without changes in LDLR and reduced levels of SR-BI. Regarding cholesterol efflux, in MSPH placentas, the abundance of cholesterol transporter ABCA1 was increased, while ABCG1 and SR-BI were reduced. In PHT from MSPH, the cholesterol efflux to ApoA-I was increased and to HDL was reduced, along with reduced levels of ABCG1, compared to MPH. Inhibition of SR-BI did not change cholesterol efflux in PHT. The TC content in PHT was comparable in MPH and MSPH cells. However, free cholesterol was increased in MSPH cells. We conclude that MSPH alters the trafficking and content of cholesterol in placental trophoblasts, which could be associated with changes in the placenta-mediated maternal-to-foetal cholesterol trafficking.
Collapse
|
25
|
Dearborn AD, Marcotrigiano J. Hepatitis C Virus Structure: Defined by What It Is Not. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036822. [PMID: 31501263 DOI: 10.1101/cshperspect.a036822] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) represents an important and growing public health problem, chronically infecting an estimated 70 million people worldwide. This blood-borne pathogen is generating a new wave of infections in the United States, associated with increasing intravenous drug use over the last decade. In most cases, HCV establishes a chronic infection, sometimes causing cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Although a curative therapy exists, it is extremely expensive and provides no barrier to reinfection; therefore, a vaccine is urgently needed. The virion is asymmetric and heterogeneous with the buoyancy and protein content similar to low-density lipoparticles. Core protein is unstructured, and of the two envelope glycoproteins, E1 and E2, the function of E1 remains enigmatic. E2 is responsible for specifically binding host receptors CD81 and scavenger receptor class B type I (SR-BI). This review will focus on structural progress on HCV virion, core protein, envelope glycoproteins, and specific host receptors.
Collapse
Affiliation(s)
- Altaira D Dearborn
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.,Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joseph Marcotrigiano
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Wang W, Yan Z, Hu J, Shen WJ, Azhar S, Kraemer FB. Scavenger receptor class B, type 1 facilitates cellular fatty acid uptake. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158554. [PMID: 31678516 DOI: 10.1016/j.bbalip.2019.158554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
SR-B1 belongs to the class B scavenger receptor, or CD36 super family. SR-B1 and CD36 share an affinity for a wide array of ligands. Although they exhibit similar ligand binding specificity, SR-B1 and CD36 have some very specific lipid transport functions. Whereas SR-B1 primarily facilitates the selective delivery of cholesteryl esters (CEs) and cholesterol from HDL particles to the liver and non-placental steroidogenic tissues, as well as participating in cholesterol efflux from cells, CD36 primarily mediates the uptake of long-chain fatty acids in high fatty acid-requiring organs such as the heart, skeletal muscle and adipose tissue. However, CD36 also mediates cholesterol efflux and facilitates selective lipoprotein-CE delivery, although less efficiently than SR-B1. Interestingly, the ability or efficiency of SR-B1 to mediate fatty acid uptake has not been reported. In this paper, using overexpression and siRNA-mediated knockdown of SR-B1, we show that SR-B1 possesses the ability to facilitate fatty acid uptake. Moreover, this function is not blocked by BLT-1, a specific chemical inhibitor of HDL-CE uptake activity of SR-B1, nor by sulfo-N-succinimidyl oleate, which inhibits fatty acid uptake by CD36. Attenuated fatty acid uptake was also observed in primary adipocytes isolated from SR-B1 knockout mice. In conclusion, facilitation of fatty acid uptake is an additional function that is mediated by SR-B1.
Collapse
Affiliation(s)
- Wei Wang
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America; Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Zhe Yan
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America; Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Jie Hu
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America.
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America.
| |
Collapse
|
27
|
Gordon JA, Noble JW, Midha A, Derakhshan F, Wang G, Adomat HH, Tomlinson Guns ES, Lin YY, Ren S, Collins CC, Nelson PS, Morrissey C, Wasan KM, Cox ME. Upregulation of Scavenger Receptor B1 Is Required for Steroidogenic and Nonsteroidogenic Cholesterol Metabolism in Prostate Cancer. Cancer Res 2019; 79:3320-3331. [PMID: 31064850 PMCID: PMC6606386 DOI: 10.1158/0008-5472.can-18-2529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/25/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Aberrant cholesterol metabolism is increasingly appreciated to be essential for prostate cancer initiation and progression. Transcript expression of the high-density lipoprotein-cholesterol receptor scavenger receptor B1 (SR-B1) is elevated in primary prostate cancer. Hypothesizing that SR-B1 expression may help facilitate malignant transformation, we document increased SR-B1 protein and transcript expression in prostate cancer relative to normal prostate epithelium that persists in lethal castration-resistant prostate cancer (CRPC) metastasis. As intratumoral steroid synthesis from the precursor cholesterol can drive androgen receptor (AR) pathway activity in CRPC, we screened androgenic benign and cancer cell lines for sensitivity to SR-B1 antagonism. Benign cells were insensitive to SR-B1 antagonism, and cancer line sensitivity inversely correlated with expression levels of full-length and splice variant AR. In androgen-responsive CRPC cell model C4-2, SR-B1 antagonism suppressed cholesterol uptake, de novo steroidogenesis, and AR activity. SR-B1 antagonism also suppressed growth and viability and induced endoplasmic reticulum stress and autophagy. The inability of exogenous steroids to reverse these effects indicates that AR pathway activation is insufficient to overcome cytotoxic stress caused by a decrease in the availability of cholesterol. Furthermore, SR-B1 antagonism decreased cholesterol uptake, growth, and viability of the AR-null CRPC cell model PC-3, and the small-molecule SR-B1 antagonist block lipid transport-1 decreased xenograft growth rate despite poor pharmacologic properties. Overall, our findings show that SR-B1 is upregulated in primary and castration-resistant disease and is essential for cholesterol uptake needed to drive both steroidogenic and nonsteroidogenic biogenic pathways, thus implicating SR-B1 as a novel and potentially actionable target in CRPC. SIGNIFICANCE: These findings highlight SR-B1 as a potential target in primary and castration-resistant prostate cancer that is essential for cholesterol uptake needed to drive steroidogenic and nonsteroidogenic biogenic pathways.
