1
|
Liao X, Li Q, Yang H, Sun Q. A Case of a Patient With MYH2-Associated Myopathy Presenting With a Chief Complaint of Hand Tremor. Tremor Other Hyperkinet Mov (N Y) 2024; 14:50. [PMID: 39372444 PMCID: PMC11451540 DOI: 10.5334/tohm.932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Background Postural tremor is an uncommon and often overlooked phenotype in skeletal myopathy, which may lead to diagnostic delays. Case report A 21-year-old man presented with adolescent onset postural hand tremor as the initial symptom, followed by mild limb muscle weakness. Neurological examination showed restricted ocular motility without diplopia and myopathic facial appearance. A muscle biopsy showed a decrease in type 2A fibers. Whole-exome sequencing identified two novel compound heterozygous variants in MYH2 gene (NM_017534.6): c.505+2T>C and c.3565 del C. The diagnosis was further validated via bioinformatics analysis and confirmed through familial co-segregation by Sanger sequencing. Discussion This report expands the mutational and phenotypic spectrum of MYH2-associated myopathy. We suggest that in the differential diagnosis of tremor, besides common neurogenic causes, myogenic etiology should also be considered. Highlights Hand tremor in this case expands the phenotype of MYH2-associated myopathy, enhancing our understanding of tremor origins. It underscores the importance of nuanced clinical assessment and genetic screening in complex tremor disorders.
Collapse
Affiliation(s)
- Xinxin Liao
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
2
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
3
|
Maniyar AMH, Singh RK, Ojha PT, Chaudhary GS, Mahto AP, Shah AG. Myosin Myopathy Presenting as Chronic Progressive External Ophthalmoplegia. Ann Indian Acad Neurol 2023; 26:1024-1025. [PMID: 38229656 PMCID: PMC10789400 DOI: 10.4103/aian.aian_552_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Aamna M. H. Maniyar
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Rakesh K. Singh
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Pawan T. Ojha
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Gaurav S. Chaudhary
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Anuradha P. Mahto
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| | - Arjun G. Shah
- Department of Neurology, Grant Government Medical College and J. J. Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Cassini TA, Malicdan MCV, Macnamara EF, Lehky T, Horkayne-Szakaly I, Huang Y, Jones R, Godfrey R, Wolfe L, Gahl WA, Toro C. MYH2-associated myopathy caused by a novel splice-site variant. Neuromuscul Disord 2023; 33:257-262. [PMID: 36774715 PMCID: PMC10023425 DOI: 10.1016/j.nmd.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
MYH2 encodes MyHCIIa, a myosin heavy chain found in fast type 2A fibers. Pathogenic variants in this gene have previously been implicated in dominant and recessive forms of myopathy. Three individuals reported here are part of a family in which four generations of individuals are affected by a slowly progressive, predominantly proximal myopathy in an autosomal dominant inheritance pattern. Affected individuals in this family lacked classic features of an MYH2-associated myopathy such as congenital contractures and ophthalmoplegia. A novel variant, MYH2 c.5673+1G>C, was detected in the proband and subsequently found to segregate with disease in five additional family members. Further studies demonstrated that this variant affects splicing, resulting in novel transcripts. These data and muscle biopsy findings in the proband, indicate that this family's MYH2 variant is causative of their myopathy, adding to our understanding of the clinical and molecular characteristics of the disease.
Collapse
Affiliation(s)
- Thomas A Cassini
- Medical Genetics and Genomic Medicine Training Program, NIH, National Human Genome Research Institute (NHGRI), 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | - Ellen F Macnamara
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| | - Tanya Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Yan Huang
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| | - Robert Jones
- The Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, USA
| | - Rena Godfrey
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| | - Lynne Wolfe
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| | - William A Gahl
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA
| | - Camilo Toro
- Common Fund, NIH, NIH Undiagnosed Diseases Program, Bethesda, MD, USA
| |
Collapse
|
5
|
Scelsi HF, Hill KR, Barlow BM, Martin MD, Lieberman RL. Quantitative differentiation of benign and misfolded glaucoma-causing myocilin variants on the basis of protein thermal stability. Dis Model Mech 2023; 16:dmm049816. [PMID: 36579626 PMCID: PMC9844228 DOI: 10.1242/dmm.049816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/28/2022] [Indexed: 12/30/2022] Open
Abstract
Accurate predictions of the pathogenicity of mutations associated with genetic diseases are key to the success of precision medicine. Inherited missense mutations in the myocilin (MYOC) gene, within its olfactomedin (OLF) domain, constitute the strongest genetic link to primary open-angle glaucoma via a toxic gain of function, and thus MYOC is an attractive precision-medicine target. However, not all mutations in MYOC cause glaucoma, and common variants are expected to be neutral polymorphisms. The Genome Aggregation Database (gnomAD) lists ∼100 missense variants documented within OLF, all of which are relatively rare (allele frequency <0.001%) and nearly all are of unknown pathogenicity. To distinguish disease-causing OLF variants from benign OLF variants, we first characterized the most prevalent population-based variants using a suite of cellular and biophysical assays, and identified two variants with features of aggregation-prone familial disease variants. Next, we considered all available biochemical and clinical data to demonstrate that pathogenic and benign variants can be differentiated statistically based on a single metric: the thermal stability of OLF. Our results motivate genotyping MYOC in patients for clinical monitoring of this widespread, painless and irreversible ocular disease.
Collapse
Affiliation(s)
- Hailee F. Scelsi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| | - Kamisha R. Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| | - Brett M. Barlow
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| | - Mackenzie D. Martin
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400, USA
| |
Collapse
|
6
|
Hedberg-Oldfors C, Elíasdóttir Ó, Geijer M, Lindberg C, Oldfors A. Dominantly inherited myosin IIa myopathy caused by aberrant splicing of MYH2. BMC Neurol 2022; 22:428. [PMCID: PMC9664609 DOI: 10.1186/s12883-022-02935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Myosin heavy chain (MyHC) isoforms define the three major muscle fiber types in human extremity muscles. Slow beta/cardiac MyHC (MYH7) is expressed in type 1 muscle fibers. MyHC IIa (MYH2) and MyHC IIx (MYH1) are expressed in type 2A and 2B fibers, respectively. Whereas recessive MyHC IIa myopathy has been described in many cases, myopathy caused by dominant MYH2 variants is rare and has been described with clinical manifestations and muscle pathology in only one family and two sporadic cases.
Methods
We investigated three patients from one family with a dominantly inherited myopathy by clinical investigation, whole-genome sequencing, muscle biopsy, and magnetic resonance imaging (MRI).
Results
Three siblings, one woman and two men now 54, 56 and 66 years old, had experienced muscle weakness initially affecting the lower limbs from young adulthood. They have now generalized proximal muscle weakness affecting ambulation, but no ophthalmoplegia. Whole-genome sequencing identified a heterozygous MYH2 variant, segregating with the disease in the three affected individuals: c.5673 + 1G > C. Analysis of cDNA confirmed the predicted splicing defect with skipping of exon 39 and loss of residues 1860–1891 in the distal tail of the MyHC IIa, largely overlapping with the filament assembly region (aa1877–1905). Muscle biopsy in two of the affected individuals showed prominent type 1 muscle fiber predominance with only a few very small, scattered type 2A fibers and no type 2B fibers. The small type 2A fibers were frequently hybrid fibers with either slow MyHC or embryonic MyHC expression. The type 1 fibers showed variation in fiber size, internal nuclei and some structural alterations. There was fatty infiltration, which was also demonstrated by MRI.