Collapse
MESH Headings
- Androgens/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- Bone Neoplasms/surgery
- Cell Proliferation
- Cholesterol/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/secondary
- Liver Neoplasms/surgery
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lung Neoplasms/surgery
- Male
- Mice
- Mice, Nude
- Orchiectomy
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/surgery
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jacob A Gordon
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Jake W Noble
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Ankur Midha
- Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Fatemeh Derakhshan
- Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - Gang Wang
- Department of Pathology, British Columbia Cancer Agency, Vancouver, Canada
| | - Hans H Adomat
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Emma S Tomlinson Guns
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Yen-Yi Lin
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Shancheng Ren
- Department of Urology, Second Military Medical University, Shanghai, China
| | - Collin C Collins
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Kishor M Wasan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Michael E Cox
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Canada
| |
Collapse
|
28
|
Cuesta Torres LF, Zhu W, Öhrling G, Larsson R, Patel M, Wiese CB, Rye KA, Vickers KC, Tabet F. High-density lipoproteins induce miR-223-3p biogenesis and export from myeloid cells: Role of scavenger receptor BI-mediated lipid transfer. Atherosclerosis 2019; 286:20-29. [PMID: 31096070 DOI: 10.1016/j.atherosclerosis.2019.04.227] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS We recently showed that miR-223-3p on high-density lipoproteins (HDL) is exported to endothelial cells, where it inhibits inflammation. However, the origin of miR-223-3p on HDL is unknown. We hypothesize that HDL-associated miR-223-3p originates in myeloid cells and is exported to HDL in a scavenger receptor BI (SR-BI)-dependent manner. METHODS Polymorphonuclear neutrophils (PMNs) and human monocyte derived macrophages (HMDMs) were incubated with native HDL (nHDL) or discoidal reconstituted HDL (rHDL). Total RNA was isolated before and after incubation. Mature and primary miR-223-3p (pri-mir-223-3p) levels were quantified by real-time PCR. RESULTS Incubation with nHDL and rHDL increased miR-223-3p export from PMNs and HMDMs. In PMNs, nHDL but not rHDL, increased mature and pri-mir-223-3p. Incubation with HDL also increased Dicer mRNA, a critical regulator of miRNA biogenesis. Incubation of HMDMs with nHDL did not increase cellular levels of mature miR-223-3p, but significantly increased pri-mir-223 levels. Incubation with rHDL had no effect on either mature or pri-mir-223-3p levels. Activated PMNs increased miR-223-3p export to HDL and the production of reactive oxygen species and activated protein kinase C. Blocking HDL binding to SR-BI increased miR-223-3p export to HDL in both PMNs and HMDMs, but did not affect mature and primary miR-223-3p levels. Chemical inhibition of cholesterol flux by Block Lipid Transport (BLT)-1 inhibited HDL-induced pri-mir-223 expression in PMNs. CONCLUSIONS HDL-associated miR-223-3p originates in PMNs and macrophages. HDL stimulates miR-223-3p biogenesis in PMNs in a process that is regulated by SR-BI-mediated lipid flux.
Collapse
Affiliation(s)
| | - Wanying Zhu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gustav Öhrling
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Rasmus Larsson
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Mili Patel
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Carrie B Wiese
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Fatiha Tabet
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia.
| |
Collapse
|
29
|
Huang L, Chambliss KL, Gao X, Yuhanna IS, Behling-Kelly E, Bergaya S, Ahmed M, Michaely P, Luby-Phelps K, Darehshouri A, Xu L, Fisher EA, Ge WP, Mineo C, Shaul PW. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 2019; 569:565-569. [PMID: 31019307 PMCID: PMC6631346 DOI: 10.1038/s41586-019-1140-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/25/2019] [Indexed: 01/15/2023]
Abstract
Atherosclerosis, which underlies life-threatening cardiovascular disorders including myocardial infarction and stroke1, is initiated by low density lipoprotein cholesterol (LDL) passage into the artery wall and engulfment by macrophages, leading to foam cell formation and lesion development2, 2, 3, 3. How circulating LDL enters the artery wall to instigate atherosclerosis is unknown. Here we show in mice that scavenger receptor, class B type 1 (SR-B1) in endothelial cells mediates LDL delivery into arteries and its accumulation by artery wall macrophages, thereby promoting atherosclerosis. LDL particles are colocalized with SR-B1 in endothelial cell intracellular vesicles in vivo, and LDL transcytosis across endothelial monolayers requires its direct binding to SR-B1 and an 8 amino acid cytoplasmic domain of the receptor that recruits the guanine nucleotide exchange factor dedicator of cytokinesis 4 (DOCK4)4. DOCK4 promotes SR-B1 internalization and LDL transport by coupling LDL binding to SR-B1 with Rac1 activation. SR-B1 and DOCK4 expression are increased in atherosclerosis-prone regions of the mouse aorta prior to lesion formation, and in human atherosclerotic versus normal arteries. These findings challenge the long-held concept that atherogenesis involves passive LDL movement across a compromised endothelial barrier. Interventions inhibiting endothelial delivery of LDL into the artery wall may represent a new therapeutic category in the battle against cardiovascular disease.