Conclusion
Dominantly inherited MyHC IIa myopathy due to a splice defect causing loss of amino acids 1860–1891 in the distal tail of the MyHC IIa protein including part of the assembly competence domain. The myopathy is manifesting with slowly progressive muscle weakness without overt ophthalmoplegia and markedly reduced number and size of type 2 fibers.
Collapse
|
7
|
Kim HJ, Mohassel P, Donkervoort S, Guo L, O'Donovan K, Coughlin M, Lornage X, Foulds N, Hammans SR, Foley AR, Fare CM, Ford AF, Ogasawara M, Sato A, Iida A, Munot P, Ambegaonkar G, Phadke R, O'Donovan DG, Buchert R, Grimmel M, Töpf A, Zaharieva IT, Brady L, Hu Y, Lloyd TE, Klein A, Steinlin M, Kuster A, Mercier S, Marcorelles P, Péréon Y, Fleurence E, Manzur A, Ennis S, Upstill-Goddard R, Bello L, Bertolin C, Pegoraro E, Salviati L, French CE, Shatillo A, Raymond FL, Haack TB, Quijano-Roy S, Böhm J, Nelson I, Stojkovic T, Evangelista T, Straub V, Romero NB, Laporte J, Muntoni F, Nishino I, Tarnopolsky MA, Shorter J, Bönnemann CG, Taylor JP. Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nat Commun 2022; 13:2306. [PMID: 35484142 PMCID: PMC9050844 DOI: 10.1038/s41467-022-30015-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin β2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.
Collapse
Affiliation(s)
- Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Payam Mohassel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lin Guo
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Xaviere Lornage
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Nicola Foulds
- Wessex Clinical Genetics Services, Princess Anne Hospital, Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, England
| | - Simon R Hammans
- Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | - A Reghan Foley
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Charlotte M Fare
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Alice F Ford
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Aki Sato
- Department of Neurology, Niigata City General Hospital, Niigata, Japan
| | | | - Pinki Munot
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Gautam Ambegaonkar
- Department of Paediatric Neurology, Cambridge University Hospital NHS Trust, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - Rahul Phadke
- Division of Neuropathology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery London, UK and Division of Neuropathology, UCL Institute of Neurology, Dubowitz Neuromuscular Centre, London, UK
| | - Dominic G O'Donovan
- Department of Histopathology Box 235, Level 5 John Bonnett Clinical Laboratories Addenbrooke's Hospital, Cambridge, UK
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Irina T Zaharieva
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Lauren Brady
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Ying Hu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea Klein
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Pediatric Neurology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alice Kuster
- Department of Neurometabolism, University Hospital of Nantes, Nantes, France
| | - Sandra Mercier
- CHU Nantes, Service de génétique médicale, Centre de Référence des Maladies Neuromusculaires AOC, 44000, Nantes, France
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Pascale Marcorelles
- Service d'anatomopathologie, CHU Brest and EA 4685 LIEN, Université de Bretagne Occidentale, Brest, France
| | - Yann Péréon
- CHU de Nantes, Centre de Référence des Maladies Neuromusculaires, Filnemus, Euro-NMD, Hôtel-Dieu, Nantes, France
| | - Emmanuelle Fleurence
- Etablissement de Santé pour Enfants et Adolescents de la région Nantaise, Nantes, France
| | - Adnan Manzur
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rosanna Upstill-Goddard
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Bello
- Department of Neurosciences, DNS, University of Padova, Padova, Italy
| | - Cinzia Bertolin
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, IRP Città della Speranza, Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, DNS, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, CIR-Myo Myology Center, University of Padova, IRP Città della Speranza, Padova, Italy
| | | | - Andriy Shatillo
- Institute of Neurology, Psychiatry and Narcology of NAMS of Ukraine, Kharkiv, Ukraine
| | - F Lucy Raymond
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Susana Quijano-Roy
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Johann Böhm
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Isabelle Nelson
- Sorbonne Université, INSERM, Centre of Research in Myology, UMRS974, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Teresinha Evangelista
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Norma B Romero
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - James Shorter
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
8
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
9
|
Ogasawara M, Nishino I. A review of core myopathy: central core disease, multiminicore disease, dusty core disease, and core-rod myopathy. Neuromuscul Disord 2021; 31:968-977. [PMID: 34627702 DOI: 10.1016/j.nmd.2021.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Core myopathies are clinically, pathologically, and genetically heterogeneous muscle diseases. Their onset and clinical severity are variable. Core myopathies are diagnosed by muscle biopsy showing focally reduced oxidative enzyme activity and can be pathologically divided into central core disease, multiminicore disease, dusty core disease, and core-rod myopathy. Although RYR1-related myopathy is the most common core myopathy, an increasing number of other causative genes have been reported, including SELENON, MYH2, MYH7, TTN, CCDC78, UNC45B, ACTN2, MEGF10, CFL2, KBTBD13, and TRIP4. Furthermore, the genes originally reported to cause nemaline myopathy, namely ACTA1, NEB, and TNNT1, have been recently associated with core-rod myopathy. Genetic analysis allows us to diagnose each core myopathy more accurately. In this review, we aim to provide up-to-date information about core myopathies.
Collapse
Affiliation(s)
- Masashi Ogasawara
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan; Department of Pediatrics, Showa General Hospital, Tokyo, Kodaira, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Tremor is a common neurological symptom with a plethora of potential etiologies. Apart from physiological tremor, the vast majority of tremor syndromes are linked to a pacemaker in the central nervous system (CNS) or, less common, in the peripheral nervous system. Myogenic tremor is a novel tremor entity, first reported in 2019 and believed to originate in the muscle itself. In this review, we describe the clinical properties of myogenic tremor and discuss its presumed pathogenesis on the basis of all of the patient cases published so far. RECENT FINDINGS Myogenic tremor manifests itself as a high frequency, postural, and kinetic tremor with onset in infancy. To date, only myopathies affecting the contractile elements, in particular myosin and a myosin-associated protein, have been recognized to feature myogenic tremor. The generator of the tremor is believed to be located in the sarcomere, with propagation and amplification of sarcomeric oscillatory activity through CNS reflex loops, similar to neuropathic tremor. SUMMARY True myogenic tremor must be distinguished from centrally mediated tremor due to myopathies with central nervous system involvement, i.e., mitochondrial myopathies or myotonic dystrophies. The presence of myogenic tremor strongly points toward a sarcomere-associated mutation and may thus be a valuable clinical tool for the differential diagnosis of myopathies.
Collapse
|
11
|
Gargey A, Iragavarapu SB, Grdzelishvili AV, Nesmelov YE. Electrostatic interactions in the SH1-SH2 helix of human cardiac myosin modulate the time of strong actomyosin binding. J Muscle Res Cell Motil 2021; 42:137-147. [PMID: 32929610 PMCID: PMC7956043 DOI: 10.1007/s10974-020-09588-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Two single mutations, R694N and E45Q, were introduced in the beta isoform of human cardiac myosin to remove permanent salt bridges E45:R694 and E98:R694 in the SH1-SH2 helix of the myosin head. Beta isoform-specific bridges E45:R694 and E98:R694 were discovered in the molecular dynamics simulations of the alpha and beta myosin isoforms. Alpha and beta isoforms exhibit different kinetics, ADP dissociates slower from actomyosin containing beta myosin isoform, therefore, beta myosin stays strongly bound to actin longer. We hypothesize that the electrostatic interactions in the SH1-SH2 helix modulate the affinity of ADP to actomyosin, and therefore, the time of the strong actomyosin binding. Wild type and the mutants of the myosin head construct (1-843 amino acid residues) were expressed in differentiated C2C12 cells, and the duration of the strongly bound state of actomyosin was characterized using transient kinetics spectrophotometry. All myosin constructs exhibited a fast rate of ATP binding to actomyosin and a slow rate of ADP dissociation, showing that ADP release limits the time of the strongly bound state of actomyosin. The mutant R694N showed a faster rate of ADP release from actomyosin, compared to the wild type and the E45Q mutant, thus indicating that electrostatic interactions within the SH1-SH2 helix region of human cardiac myosin modulate ADP release and thus, the duration of the strongly bound state of actomyosin.
Collapse
Affiliation(s)
- Akhil Gargey
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
- Department of Biological Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Shiril Bhardwaj Iragavarapu
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Alexander V Grdzelishvili
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA.
| |
Collapse
|
12
|
Madigan NN, Polzin MJ, Cui G, Liewluck T, Alsharabati MH, Klein CJ, Windebank AJ, Mer G, Milone M. Filamentous tangles with nemaline rods in MYH2 myopathy: a novel phenotype. Acta Neuropathol Commun 2021; 9:79. [PMID: 33926564 PMCID: PMC8082902 DOI: 10.1186/s40478-021-01168-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022] Open
Abstract
The MYH2 gene encodes the skeletal muscle myosin heavy chain IIA (MyHC-IIA) isoform, which is expressed in the fast twitch type 2A fibers. Autosomal dominant or recessive pathogenic variants in MYH2 lead to congenital myopathy clinically featured by ophthalmoparesis and predominantly proximal weakness. MYH2-myopathy is pathologically characterized by loss and atrophy of type 2A fibers. Additional myopathological abnormalities have included rimmed vacuoles containing small p62 positive inclusions, 15–20 nm tubulofilaments, minicores and dystrophic changes. We report an adult patient with late-pediatric onset MYH2-myopathy caused by two heterozygous pathogenic variants: c.3331C>T, p.Gln1111* predicted to result in truncation of the proximal tail region of MyHC-IIA, and c.1546T>G, p.Phe516Val, affecting a highly conserved amino acid within the highly conserved catalytic motor head relay loop. This missense variant is predicted to result in a less compact loop domain and in turn could affect the protein affinity state. The patient’s genotype is accompanied by a novel myopathological phenotype characterized by centralized large myofilamentous tangles associated with clusters of nemaline rods, and ring fibers, in addition to the previously reported rimmed vacuoles, paucity and atrophy of type 2A fibers. Electron microscopy demonstrated wide areas of disorganized myofibrils which were oriented in various planes of direction and entrapped multiple nemaline rods, as corresponding to the large tangles with rods seen on light microscopy. Nemaline rods were rarely observed also in nuclei. We speculate that the mutated MyHC-IIA may influence myofibril disorganization. While nemaline rods have been described in myopathies caused by pathogenic variants in genes encoding several sarcomeric proteins, to our knowledge, nemaline rods have not been previously described in MYH2-myopathy.
Collapse
|
13
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
15
|
Parker F, Peckham M. Disease mutations in striated muscle myosins. Biophys Rev 2020; 12:887-894. [PMID: 32651905 PMCID: PMC7429545 DOI: 10.1007/s12551-020-00721-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023] Open
Abstract
Over 1000 disease-causing missense mutations have been found in human β-cardiac, α-cardiac, embryonic and adult fast myosin 2a myosin heavy chains. Most of these are found in human β-cardiac myosin heavy chain. Mutations in β-cardiac myosin cause hypertrophic cardiomyopathy predominantly, whereas those in α-cardiac are associated with many types of heart disease, of which the most common is dilated cardiomyopathy. Mutations in embryonic and fast myosin 2a affect skeletal muscle function. This review provides a short overview of the mutations in the different myosin isoforms and their disease-causing effects.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
16
|
Telese R, Pagliarani S, Lerario A, Ciscato P, Fagiolari G, Cassandrini D, Grimoldi N, Conte G, Cinnante C, Santorelli FM, Comi GP, Sciacco M, Peverelli L. MYH2 myopathy, a new case expands the clinical and pathological spectrum of the recessive form. Mol Genet Genomic Med 2020; 8:e1320. [PMID: 32578970 PMCID: PMC7507101 DOI: 10.1002/mgg3.1320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background Hereditary myosin myopathies are a group of rare muscle disorders, caused by mutations in genes encoding for skeletal myosin heavy chains (MyHCs). MyHCIIa is encoded by MYH2 and is expressed in fast type 2A and 2B muscle fibers. MYH2 mutations are responsible for an autosomal dominant (AD) progressive myopathy, characterized by the presence of rimmed vacuoles and by a reduction in the number and size of type 2A fibers, and a recessive early onset myopathy characterized by complete loss of type 2A fibers. Recently, a patient with a homozygous mutation but presenting a dominant phenotype has been reported. Methods The patient was examined thoroughly and two muscle biopsies were performed through the years. NGS followed by confirmation in Sanger sequencing was used to identify the genetic cause. Results We describe the second case presenting with late‐onset ophthalmoparesis, ptosis, diffuse muscle weakness, and histopathological features typical for AD forms but with a recessive MYH2 genotype. Conclusion This report contributes to expand the clinical and genetic spectrum of MYH2 myopathies and to increase the awareness of these very rare diseases.
Collapse
Affiliation(s)
- Roberta Telese
- Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Serena Pagliarani
- Dino Ferrari Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alberto Lerario
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Ciscato
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gigliola Fagiolari
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Nadia Grimoldi
- University of Milan, Neurosurgey Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Claudia Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Giacomo P Comi
- Dino Ferrari Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Peverelli
- Neuromuscular and Rare diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
17
|
Hellerschmied D, Lehner A, Franicevic N, Arnese R, Johnson C, Vogel A, Meinhart A, Kurzbauer R, Deszcz L, Gazda L, Geeves M, Clausen T. Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin. Nat Commun 2019; 10:4781. [PMID: 31636255 PMCID: PMC6803673 DOI: 10.1038/s41467-019-12667-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Myosin is a motor protein that is essential for a variety of processes ranging from intracellular transport to muscle contraction. Folding and assembly of myosin relies on a specific chaperone, UNC-45. To address its substrate-targeting mechanism, we reconstitute the interplay between Caenorhabditis elegans UNC-45 and muscle myosin MHC-B in insect cells. In addition to providing a cellular chaperone assay, the established system enabled us to produce large amounts of functional muscle myosin, as evidenced by a biochemical and structural characterization, and to directly monitor substrate binding to UNC-45. Data from in vitro and cellular chaperone assays, together with crystal structures of binding-deficient UNC-45 mutants, highlight the importance of utilizing a flexible myosin-binding domain. This so-called UCS domain can adopt discrete conformations to efficiently bind and fold substrate. Moreover, our data uncover the molecular basis of temperature-sensitive UNC-45 mutations underlying one of the most prominent motility defects in C. elegans. Myosin, a motor protein essential for intracellular transport to muscle contraction, requires a chaperone UNC-45 for folding and assembly. Here authors use in vitro reconstitution and structural biology to characterize the interplay between UNC-45 and muscle myosin MHC-B.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Essen, Germany.