Collapse
Affiliation(s)
- Linzhang Huang
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofei Gao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan S Yuhanna
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Erica Behling-Kelly
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sonia Bergaya
- Department of Medicine, New York University School of Medicine, New York, NY, USA.,Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA.,Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anza Darehshouri
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Fisher
- Department of Medicine, New York University School of Medicine, New York, NY, USA.,Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA.,Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Woo-Ping Ge
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Muñoz-Vega M, Massó F, Páez A, Vargas-Alarcón G, Coral-Vázquez R, Mas-Oliva J, Carreón-Torres E, Pérez-Méndez Ó. HDL-Mediated Lipid Influx to Endothelial Cells Contributes to Regulating Intercellular Adhesion Molecule (ICAM)-1 Expression and eNOS Phosphorylation. Int J Mol Sci 2018; 19:ijms19113394. [PMID: 30380707 PMCID: PMC6274843 DOI: 10.3390/ijms19113394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/19/2023] Open
Abstract
Reverse cholesterol transport (RCT) is considered as the most important antiatherogenic role of high-density lipoproteins (HDL), but interventions based on RCT have failed to reduce the risk of coronary heart disease. In contrast to RCT, important evidence suggests that HDL deliver lipids to peripheral cells. Therefore, in this paper, we investigated whether HDL could improve endothelial function by delivering lipids to the cells. Internalization kinetics using cholesterol and apolipoprotein (apo) AI fluorescent double-labeled reconstituted HDL (rHDL), and human dermal microvascular endothelial cells-1 (HMEC-1) showed a fast cholesterol influx (10 min) and a slower HDL protein internalization as determined by confocal microscopy and flow cytometry. Sphingomyelin kinetics overlapped that of apo AI, indicating that only cholesterol became dissociated from rHDL during internalization. rHDL apo AI internalization was scavenger receptor class B type I (SR-BI)-dependent, whereas HDL cholesterol influx was independent of SR-BI and was not completely inhibited by the presence of low-density lipoproteins (LDL). HDL sphingomyelin was fundamental for intercellular adhesion molecule-1 (ICAM-1) downregulation in HMEC-1. However, vascular cell adhesion protein-1 (VCAM-1) was not inhibited by rHDL, suggesting that components such as apolipoproteins other than apo AI participate in HDL's regulation of this adhesion molecule. rHDL also induced endothelial nitric oxide synthase eNOS S1177 phosphorylation in HMEC-1 but only when the particle contained sphingomyelin. In conclusion, the internalization of HDL implies the dissociation of lipoprotein components and a SR-BI-independent fast delivery of cholesterol to endothelial cells. HDL internalization had functional implications that were mainly dependent on sphingomyelin. These results suggest a new role of HDL as lipid vectors to the cells, which could be congruent with the antiatherogenic properties of these lipoproteins.
Collapse
Affiliation(s)
- Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Felipe Massó
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Araceli Páez
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Ramón Coral-Vázquez
- Graduate School and Research Division, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México City, Mexico.
- Sub-Directorate of Research and Education, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, 03100 México City, Mexico.
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Óscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| |
Collapse
|
31
|
Takiguchi S, Ayaori M, Yakushiji E, Nishida T, Nakaya K, Sasaki M, Iizuka M, Uto-Kondo H, Terao Y, Yogo M, Komatsu T, Ogura M, Ikewaki K. Hepatic Overexpression of Endothelial Lipase Lowers High-Density Lipoprotein but Maintains Reverse Cholesterol Transport in Mice: Role of Scavenger Receptor Class B Type I/ATP-Binding Cassette Transporter A1-Dependent Pathways. Arterioscler Thromb Vasc Biol 2018; 38:1454-1467. [PMID: 29748333 PMCID: PMC6039415 DOI: 10.1161/atvbaha.118.311056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/11/2018] [Indexed: 01/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Reverse cholesterol transport (RCT) is a major mechanism by which HDL (high-density lipoprotein) protects against atherosclerosis. Endothelial lipase (EL) reportedly reduces HDL levels, which, in theory, would increase atherosclerosis. However, it remains unclear whether EL affects RCT in vivo. Approach and Results— Adenoviral vectors expressing EL or luciferase were intravenously injected into mice, and a macrophage RCT assay was performed. As expected, hepatic EL overexpression markedly reduced HDL levels. In parallel, plasma 3H-cholesterol counts from the EL-expressing mice decreased by 85% compared with control. Surprisingly, there was no difference in fecal 3H-cholesterol excretion between the groups. Kinetic studies revealed increased catabolism/hepatic uptake of 3HDL-cholesteryl ether, resulting in no change in fecal HDL-cholesteryl ester excretion in the mice. To explore underlying mechanisms for the preservation of RCT despite low HDL levels in the EL-expressing mice, we investigated the effects of hepatic SR-BI (scavenger receptor class B type I) knockdown. RCT assay revealed that knockdown of SR-BI alone reduced fecal excretion of macrophage-derived 3H-cholesterol. Interestingly, hepatic EL overexpression under SR-BI inhibition further attenuated fecal tracer counts as compared with control. Finally, we observed that EL overexpression enhanced in vivo RCT under pharmacological inhibition of hepatic ABCA1 (ATP-binding cassette transporter A1) by probucol. Conclusions— Hepatic EL expression compensates for reduced macrophage-derived cholesterol efflux to plasma because of low HDL levels by promoting cholesterol excretion to bile/feces via an SR-BI pathway, maintaining overall RCT in vivo. In contrast, EL-modified HDL might negatively regulate RCT via hepatic ABCA1. Despite extreme hypoalphalipoproteinemia, RCT is maintained in EL-expressing mice via SR-BI/ABCA1-dependent pathways.
Collapse
Affiliation(s)
- Shunichi Takiguchi
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makoto Ayaori
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Emi Yakushiji
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Takafumi Nishida
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Kazuhiro Nakaya
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makoto Sasaki
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Maki Iizuka
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Harumi Uto-Kondo
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Yoshio Terao
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makiko Yogo
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Tomohiro Komatsu
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center, Osaka, Japan (M.O.)
| | - Katsunori Ikewaki
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| |
Collapse
|
32
|
Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59:1114-1131. [PMID: 29720388 DOI: 10.1194/jlr.r083121] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
33
|
Garcia C, Montée N, Faccini J, Series J, Meilhac O, Cantero AV, Le Faouder P, Elbaz M, Payrastre B, Vindis C. Acute coronary syndrome remodels the antiplatelet aggregation properties of HDL particle subclasses. J Thromb Haemost 2018; 16:933-945. [PMID: 29543379 DOI: 10.1111/jth.14003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/29/2023]
Abstract
Essentials HDL subclasses were studied in acute coronary syndrome (ACS). HDL2 from ACS patients have better antiplatelet potency than HDL from non ACS subjects. ACS remodels the antiplatelet properties of HDL subclasses. Oxidized polyunsaturated fatty acids content of HDL is modified by ACS. SUMMARY Background Although HDLs have antithrombotic effects by reducing platelet activation, the relationship between HDL levels and the risk of acute coronary syndrome (ACS) is unclear, as HDL particles are heterogeneous in composition and biological properties. Objective To characterize the effects of HDL2 and HDL3 subclasses from ACS patients and non-coronary artery disease (CAD) subjects on platelet activation. Methods We measured platelet aggregation and ex vivo thrombus formation, analyzed signaling pathways by flow cytometry, and performed a targeted lipidomics analysis on HDL subclasses. Results Analysis of human platelet aggregation in suspension, adhesion on von Willebrand factor and thrombus formation on collagen under arterial shear demonstrated that HDL2 from ACS patients had higher antiplatelet potency than HDL3 from ACS patients and HDL from non-CAD subjects. HDL binding to scavenger receptor class B type I was essential for this effect. A lipidomics analysis revealed that HDL2 from ACS patients had more oxidized polyunsaturated fatty acids (PUFAs). An inverse correlation between the concentrations of 9-hydroxyoctadecadienoic acid (9-HODE), 13-hydroxyoctadecadienoic acid (13-HODE), the eicosapentaenoic acid metabolite 18-hydroxyeicosapentaenoic acid (18-HEPE) and hydroxyeicosatetraenoic acid isomers in HDL2 and platelet aggregation was observed. This relationship was further demonstrated by the direct inhibitory effects of 18-HEPE, 9-HODE, 13-HODE, 17-hydroxydocosahexaenoic acid and 14-hydroxydocosahexaenoic acid on collagen-related peptide-induced platelet aggregation, indicating that oxidized PUFAs contribute to the antithrombotic effect of ACS HDL2. Conclusions Our data shed new light on the antiplatelet effects of HDL subclasses, and suggest physiological adaptation through the modulation of HDL properties in ACS patients that may limit their platelet-dependent thrombotic risk.
Collapse
Affiliation(s)
- C Garcia
- Laboratory of Hematology, CHU Toulouse, Toulouse, France
| | - N Montée
- Institute of Metabolic and Cardiovascular Diseases/I2MC, INSERM, UMR-1048 and University Toulouse 3, Toulouse, France
- INSERM, UMR-1188, Diabète Athérothrombose Thérapies Réunion Océan Indien, Université de la Réunion, Saint Denis, France
| | - J Faccini
- Institute of Metabolic and Cardiovascular Diseases/I2MC, INSERM, UMR-1048 and University Toulouse 3, Toulouse, France
| | - J Series
- Laboratory of Hematology, CHU Toulouse, Toulouse, France
| | - O Meilhac
- INSERM, UMR-1188, Diabète Athérothrombose Thérapies Réunion Océan Indien, Université de la Réunion, Saint Denis, France
| | - A-V Cantero
- Institute of Metabolic and Cardiovascular Diseases/I2MC, INSERM, UMR-1048 and University Toulouse 3, Toulouse, France
- Laboratory of Biochemistry, CHU Toulouse, Toulouse, France
| | - P Le Faouder
- MetaToul-Lipidomic Core Facility, MetaboHUB, INSERM, UMR-1048, Toulouse, France
| | - M Elbaz
- Institute of Metabolic and Cardiovascular Diseases/I2MC, INSERM, UMR-1048 and University Toulouse 3, Toulouse, France
- Department of Cardiology, CHU Toulouse, Toulouse, France
| | - B Payrastre
- Laboratory of Hematology, CHU Toulouse, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases/I2MC, INSERM, UMR-1048 and University Toulouse 3, Toulouse, France
| | - C Vindis
- Laboratory of Hematology, CHU Toulouse, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases/I2MC, INSERM, UMR-1048 and University Toulouse 3, Toulouse, France
| |
Collapse
|
34
|
Plebanek MP, Bhaumik D, Bryce PJ, Thaxton CS. Scavenger Receptor Type B1 and Lipoprotein Nanoparticle Inhibit Myeloid-Derived Suppressor Cells. Mol Cancer Ther 2017; 17:686-697. [PMID: 29282300 DOI: 10.1158/1535-7163.mct-17-0981] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are innate immune cells that potently inhibit T cells. In cancer, novel therapies aimed to activate T cells can be rendered ineffective due to the activity of MDSCs. Thus, targeted inhibition of MDSCs may greatly enhance T-cell-mediated antitumor immunity, but mechanisms remain obscure. Here we show, for the first time, that scavenger receptor type B-1 (SCARB1), a high-affinity receptor for spherical high-density lipoprotein (HDL), is expressed by MDSCs. Furthermore, we demonstrate that SCARB1 is specifically targeted by synthetic high-density lipoprotein-like nanoparticles (HDL NP), which reduce MDSC activity. Using in vitro T-cell proliferation assays, data show that HDL NPs specifically bind SCARB1 to inhibit MDSC activity. In murine cancer models, HDL NP treatment significantly reduces tumor growth, metastatic tumor burden, and increases survival due to enhanced adaptive immunity. Flow cytometry and IHC demonstrate that HDL NP-mediated suppression of MDSCs increased CD8+ T cells and reduced Treg cells in the metastatic tumor microenvironment. Using transgenic mice lacking SCARB1, in vivo data clearly show that the HDL NPs specifically target this receptor for suppressing MDSCs. Ultimately, our data provide a new mechanism and targeted therapy, HDL NPs, to modulate a critical innate immune cell checkpoint to enhance the immune response to cancer. Mol Cancer Ther; 17(3); 686-97. ©2017 AACR.