| | | | - Nina Franicevic
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Renato Arnese
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Chloe Johnson
- School of Biosciences, University of Kent, Canterbury, UK
| | - Antonia Vogel
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, UK
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. .,Medical University Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Sarcomeric myopathies associated with tremor: new insights and perspectives. J Muscle Res Cell Motil 2019; 41:285-295. [PMID: 31620961 DOI: 10.1007/s10974-019-09559-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022]
Abstract
Myopathies are a large and heterogeneous group of disorders associated with mutations in structural and regulatory genes responsible for proper muscle assembly, organization and function. Despite the molecular diversity of inherited myopathies, they have historically been classified by the phenotypic traits observed in affected patients. It is therefore common for myopathies originating from mutations in different genes to be grouped together due to similar physical manifestations, and conversely myopathies resulting from mutations in the same gene to be considered separately due to disparate symptoms. Herein, we focus on an early onset myopathy linked to inherited or de novo mutations in sarcomeric genes that is characterized by muscle weakness, hypotonia and tremor, and further highlight that it may constitute a new form of myopathy, with tremor as its defining feature. Based on recent reports, we also discuss the possible myogenic origin of the tremor that may start at the level of the sarcomere due to structural and/or contractile alterations occurring as a result of the identified mutations. It is our hope that establishment of this form of myopathy accompanied by myogenic tremor as a new disease entity will have important diagnostic and therapeutic implications.
Collapse
|
19
|
Stavusis J, Lace B, Schäfer J, Geist J, Inashkina I, Kidere D, Pajusalu S, Wright NT, Saak A, Weinhold M, Haubenberger D, Jackson S, Kontrogianni-Konstantopoulos A, Bönnemann CG. Novel mutations in MYBPC1 are associated with myogenic tremor and mild myopathy. Ann Neurol 2019; 86:129-142. [PMID: 31025394 DOI: 10.1002/ana.25494] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To define a distinct, dominantly inherited, mild skeletal myopathy associated with prominent and consistent tremor in two unrelated, three-generation families. METHODS Clinical evaluations as well as exome and panel sequencing analyses were performed in affected and nonaffected members of two families to identify genetic variants segregating with the phenotype. Histological assessment of a muscle biopsy specimen was performed in 1 patient, and quantitative tremor analysis was carried out in 2 patients. Molecular modeling studies and biochemical assays were performed for both mutations. RESULTS Two novel missense mutations in MYBPC1 (p.E248K in family 1 and p.Y247H in family 2) were identified and shown to segregate perfectly with the myopathy/tremor phenotype in the respective families. MYBPC1 encodes slow myosin binding protein-C (sMyBP-C), a modular sarcomeric protein playing structural and regulatory roles through its dynamic interaction with actin and myosin filaments. The Y247H and E248K mutations are located in the NH2 -terminal M-motif of sMyBP-C. Both mutations result in markedly increased binding of the NH2 terminus to myosin, possibly interfering with normal cross-bridge cycling as the first muscle-based step in tremor genesis. The clinical tremor features observed in all mutation carriers, together with the tremor physiology studies performed in family 2, suggest amplification by an additional central loop modulating the clinical tremor phenomenology. INTERPRETATION Here, we link two novel missense mutations in MYBPC1 with a dominant, mild skeletal myopathy invariably associated with a distinctive tremor. The molecular, genetic, and clinical studies are consistent with a unique sarcomeric origin of the tremor, which we classify as "myogenic tremor." ANN NEUROL 2019.
Collapse
Affiliation(s)
- Janis Stavusis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Baiba Lace
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Centre Hospitalier Universitaire de Québec, Ville de Québec, QC, Canada
| | - Jochen Schäfer
- Department of Neurology-Uniklinikum CG Carus, Dresden, Germany
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dita Kidere
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA
| | - Annika Saak
- Department of Neurology-Uniklinikum CG Carus, Dresden, Germany
| | - Manja Weinhold
- Department of Neurology-Uniklinikum CG Carus, Dresden, Germany
| | - Dietrich Haubenberger
- Clinical Trials Unit, Office of the Clinical Director, NINDS Intramural Research Program, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Sandra Jackson
- Department of Neurology-Uniklinikum CG Carus, Dresden, Germany
| | | | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| |
Collapse
|
20
|
Ravenscroft G, Zaharieva IT, Bortolotti CA, Lambrughi M, Pignataro M, Borsari M, Sewry CA, Phadke R, Haliloglu G, Ong R, Goullée H, Whyte T, Consortium UK, Manzur A, Talim B, Kaya U, Osborn DPS, Forrest ARR, Laing NG, Muntoni F. Bi-allelic mutations in MYL1 cause a severe congenital myopathy. Hum Mol Genet 2019; 27:4263-4272. [PMID: 30215711 DOI: 10.1093/hmg/ddy320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, ∼50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain (ELC) in both probands. A homozygous essential splice acceptor variant (c.479-2A > G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modelling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin ELC is critical for myofibre development and function. Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with severe congenital myopathy.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Irina T Zaharieva
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Carlo A Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Lambrughi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Caroline A Sewry
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Rahul Phadke
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Goknur Haliloglu
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Royston Ong
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Hayley Goullée
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Tamieka Whyte
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | | | - Adnan Manzur
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Beril Talim
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Ulkuhan Kaya
- Department of Pediatric Neurology, Dr. Sami Ulus Maternity and Children's Research and Training Hospital, Ministry of Health, Ankara, Turkey
| | - Daniel P S Osborn
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, University College London Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
21
|
Argov Z. Neuromuscular disorders in Israel: A model country for ethnic clusters. Neuromuscul Disord 2019; 29:269-273. [DOI: 10.1016/j.nmd.2019.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 783] [Impact Index Per Article: 156.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
23
|
Chen N, Shen N, Yu Y, Chen C, Li X, Liang J, Yang Y, Du Q. Clinical remission of myopathy with MYH2 deficiency after precision medicine-developed rehabilitation: a case report. Am J Transl Res 2018; 10:3827-3832. [PMID: 30662633 PMCID: PMC6291703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Here, we describe the case of a motor developmental disorder associated with intellectual disability accompanied by MYH2 mutations (c.2266G>A and c.4258C>T) in a female child in China. Her initial detailed functional rehabilitation evaluation gauged motor skills, balance, verbal language, and daily living skills. A general therapy plan was then established to enhance balance, muscle strength in the lower extremities, walking, gross and fine motor function, and family education. Clinicians and therapists later modified her rehabilitation regimen after her MYH2 mutations were identified by adding specific mobility and endurance exercise to the original plan. The clinical remission of myopathy with MYH2 missense mutations was observed in the patient after this targeted rehabilitation, indicating that precision therapy is very effective for developing a suitable rehabilitation program for patients with unexplained myopathies.