Collapse
Affiliation(s)
- Michael P Plebanek
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Driskill Graduate Program in the Life Sciences, Northwestern University, Chicago, Illinois
| | - Debayan Bhaumik
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul J Bryce
- Division of Allergy-Immunology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - C Shad Thaxton
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois.,International Institute for Nanotechnology, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
35
|
Conrad KS, Cheng TW, Ysselstein D, Heybrock S, Hoth LR, Chrunyk BA, Am Ende CW, Krainc D, Schwake M, Saftig P, Liu S, Qiu X, Ehlers MD. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat Commun 2017; 8:1908. [PMID: 29199275 PMCID: PMC5712522 DOI: 10.1038/s41467-017-02044-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) contributes to endosomal and lysosomal function. LIMP-2 deficiency is associated with neurological abnormalities and kidney failure and, as an acid glucocerebrosidase receptor, impacts Gaucher and Parkinson's diseases. Here we report a crystal structure of a LIMP-2 luminal domain dimer with bound cholesterol and phosphatidylcholine. Binding of these lipids alters LIMP-2 from functioning as a glucocerebrosidase-binding monomer toward a dimeric state that preferentially binds anionic phosphatidylserine over neutral phosphatidylcholine. In cellular uptake experiments, LIMP-2 facilitates transport of phospholipids into murine fibroblasts, with a strong substrate preference for phosphatidylserine. Taken together, these biophysical and cellular studies define the structural basis and functional importance of a form of LIMP-2 for lipid trafficking. We propose a model whereby switching between monomeric and dimeric forms allows LIMP-2 to engage distinct binding partners, a mechanism that may be shared by SR-BI and CD36, scavenger receptor proteins highly homologous to LIMP-2.
Collapse
Affiliation(s)
- Karen S Conrad
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Ting-Wen Cheng
- Neuroscience Research Unit, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
| | - Daniel Ysselstein
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Saskia Heybrock
- Biochemical Institute, Christian-Albrechts University Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany
| | - Lise R Hoth
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Boris A Chrunyk
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Christopher W Am Ende
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts University Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany
| | - Shenping Liu
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA.
| | - Xiayang Qiu
- Medicinal Sciences, Pfizer Worldwide R&D, Eastern Point Road, Groton, CT, 06340, USA.
| | - Michael D Ehlers
- Neuroscience Research Unit, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA, 02139, USA
- Biogen, 225 Binney St., Cambridge, MA, 02142, USA
| |
Collapse
|
36
|
Kinslechner K, Schörghofer D, Schütz B, Vallianou M, Wingelhofer B, Mikulits W, Röhrl C, Hengstschläger M, Moriggl R, Stangl H, Mikula M. Malignant Phenotypes in Metastatic Melanoma are Governed by SR-BI and its Association with Glycosylation and STAT5 Activation. Mol Cancer Res 2017; 16:135-146. [PMID: 28974560 DOI: 10.1158/1541-7786.mcr-17-0292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023]
Abstract
Metastatic melanoma is hallmarked by elevated glycolytic flux and alterations in cholesterol homeostasis. The contribution of cholesterol transporting receptors for the maintenance of a migratory and invasive phenotype is not well defined. Here, the scavenger receptor class B type I (SCARB1/SR-BI), a high-density lipoprotein (HDL) receptor, was identified as an estimator of melanoma progression in patients. We further aimed to identify the SR-BI-controlled gene expression signature and its related cellular phenotypes. On the basis of whole transcriptome analysis, it was found that SR-BI knockdown, but not functional inhibition of its cholesterol-transporting capacity, perturbed the metastasis-associated epithelial-to-mesenchymal transition (EMT) phenotype. Furthermore, SR-BI knockdown was accompanied by decreased migration and invasion of melanoma cells and reduced xenograft tumor growth. STAT5 is an important mediator of the EMT process and loss of SR-BI resulted in decreased glycosylation, reduced DNA binding, and target gene expression of STAT5. When human metastatic melanoma clinical specimens were analyzed for the abundance of SR-BI and STAT5 protein, a positive correlation was found. Finally, a novel SR-BI-regulated gene profile was determined, which discriminates metastatic from nonmetastatic melanoma specimens indicating that SR-BI drives gene expression contributing to growth at metastatic sites. Overall, these results demonstrate that SR-BI is a highly expressed receptor in human metastatic melanoma and is crucial for the maintenance of the metastatic phenotype.Implications: High SR-BI expression in melanoma is linked with increased cellular glycosylation and hence is essential for a metastasis-specific expression signature. Mol Cancer Res; 16(1); 135-46. ©2017 AACR.
Collapse
Affiliation(s)
- Katharina Kinslechner
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - David Schörghofer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Birgit Schütz
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Maria Vallianou
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Bettina Wingelhofer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Vienna, Medical University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
37
|
Reply to Padmanabhan and Dixit: Hepatitis C virus entry inhibitors for optimally boosting direct-acting antiviral-based treatments. Proc Natl Acad Sci U S A 2017; 114:E4527-E4529. [PMID: 28512226 DOI: 10.1073/pnas.1705234114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Gillard BK, Bassett GR, Gotto AM, Rosales C, Pownall HJ. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester. J Biol Chem 2017; 292:8864-8873. [PMID: 28373285 DOI: 10.1074/jbc.m117.781963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[3H]CE labeled with [125I]apoAI or [125I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR-/-) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant.
Collapse
Affiliation(s)
- Baiba K Gillard
- From the Houston Methodist Research Institute, Houston Texas 77030, .,Weill Cornell Medicine, New York, New York 10065, and
| | | | - Antonio M Gotto
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Corina Rosales
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Henry J Pownall
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| |
Collapse
|
39
|
Zingg JM, Azzi A, Meydani M. α-Tocopheryl Phosphate Induces VEGF Expression via CD36/PI3Kγ in THP-1 Monocytes. J Cell Biochem 2017; 118:1855-1867. [PMID: 28059487 DOI: 10.1002/jcb.25871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
The CD36 scavenger receptor binds several ligands and mediates ligand uptake and ligand-dependent signal transduction and gene expression, events that may involve CD36 internalization. Here we show that CD36 internalization in THP-1 monocytes is triggered by α-tocopherol (αT) and more strongly by α-tocopheryl phosphate (αTP) and EPC-K1, a phosphate diester of αTP and L-ascorbic acid. αTP-triggered CD36 internalization is prevented by the specific covalent inhibitor of selective lipid transport by CD36, sulfo-N-succinimidyl oleate (SSO). Moreover, SSO inhibited the CD36-mediated uptake of 14C-labelled αTP suggesting that αTP binding and internalization of CD36 is involved in cellular αTP uptake, whereas the uptake of αT was less affected. Similar to that, inhibition of selective lipid transport of the SR-BI scavenger receptor resulted mainly in reduction of αTP and not αT uptake. In contrast, uptake of αT was mainly inhibited by Dynasore, an inhibitor of clathrin-mediated endocytosis, suggesting that the differential regulatory effects of αTP and αT on signaling may be influenced by their different routes of uptake. Interestingly, αTP and EPC-K1 also reduced the neutral lipid content of THP-1 cells and the phagocytosis of fluorescent Staphylococcus aureus bioparticles. Moreover, induction of the vascular endothelial growth factor (VEGF) promoter activity by αTP occurred via CD36/PI3Kγ/Akt, as it could be inhibited by specific inhibitors of this pathway (SSO, Wortmannin, AS-605240). These results suggest that αTP activates PI3Kγ/Akt signaling leading to VEGF expression in monocytes after binding to and/or transport by CD36, a receptor known to modulate angiogenesis in response to amyloid beta, oxLDL, and thrombospondin. J. Cell. Biochem. 118: 1855-1867, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Vascular Biology Laboratory, JM USDA-Human Nutr. Res. Ctr. on Aging, Tufts University, Boston, Massachusetts 02111
| | - Angelo Azzi
- Vascular Biology Laboratory, JM USDA-Human Nutr. Res. Ctr. on Aging, Tufts University, Boston, Massachusetts 02111
| | - Mohsen Meydani
- Vascular Biology Laboratory, JM USDA-Human Nutr. Res. Ctr. on Aging, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
40
|
Sabnis S, Sabnis NA, Raut S, Lacko AG. Superparamagnetic reconstituted high-density lipoprotein nanocarriers for magnetically guided drug delivery. Int J Nanomedicine 2017; 12:1453-1464. [PMID: 28260891 PMCID: PMC5328662 DOI: 10.2147/ijn.s122036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Current cancer chemotherapy is frequently associated with short- and long-term side effects, affecting the quality of life of cancer survivors. Because malignant cells are known to overexpress specific surface antigens, including receptors, targeted drug delivery is often utilized to reduce or overcome side effects. The current study involves a novel targeting approach using specifically designed nanoparticles, including encapsulation of the anti-cancer drug valrubicin into superparamagnetic iron oxide nanoparticle (SPION) containing reconstituted high-density lipoprotein (rHDL) nanoparticles. Specifically, rHDL–SPION–valrubicin hybrid nanoparticles were assembled and characterized with respect to their physical and chemical properties, drug entrapment efficiency and receptor-mediated release of the drug valrubicin from the nanoparticles to prostate cancer (PC-3) cells. Prussian blue staining was used to assess nanoparticle movement in a magnetic field. Measurements of cytotoxicity toward PC-3 cells showed that rHDL–SPION–valrubicin nanoparticles were up to 4.6 and 31 times more effective at the respective valrubicin concentrations of 42.4 µg/mL and 85 µg/mL than the drug valrubicin alone. These studies showed, for the first time, that lipoprotein drug delivery enhanced via magnetic targeting could be an effective chemotherapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Sarika Sabnis
- Institute of Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center
| | - Nirupama A Sabnis
- Institute of Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center
| | - Sangram Raut
- Department of Physics, Texas Christian University
| | - Andras G Lacko
- Institute of Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center; Department of Pediatrics, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
41
|
Rui M, Xin Y, Li R, Ge Y, Feng C, Xu X. Targeted Biomimetic Nanoparticles for Synergistic Combination Chemotherapy of Paclitaxel and Doxorubicin. Mol Pharm 2016; 14:107-123. [DOI: 10.1021/acs.molpharmaceut.6b00732] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yuanrong Xin
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ran Li
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yanru Ge
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Chunlai Feng
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ximing Xu
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
42
|
Gutierrez-Pajares JL, Ben Hassen C, Chevalier S, Frank PG. SR-BI: Linking Cholesterol and Lipoprotein Metabolism with Breast and Prostate Cancer. Front Pharmacol 2016; 7:338. [PMID: 27774064 PMCID: PMC5054001 DOI: 10.3389/fphar.2016.00338] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Studies have demonstrated the significant role of cholesterol and lipoprotein metabolism in the progression of cancer. The SCARB1 gene encodes the scavenger receptor class B type I (SR-BI), which is an 82-kDa glycoprotein with two transmembrane domains separated by a large extracellular loop. SR-BI plays an important role in the regulation of cholesterol exchange between cells and high-density lipoproteins. Accordingly, hepatic SR-BI has been shown to play an essential role in the regulation of the reverse cholesterol transport pathway, which promotes the removal and excretion of excess body cholesterol. In the context of atherosclerosis, SR-BI has been implicated in the regulation of intracellular signaling, lipid accumulation, foam cell formation, and cellular apoptosis. Furthermore, since lipid metabolism is a relevant target for cancer treatment, recent studies have focused on examining the role of SR-BI in this pathology. While signaling pathways have initially been explored in non-tumoral cells, studies with cancer cells have now demonstrated SR-BI's function in tumor progression. In this review, we will discuss the role of SR-BI during tumor development and malignant progression. In addition, we will provide insights into the transcriptional and post-transcriptional regulation of the SCARB1 gene. Overall, studying the role of SR-BI in tumor development and progression should allow us to gain useful information for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jorge L Gutierrez-Pajares