Collapse
Affiliation(s)
- Nan Chen
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
- Department of Rehabilitation Medicine, Chongming Branch of Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 202150, China
- Key Laboratory of Exercise and Health Sciences, Ministry of Education, Shanghai University of SportShanghai 200438, China
| | - Nan Shen
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Chen Chen
- Shanghai University of SportShanghai 200438, China
| | - Xin Li
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Juping Liang
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| | - Yuqi Yang
- School of Nursing and Health Management, Shanghai University of Medicine and Health SciencesShanghai 201318, China
| | - Qing Du
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200092, China
| |
Collapse
|
24
|
Valberg SJ, Henry ML, Perumbakkam S, Gardner KL, Finno CJ. An E321G MYH1 mutation is strongly associated with nonexertional rhabdomyolysis in Quarter Horses. J Vet Intern Med 2018; 32:1718-1725. [PMID: 30079499 PMCID: PMC6189380 DOI: 10.1111/jvim.15299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND An E321G mutation in MYH1 was recently identified in Quarter Horses (QH) with immune-mediated myositis (IMM) defined by a phenotype of gross muscle atrophy and myofiber lymphocytic infiltrates. HYPOTHESIS/OBJECTIVES We hypothesized that the MYH1 mutation also was associated with a phenotype of nonexertional rhabdomyolysis. The objective of this study was to determine the prevalence of the MYH1 mutation in QH with exertional (ER) and nonexertional (nonER) rhabdomyolysis. ANIMALS Quarter Horses: 72 healthy controls, 85 ER-no atrophy, 56 ER-atrophy, 167 nonER horses selected regardless of muscle atrophy. METHODS Clinical and histopathologic information and DNA was obtained from a database for (1) ER > 2 years of age, with or without atrophy and (2) nonER creatine kinase (CK) ≥ 5000 U/L, <5 years of age. Horses were genotyped for E321G MYH1 by pyrosequencing. RESULTS The MYH1 mutation was present in a similar proportion of ER-no atrophy (1/56; 2%) and in a higher proportion of ER-atrophy (25/85; 29%) versus controls (4/72; 5%). The MYH1 mutation was present in a significantly higher proportion of nonER (113/165; 68%) than controls either in the presence (39/42; 93%) or in absence (72/123; 59%) of gross atrophy. Lymphocytes were present in <18% of muscle samples with the MYH1 mutation. CONCLUSIONS AND CLINICAL IMPORTANCE Although not associated with ER, the MYH1 mutation is associated with atrophy after ER. The MYH1 mutation is highly associated with nonER regardless of whether muscle atrophy or lymphocytic infiltrates are present. Genetic testing will enhance the ability to diagnose MYH1 myopathies (MYHM) in QH.
Collapse
Affiliation(s)
- Stephanie J. Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichigan
| | - Marisa L. Henry
- McPhail Equine Performance Center, Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichigan
| | - Sudeep Perumbakkam
- McPhail Equine Performance Center, Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichigan
| | - Keri L. Gardner
- McPhail Equine Performance Center, Department of Large Animal Clinical SciencesMichigan State UniversityEast LansingMichigan
| | - Carrie J. Finno
- Department of Population Health and ReproductionUniversity of California‐DavisDavisCalifornia
| |
Collapse
|
25
|
Lu Y, Da YW, Zhang YB, Li XG, Wang M, Di L, Pang M, Lei L. Identification of the CFTR c.1666A>G Mutation in Hereditary Inclusion Body Myopathy Using Next-Generation Sequencing Analysis. Front Neurosci 2018; 12:329. [PMID: 29872374 PMCID: PMC5972215 DOI: 10.3389/fnins.2018.00329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022] Open
Abstract
Hereditary Inclusion Body Myopathy (HIBM) is a rare autosomal dominant or recessive adult onset muscle disease which affects one to three individuals per million worldwide. This disease is autosomal dominant or recessive and occurs in adulthood. Our previous study reported a new subtype of HIBM linked to the susceptibility locus at 7q22.1-31.1. The present study is aimed to identify the candidate gene responsible for the phenotype in HIBM pedigree. After multipoint linkage analysis, we performed targeted capture sequencing on 16 members and whole-exome sequencing (WES) on 5 members. Bioinformatics filtering was performed to prioritize the candidate pathogenic gene variants, which were further genotyped by Sanger sequencing. Our results showed that the highest peak of LOD score (4.70) was on chromosome 7q22.1-31.1.We identified 2 and 22 candidates using targeted capture sequencing and WES respectively, only one of which as CFTRc.1666A>G mutation was well cosegregated with the HIBM phenotype. Using transcriptome analysis, we did not detect the differences of CFTR's mRNA expression in the proband compared with healthy members. Due to low incidence of HIBM and there is no other pedigree to assess, mutation was detected in three patients with duchenne muscular dystrophyn (DMD) and five patients with limb-girdle muscular dystrophy (LGMD). And we found that the frequency of mutation detected in DMD and LGMD patients was higher than that of being expected in normal population. We suggested that the CFTRc.1666A>G may be a candidate marker which has strong genetic linkage with the causative gene in the HIBM family.
Collapse
Affiliation(s)
- Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Yu-Wei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Yong-Biao Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University Beijing, China
| | - Xin-Gang Li
- Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China.,School of Medical and Health Sciences, Edith Cowan University Joondalup, WA, Australia
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Mi Pang
- Department of Neurology, Zhengzhou University People's Hospital Zhengzhou, China
| | - Lin Lei
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| |
Collapse
|
26
|
Findlay AR, Harms MB, Pestronk A, Weihl CC. Homozygous recessive MYH2 mutation mimicking dominant MYH2 associated myopathy. Neuromuscul Disord 2018; 28:675-679. [PMID: 29934118 DOI: 10.1016/j.nmd.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/30/2018] [Accepted: 05/12/2018] [Indexed: 01/14/2023]
Abstract
Mutations in MYH2 that encodes myosin heavy chain IIa cause both dominant and recessively inherited myopathies. Patients with dominantly inherited MYH2 missense mutations present with ophthalmoplegia and progressive proximal limb weakness. Muscle biopsy reveals rimmed vacuoles and inclusions, prompting this entity to initially be described as hereditary inclusion body myopathy 3. In contrast, patients with recessive MYH2 mutations have early onset, non-progressive, diffuse weakness and ophthalmoplegia. Muscle biopsy reveals near or complete absence of type 2A fibers with no vacuole or inclusion pathology. We describe a patient with childhood onset ophthalmoplegia, progressive proximal muscle weakness beginning in adolescence, and muscle biopsy with myopathic changes and rimmed vacuoles. Although this patient's disease course and histopathology is consistent with dominant MYH2 mutations, whole exome sequencing revealed a c.737 G>A p.Arg246His homozygous MYH2 variant. These findings expand the clinical and pathologic phenotype of recessive MYH2 myopathies.