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Céline Ben Hassen
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Stéphan Chevalier
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Philippe G Frank
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| |
Collapse
|
43
|
Liu X, Baarsma H, Thiam C, Montrone C, Brauner B, Fobo G, Heier JS, Duscha S, Königshoff M, Angeli V, Ruepp A, Campillos M. Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens. Cell Chem Biol 2016; 23:1302-1313. [DOI: 10.1016/j.chembiol.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/10/2016] [Accepted: 08/05/2016] [Indexed: 01/29/2023]
|
44
|
Bian Z, Shi L, Guo YL, Lv Z, Tang C, Niu S, Tremblay A, Venkataramani M, Culpepper C, Li L, Zhou Z, Mansour A, Zhang Y, Gewirtz A, Kidder K, Zen K, Liu Y. Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells. Proc Natl Acad Sci U S A 2016; 113:E5434-43. [PMID: 27578867 PMCID: PMC5027463 DOI: 10.1073/pnas.1521069113] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rapid clearance of adoptively transferred Cd47-null (Cd47(-/-)) cells in congeneic WT mice suggests a critical self-recognition mechanism, in which CD47 is the ubiquitous marker of self, and its interaction with macrophage signal regulatory protein α (SIRPα) triggers inhibitory signaling through SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and tyrosine phosphatase SHP-1/2. However, instead of displaying self-destruction phenotypes, Cd47(-/-) mice manifest no, or only mild, macrophage phagocytosis toward self-cells except under the nonobese diabetic background. Studying our recently established Sirpα-KO (Sirpα(-/-)) mice, as well as Cd47(-/-) mice, we reveal additional activation and inhibitory mechanisms besides the CD47-SIRPα axis dominantly controlling macrophage behavior. Sirpα(-/-) mice and Cd47(-/-) mice, although being normally healthy, develop severe anemia and splenomegaly under chronic colitis, peritonitis, cytokine treatments, and CFA-/LPS-induced inflammation, owing to splenic macrophages phagocytizing self-red blood cells. Ex vivo phagocytosis assays confirmed general inactivity of macrophages from Sirpα(-/-) or Cd47(-/-) mice toward healthy self-cells, whereas they aggressively attack toward bacteria, zymosan, apoptotic, and immune complex-bound cells; however, treating these macrophages with IL-17, LPS, IL-6, IL-1β, and TNFα, but not IFNγ, dramatically initiates potent phagocytosis toward self-cells, for which only the Cd47-Sirpα interaction restrains. Even for macrophages from WT mice, phagocytosis toward Cd47(-/-) cells does not occur without phagocytic activation. Mechanistic studies suggest a PKC-Syk-mediated signaling pathway, to which IL-10 conversely inhibits, is required for activating macrophage self-targeting, followed by phagocytosis independent of calreticulin Moreover, we identified spleen red pulp to be one specific tissue that provides stimuli constantly activating macrophage phagocytosis albeit lacking in Cd47(-/-) or Sirpα(-/-) mice.
Collapse
Affiliation(s)
- Zhen Bian
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Shi
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Ya-Lan Guo
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Zhiyuan Lv
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Cong Tang
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Shuo Niu
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Alexandra Tremblay
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Mahathi Venkataramani
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Courtney Culpepper
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ahmed Mansour
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Life Science Institute (LSI) Immunology Programme, National University of Singapore, Singapore 117456
| | - Andrew Gewirtz
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303
| | - Koby Kidder
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; Department of Cell Biology, Rutgers University, New Brunswick, NJ 08901
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Liu
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303;
| |
Collapse
|
45
|
Pinoresinol of olive oil decreases vitamin D intestinal absorption. Food Chem 2016; 206:234-8. [DOI: 10.1016/j.foodchem.2016.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/02/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022]
|
46
|
Thomas SE, Harrison EH. Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins. J Lipid Res 2016; 57:1865-1878. [PMID: 27538825 DOI: 10.1194/jlr.m070193] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The xanthophylls, lutein and zeaxanthin, are dietary carotenoids that selectively accumulate in the macula of the eye providing protection against age-related macular degeneration. To reach the macula, carotenoids cross the retinal pigment epithelium (RPE). Xanthophylls and β-carotene mostly associate with HDL and LDL, respectively. HDL binds to cells via a scavenger receptor class B1 (SR-B1)-dependent mechanism, while LDL binds via the LDL receptor. Using an in-vitro, human RPE cell model (ARPE-19), we studied the mechanisms of carotenoid uptake into the RPE by evaluating kinetics of cell uptake when delivered in serum or isolated LDL or HDL. For lutein and β-carotene, LDL delivery resulted in the highest rates and extents of uptake. In contrast, HDL was more effective in delivering zeaxanthin and meso-zeaxanthin leading to the highest rates and extents of uptake of all four carotenoids. Inhibitors of SR-B1 suppressed zeaxanthin delivery via HDL. Results show a selective HDL-mediated uptake of zeaxanthin and meso-zeaxanthin via SR-B1 and a LDL-mediated uptake of lutein. This demonstrates a plausible mechanism for the selective accumulation of zeaxanthin greater than lutein and xanthophylls over β-carotene in the retina. We found no evidence of xanthophyll metabolism to apocarotenoids or lutein conversion to meso-zeaxanthin.
Collapse
Affiliation(s)
- Sara E Thomas
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210
| | - Earl H Harrison
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
47
|
Role of Conserved E2 Residue W420 in Receptor Binding and Hepatitis C Virus Infection. J Virol 2016; 90:7456-7468. [PMID: 27279607 DOI: 10.1128/jvi.00685-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/28/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) enters cells via interactions with several host factors, a key one being that between the viral E2 envelope glycoprotein and the CD81 receptor. We previously identified E2 tryptophan residue 420 (W420) as an essential CD81-binding residue. However, the importance of W420 in the context of the native virion is unknown, as those previous studies predate the infectious HCV cell culture (cell culture-derived HCV [HCVcc]) system. Here, we introduced four separate mutations (F, Y, A, or R) at position 420 within the infectious HCVcc JFH-1 genome and characterized their effects on the viral life cycle. While all mutations reduced E2-CD81 binding, only two (W420A and W420R) reduced HCVcc infectivity. Further analyses of mutants with hydrophobic residues (F or Y) found that interactions with the receptors SR-BI and CD81 were modulated, which in turn determined the viral uptake route. Both mutant viruses were significantly less dependent on SR-BI, and its lipid transfer activity, for virus entry. Furthermore, these viruses were resistant to the drug erlotinib, which targets epidermal growth factor receptor (EGFR) (a host cofactor for HCV entry) and also blocks SR-BI-dependent high-density lipoprotein (HDL)-mediated enhancement of virus entry. Together, our data indicate a model where an alteration at position 420 causes a subtle change in the E2 conformation that prevents interaction with SR-BI and increases accessibility to the CD81-binding site, in turn favoring a particular internalization route. These results further show that a hydrophobic residue with a strong preference for tryptophan at position 420 is important, both functionally and structurally, to provide an additional hydrophobic anchor to stabilize the E2-CD81 interaction. IMPORTANCE Hepatitis C virus (HCV) is a leading cause of liver disease, causing up to 500,000 deaths annually. The first step in the viral life cycle is the entry process. This study investigates the role of a highly conserved residue, tryptophan residue 420, of the viral glycoprotein E2 in this process. We analyzed the effect of changing this residue in the virus and confirmed that this region is important for binding to the CD81 receptor. Furthermore, alteration of this residue modulated interactions with the SR-BI receptor, and changes to these key interactions were found to affect the virus internalization route involving the host cofactor EGFR. Our results also show that the nature of the amino acid at this position is important functionally and structurally to provide an anchor point to stabilize the E2-CD81 interaction.
Collapse
|
48
|
Vasquez M, Fioravanti J, Aranda F, Paredes V, Gomar C, Ardaiz N, Fernandez-Ruiz V, Méndez M, Nistal-Villan E, Larrea E, Gao Q, Gonzalez-Aseguinolaza G, Prieto J, Berraondo P. Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function. Oncoimmunology 2016; 5:e1196309. [PMID: 27622065 PMCID: PMC5007953 DOI: 10.1080/2162402x.2016.1196309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor class B type I (SR-B1) binds pathogen-associated molecular patterns participating in the regulation of the inflammatory reaction but there is no information regarding potential interactions between SR-B1 and the interferon system. Herein, we report that SR-B1 ligands strongly regulate the transcriptional response to interferon α (IFNα) and enhance its antiviral and antitumor activity. This effect was mediated by the activation of TLR2 and TLR4 as it was annulled by the addition of anti-TLR2 or anti-TLR4 blocking antibodies. In vivo, we maximized the antitumor activity of IFNα co-expressing in the liver a SR-B1 ligand and IFNα by adeno-associated viruses. This gene therapy strategy eradicated liver metastases from colon cancer with reduced toxicity. On the other hand, genetic and pharmacological inhibition of SR-B1 blocks the clathrin-dependent interferon receptor recycling pathway with a concomitant reduction in IFNα signaling and bioactivity. This effect can be applied to enhance cancer immunotherapy with oncolytic viruses. Indeed, SR-B1 antagonists facilitate replication of oncolytic viruses amplifying their tumoricidal potential. In conclusion, SR-B1 agonists behave as IFNα enhancers while SR-B1 inhibitors dampen IFNα activity. These results demonstrate that SR-B1 is a suitable pharmacology target to enhance cancer immunotherapy based on IFNα and oncolytic viruses.
Collapse
Affiliation(s)
- Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Jessica Fioravanti
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Vladimir Paredes
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain; Centro Médico Nacional La Raza, IMSS, México DF, Mexico
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Veronica Fernandez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Miriam Méndez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Estanislao Nistal-Villan
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Esther Larrea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, Spain; Instituto de Salud Tropical, University of Navarra, Pamplona, Navarra, Spain
| | - Qinshan Gao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Gloria Gonzalez-Aseguinolaza
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Jesus Prieto
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA) , Pamplona, Navarra, Spain
| |
Collapse
|
49
|
Sparks SM, Zhou H, Generaux C, Harston L, Moncol D, Jayawickreme C, Parham J, Condreay P, Rimele T. Identification of nonabsorbable inhibitors of the scavenger receptor-BI (SR-BI) for tissue-specific administration. Bioorg Med Chem Lett 2016; 26:1901-4. [PMID: 26988301 DOI: 10.1016/j.bmcl.2016.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The identification of a low-permeability scavenger receptor BI (SR-BI) inhibitor starting from the ITX-5061 template is described. Structure-activity and structure-permeability relationships were assessed for analogs leading to the identification of compound 8 as a potent and nonabsorbable SR-BI inhibitor.
Collapse
Affiliation(s)
- Steven M Sparks
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States.
| | - Huiqiang Zhou
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Claudia Generaux
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Lindsey Harston
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - David Moncol
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Channa Jayawickreme
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Janet Parham
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Patrick Condreay
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| | - Thomas Rimele
- GlaxoSmithKline, Enteroendocrine Discovery Performance Unit and Platform Technology and Science, 5 Moore Drive, Research Triangle Park, NC 27709, United States
| |
Collapse
|
50
|
HepG2 cells biospecific extraction and HPLC-ESI-MS analysis for screening potential antiatherosclerotic active components in Bupeuri radix. J Pharm Biomed Anal 2016; 121:56-62. [DOI: 10.1016/j.jpba.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 11/19/2022]
|