Collapse
Affiliation(s)
- Andrew R Findlay
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, United States
| | | | - Alan Pestronk
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, United States.
| |
Collapse
|
27
|
Sewry CA, Wallgren-Pettersson C. Myopathology in congenital myopathies. Neuropathol Appl Neurobiol 2018; 43:5-23. [PMID: 27976420 DOI: 10.1111/nan.12369] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022]
Abstract
Congenital myopathies are clinically and genetically a heterogeneous group of early onset neuromuscular disorders, characterized by hypotonia and muscle weakness. Clinical severity and age of onset are variable. Many patients are severely affected at birth while others have a milder, moderately progressive or nonprogressive phenotype. Respiratory weakness is a major clinical aspect that requires regular monitoring. Causative mutations in several genes have been identified that are inherited in a dominant, recessive or X-linked manner, or arise de novo. Muscle biopsies show characteristic pathological features such as nemaline rods/bodies, cores, central nuclei or caps. Small type 1 fibres expressing slow myosin are a common feature and may sometimes be the only abnormality. Small cores (minicores) devoid of mitochondria and areas showing variable myofibrillar disruption occur in several neuromuscular disorders including several forms of congenital myopathy. Muscle biopsies can also show more than one structural defect. There is considerable clinical, pathological and genetic overlap with mutations in one gene resulting in more than one pathological feature, and the same pathological feature being associated with defects in more than one gene. Increasing application of whole exome sequencing is broadening the clinical and pathological spectra in congenital myopathies, but pathology still has a role in clarifying the pathogenicity of gene variants as well as directing molecular analysis.
Collapse
Affiliation(s)
- C A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.,Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital, Oswestry, UK
| | - C Wallgren-Pettersson
- The Folkhälsan Institute of Genetics and the Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
A missense mutation in MYH1 is associated with susceptibility to immune-mediated myositis in Quarter Horses. Skelet Muscle 2018; 8:7. [PMID: 29510741 PMCID: PMC5838957 DOI: 10.1186/s13395-018-0155-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022] Open
Abstract
Background The cause of immune-mediated myositis (IMM), characterized by recurrent, rapid-onset muscle atrophy in Quarter Horses (QH), is unknown. The histopathologic hallmark of IMM is lymphocytic infiltration of myofibers. The purpose of this study was to identify putative functional variants associated with equine IMM. Methods A genome-wide association (GWA) study was performed on 36 IMM QHs and 54 breed matched unaffected QHs from the same environment using the Equine SNP50 and SNP70 genotyping arrays. Results A mixed model analysis identified nine SNPs within a ~ 2.87 Mb region on chr11 that were significantly (Punadjusted < 1.4 × 10− 6) associated with the IMM phenotype. Associated haplotypes within this region encompassed 38 annotated genes, including four myosin genes (MYH1, MYH2, MYH3, and MYH13). Whole genome sequencing of four IMM and four unaffected QHs identified a single segregating nonsynonymous E321G mutation in MYH1 encoding myosin heavy chain 2X. Genotyping of additional 35 IMM and 22 unaffected QHs confirmed an association (P = 2.9 × 10− 5), and the putative mutation was absent in 175 horses from 21 non-QH breeds. Lymphocytic infiltrates occurred in type 2X myofibers and the proportion of 2X fibers was decreased in the presence of inflammation. Protein modeling and contact/stability analysis identified 14 residues affected by the mutation which significantly decreased stability. Conclusions We conclude that a mutation in MYH1 is highly associated with susceptibility to the IMM phenotype in QH-related breeds. This is the first report of a mutation in MYH1 and the first link between a skeletal muscle myosin mutation and autoimmune disease. Electronic supplementary material The online version of this article (10.1186/s13395-018-0155-0) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol 2018; 14:151-167. [PMID: 29391587 DOI: 10.1038/nrneurol.2017.191] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The congenital myopathies are a group of early-onset, non-dystrophic neuromuscular conditions with characteristic muscle biopsy findings, variable severity and a stable or slowly progressive course. Pronounced weakness in axial and proximal muscle groups is a common feature, and involvement of extraocular, cardiorespiratory and/or distal muscles can implicate specific genetic defects. Central core disease (CCD), multi-minicore disease (MmD), centronuclear myopathy (CNM) and nemaline myopathy were among the first congenital myopathies to be reported, and they still represent the main diagnostic categories. However, these entities seem to belong to a much wider phenotypic spectrum. To date, congenital myopathies have been attributed to mutations in over 20 genes, which encode proteins implicated in skeletal muscle Ca2+ homeostasis, excitation-contraction coupling, thin-thick filament assembly and interactions, and other mechanisms. RYR1 mutations are the most frequent genetic cause, and CCD and MmD are the most common subgroups. Next-generation sequencing has vastly improved mutation detection and has enabled the identification of novel genetic backgrounds. At present, management of congenital myopathies is largely supportive, although new therapeutic approaches are reaching the clinical trial stage.
Collapse
|
30
|
Tsabari R, Daum H, Kerem E, Fellig Y, Dor T. Congenital myopathy due to myosin heavy chain 2 mutation presenting as chronic aspiration pneumonia in infancy. Neuromuscul Disord 2017; 27:947-950. [PMID: 28729039 DOI: 10.1016/j.nmd.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022]
Abstract
A 7-week-old infant presented with persistent noisy breathing and aspirations during swallowing. Neurological examination and brain MRI were normal. His 12-year-old brother underwent pneumonectomy at the age of 10 years due to recurrent aspirations leading to severe lung damage. The older brother developed subsequently ophthalmoplegia and nystagmus along with mild weakness of the neck flexors and proximal muscles. Exome analysis revealed homozygosity for a novel truncating mutation p.G800fs27* in the Myosin Heavy Chain 2 (MYH2) gene in both brothers, while parents and an unaffected sibling were heterozygous. A muscle biopsy from the older brother showed absence of type-2 muscle fibers and predominance of type-1 fibers. The aspirations causing pneumonia likely result from weakness of the laryngeal muscles, normally rich in type-2 fibers. The findings expand the phenotypic spectrum of MYH2 deficiency. MYH2 mutations should be included in the differential diagnosis of infants presenting with recurrent aspirations.
Collapse
Affiliation(s)
- R Tsabari
- Department of Pediatrics, Pediatric Pulmonology and Cystic Fibrosis Center, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - H Daum
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - E Kerem
- Department of Pediatrics, Pediatric Pulmonology and Cystic Fibrosis Center, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - Y Fellig
- Department of Pathology, Hadassah-Hebrew-University-Medical-Center Jerusalem, Israel
| | - T Dor
- Neuropediatric Unit, Hadassah-Hebrew University Medical Center Jerusalem, Israel.
| |
Collapse
|
31
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
32
|
Suggs JA, Melkani GC, Glasheen BM, Detor MM, Melkani A, Marsan NP, Swank DM, Bernstein SI. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects. Dis Model Mech 2017; 10:761-771. [PMID: 28258125 PMCID: PMC5483004 DOI: 10.1242/dmm.028050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/27/2017] [Indexed: 12/04/2022] Open
Abstract
Individuals with inclusion body myopathy type 3 (IBM3) display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K) in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in decreased in vitro motility, reduced muscle power output and focal myofibrillar disorganization similar to that seen in individuals with IBM3. Summary: Reduced muscle power output and progressive myofibrillar defects in a Drosophila model of inclusion body myopathy 3 arise from the decreased rate of weak to strong actin-binding transition of myosin.
Collapse
Affiliation(s)
- Jennifer A Suggs
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Girish C Melkani
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Bernadette M Glasheen
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Mia M Detor
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Anju Melkani
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| | - Nathan P Marsan
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Sanford I Bernstein
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA
| |
Collapse
|
33
|
Shibata K, Koyama T, Inde S, Iwai S, Chaen S. Mutations in the SH1 helix alter the thermal properties of myosin II. Biophys Physicobiol 2017. [PMID: 28630813 PMCID: PMC5468464 DOI: 10.2142/biophysico.14.0_67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The myosin II SH1 helix is a joint that links the converter subdomain to the rest of the myosin motor domain and possibly plays a key role in the arrangement of the converter/lever arm. Several point mutations within the SH1 helix in human myosin IIs have been shown to cause diseases. To reveal whether these SH1 helix mutations affect not only motile activities but also thermal properties of myosin II, here we introduced the E683K or R686C point mutation into the SH1 helix in Dictyostelium myosin II. Thermal inactivation as well as thermal aggregation rates of these mutant proteins demonstrated that these mutations decreased the thermal stability of myosin II. Temperature dependence of sliding velocities of actin filaments showed that these mutations also reduced the activation energy of a rate-limiting process involved in actin movement. Given that these mutations are likely to alter coupling between the subdomains, and thus their thermal fluctuations, we propose that the SH1 helix is a key structural element that determines the flexibility and thermal properties of the myosin motor. These characteristics of the SH1 helix may contribute to the pathogenesis of the human diseases caused by mutations within this structural element.
Collapse
Affiliation(s)
- Kotomi Shibata
- Department of Biosciences, College of Humanities and Sciences, Nihon University
| | - Tsubasa Koyama
- Department of Biosciences, College of Humanities and Sciences, Nihon University
| | - Shohei Inde
- Department of Biosciences, College of Humanities and Sciences, Nihon University
| | - Sosuke Iwai
- Department of Biology, Faculty of Education, Hirosaki University
| | - Shigeru Chaen
- Department of Biosciences, College of Humanities and Sciences, Nihon University
| |
Collapse
|
34
|
Hernández-Laín A, Esteban-Pérez J, Montenegro DC, Domínguez-González C. Myosin myopathy with external ophthalmoplegia associated with a novel homozygous mutation in MYH2. Muscle Nerve 2016; 55:E8-E10. [PMID: 27490141 DOI: 10.1002/mus.25365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Aurelio Hernández-Laín
- Servicio de Anatomía Patológica (Neuropatología) and Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain, Z.P., 28041.,Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Esteban-Pérez
- Unidad de Neuromuscular, Servicio de Neurología, Hospital Universitario 12 de Octubre de Madrid
| | - Diana Cantero Montenegro
- Servicio de Anatomía Patológica (Neuropatología) and Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain, Z.P., 28041.,Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Cristina Domínguez-González
- Instituto de Investigación I+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Unidad de Neuromuscular, Servicio de Neurología, Hospital Universitario 12 de Octubre de Madrid
| |
Collapse
|
35
|
Kazamel M, Sorenson EJ, Milone M. Clinical and Electrophysiological Findings in Hereditary Inclusion Body Myopathy Compared With Sporadic Inclusion Body Myositis. J Clin Neuromuscul Dis 2016; 17:190-196. [PMID: 27224433 DOI: 10.1097/cnd.0000000000000113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To compare the clinical and electrophysiological findings in hereditary inclusion body myopathy (hIBM) and sporadic inclusion body myositis (sIBM) patients. METHODS We retrospectively identified 8 genetically proven hIBM patients and 1 DNAJB6 myopathy with pathological features of hIBM, and compared their clinical, electromyographic, and serological data with a group of 51 pathologically proven sIBM patients. RESULTS hIBM patients had a younger mean age of onset (36 vs. 60 years, P = 0.0001). Diagnostic delay was shorter in sIBM (6 vs. 15 years, P = 0.0003). Wrist flexors (P = 0.02), digit flexors (P = 0.01), digit extensors (P = 0.02), and quadriceps (P = 0.008) muscles were more frequently affected in sIBM. Fibrillation potentials were more common in sIBM patients (P = 0.03). Electrical myotonia was found in 4 hIBM patients, not significantly different from sIBM patients (P = 0.45). Creatinine kinase was higher in sIBM patients (799 vs 232, P = 0.03). CONCLUSIONS sIBM and hIBM seem to have similar electromyographic changes. The combination of clinical, serological, and histopathological findings can guide genetic testing to the final diagnosis.
Collapse
|
36
|
Willis T, Hedberg-Oldfors C, Alhaswani Z, Kulshrestha R, Sewry C, Oldfors A. A novel MYH2 mutation in family members presenting with congenital myopathy, ophthalmoplegia and facial weakness. J Neurol 2016; 263:1427-33. [DOI: 10.1007/s00415-016-8154-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
|
37
|
Hong J, Park JS, Lee H, Jeong J, Hyeon Yun H, Yun Kim H, Ko YG, Lee JH. Myosin heavy chain is stabilized by BCL-2 interacting cell death suppressor (BIS) in skeletal muscle. Exp Mol Med 2016; 48:e225. [PMID: 27034027 PMCID: PMC4855277 DOI: 10.1038/emm.2016.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/09/2023] Open
Abstract
BCL-2 interacting cell death suppressor (BIS), which is ubiquitously expressed, has important roles in various cellular processes, such as apoptosis, the cellular stress response, migration and invasion and protein quality control. In particular, BIS is highly expressed in skeletal and cardiac muscles, and BIS gene mutations result in human myopathy. In this study, we show that mRNA and protein levels of BIS were markedly increased during skeletal myogenesis in C2C12 cells and mouse satellite cells. BIS knockdown did not prevent the early stage of skeletal myogenesis, but did induce muscle atrophy and a decrease in the diameter of myotubes. BIS knockdown significantly suppressed the expression level of myosin heavy chain (MyHC) without changing the expression levels of myogenic marker proteins, such as Mgn, Cav-3 and MG53. In addition, BIS endogenously interacted with MyHC, and BIS knockdown induced MyHC ubiquitination and degradation. From these data, we conclude that molecular association of MyHC and BIS is necessary for MyHC stabilization in skeletal muscle.
Collapse
Affiliation(s)
- Jin Hong
- Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jun-Sub Park
- Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hyun Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Yun Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Gyu Ko
- Tunneling Nanotube Research Center, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
38
|
Alazami AM, Kentab AY, Faqeih E, Mohamed JY, Alkhalidi H, Hijazi H, Alkuraya FS. A novel syndrome of Klippel-Feil anomaly, myopathy, and characteristic facies is linked to a null mutation in MYO18B. J Med Genet 2015; 52:400-4. [PMID: 25748484 DOI: 10.1136/jmedgenet-2014-102964] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/15/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND Klippel-Feil anomaly (KFA) can be seen in a number of syndromes. We describe an apparently novel syndromic association with KFA. METHODS Clinical phenotyping of two consanguineous families followed by combined autozygome/exome analysis. RESULTS Two patients from two apparently unrelated families shared a strikingly similar phenotype characterised by KFA, myopathy, mild short stature, microcephaly, and distinctive facies. They shared a single founder autozygous interval in which whole exome sequencing revealed a truncating mutation in MYO18B. There was virtually complete loss of the transcript in peripheral blood, indicative of nonsense-mediated decay. Electron microscopy of muscle confirms abnormal myosin filaments with accompanying myopathic changes. CONCLUSIONS Deficiency of MYO18B is linked to a novel developmental disorder which combines KFA with myopathy. This suggests a widespread developmental role for this gene in humans, as observed for its murine ortholog.
Collapse
Affiliation(s)
- Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Y Kentab
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric SubSpecialty, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jawahir Y Mohamed
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hisham Alkhalidi
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hadia Hijazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Krause S. Insights into muscle degeneration from heritable inclusion body myopathies. Front Aging Neurosci 2015; 7:13. [PMID: 25729363 PMCID: PMC4325924 DOI: 10.3389/fnagi.2015.00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/30/2015] [Indexed: 12/13/2022] Open
Abstract
Muscle mass and function are gradually lost in age-related, degenerative neuromuscular disorders, which also reflect the clinical hallmarks of sarcopenia. The consensus definition of sarcopenia includes a condition of age-related loss of muscle mass, quality, and strength. The most common acquired muscle disease affecting adults aged over 50 years is sporadic inclusion body myositis (sIBM). Besides inflammatory effects and immune-mediated muscle injury, degenerative myofiber changes are characteristic features of the disease. Although the earliest triggering events in sIBM remain elusive, a plethora of downstream mechanisms are implicated in the pathophysiology of muscle wasting. Although it remains controversial whether hereditary forms of inclusion body myopathy (IBM) may be considered as degenerative sIBM disease models, partial pathophysiological aspects can mimic the much more frequent sporadic condition, in particular the occurrence of inclusion bodies in skeletal muscle. Various clinical aspects in genetically determined skeletal muscle disorders reflect age-related alterations observed in sarcopenia. Several intriguing clues from monogenic defects in heritable IBMs contributing to the molecular basis of muscle loss will be discussed with special emphasis on inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and GNE myopathy. Finally, also the recently identified dominant multisystem proteinopathy will be considered, which may rarely present as IBM.
Collapse
Affiliation(s)
- Sabine Krause
- Laboratory for Molecular Myology, Department of Neurology, Friedrich Baur Institute, Ludwig Maximilians University , Munich , Germany
| |
Collapse
|
40
|
Cabrera-Serrano M, Fabian VA, Boutilier J, Wise C, Faiz F, Lamont PJ, Laing NG. Adult onset distal and proximal myopathy with complete ophthalmoplegia associated with a novel de novo p.(Leu1877Pro) mutation in MYH2. Clin Genet 2015; 88:573-8. [PMID: 25529940 DOI: 10.1111/cge.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/19/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
An MYH2 mutation p.(Glu706Lys) was originally described in a family with autosomal dominant inheritance, where the affected family members presented with multiple congenital contractures and ophthalmoplegia, progressing to a proximal myopathy in adulthood. Another patient with a dominant mutation p.(Leu1870Pro) was described, presenting as a congenital myopathy with ophthalmoplegia. Here, we present a patient with symptoms beginning at age 16 years, of prominent distal but also proximal weakness, bulbar involvement and ophthalmoplegia. Initially, clinically classified as oculopharyngodistal myopathy, the patient was found to carry a novel, de novo MYH2 mutation c.5630T>C p.(Leu1877Pro). This expands the phenotype of dominant MYH2 myopathies with the clinical phenotype overlapping the oculopharyngodistal myopathy spectrum.
Collapse
Affiliation(s)
- M Cabrera-Serrano
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - V A Fabian
- Section of Neuropathology, Department of Anatomical Pathology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - J Boutilier
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - C Wise
- Department of Diagnostic Genomics, Pathwest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - F Faiz
- Department of Diagnostic Genomics, Pathwest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - P J Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - N G Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
41
|
Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. ACTA ACUST UNITED AC 2014; 138:246-68. [PMID: 25552303 DOI: 10.1093/brain/awu368] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The congenital myopathies are a diverse group of genetic skeletal muscle diseases, which typically present at birth or in early infancy. There are multiple modes of inheritance and degrees of severity (ranging from foetal akinesia, through lethality in the newborn period to milder early and later onset cases). Classically, the congenital myopathies are defined by skeletal muscle dysfunction and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. However, mutations in multiple different genes can cause the same pathology and mutations in the same gene can cause multiple different pathologies. This is becoming ever more apparent now that, with the increasing use of next generation sequencing, a genetic diagnosis is achieved for a greater number of patients. Thus, considerable genetic and pathological overlap is emerging, blurring the classically established boundaries. At the same time, some of the pathophysiological concepts underlying the congenital myopathies are moving into sharper focus. Here we explore whether our emerging understanding of disease pathogenesis and underlying pathophysiological mechanisms, rather than a strictly gene-centric approach, will provide grounds for a different and perhaps complementary grouping of the congenital myopathies, that at the same time could help instil the development of shared potential therapeutic approaches. Stemming from recent advances in the congenital myopathy field, five key pathophysiology themes have emerged: defects in (i) sarcolemmal and intracellular membrane remodelling and excitation-contraction coupling; (ii) mitochondrial distribution and function; (iii) myofibrillar force generation; (iv) atrophy; and (v) autophagy. Based on numerous emerging lines of evidence from recent studies in cell lines and patient tissues, mouse models and zebrafish highlighting these unifying pathophysiological themes, here we review the congenital myopathies in relation to these emerging pathophysiological concepts, highlighting both areas of overlap between established entities, as well as areas of distinction within single gene disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carsten G Bönnemann
- 2 National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Centre, Bethesda, MD, USA
| |
Collapse
|
42
|
Månsson A. Hypothesis and theory: mechanical instabilities and non-uniformities in hereditary sarcomere myopathies. Front Physiol 2014; 5:350. [PMID: 25309450 PMCID: PMC4163974 DOI: 10.3389/fphys.2014.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), due to point mutations in genes for sarcomere proteins such as myosin, occurs in 1/500 people and is the most common cause of sudden death in young individuals. Similar mutations in skeletal muscle, e.g., in the MYH7 gene for slow myosin found in both the cardiac ventricle and slow skeletal muscle, may also cause severe disease but the severity and the morphological changes are often different. In HCM, the modified protein function leads, over years to decades, to secondary remodeling with substantial morphological changes, such as hypertrophy, myofibrillar disarray, and extensive fibrosis associated with severe functional deterioration. Despite intense studies, it is unclear how the moderate mutation-induced changes in protein function cause the long-term effects. In hypertrophy of the heart due to pressure overload (e.g., hypertension), mechanical stress in the myocyte is believed to be major initiating stimulus for activation of relevant cell signaling cascades. Here it is considered how expression of mutated proteins, such as myosin or regulatory proteins, could have similar consequences through one or both of the following mechanisms: (1) contractile instabilities within each sarcomere (with more than one stable velocity for a given load), (2) different tension generating capacities of cells in series. These mechanisms would have the potential to cause increased tension and/or stretch of certain cells during parts of the cardiac cycle. Modeling studies are used to illustrate these ideas and experimental tests are proposed. The applicability of similar ideas to skeletal muscle is also postulated, and differences between heart and skeletal muscle are discussed.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University Kalmar, Sweden
| |
Collapse
|
43
|
Broccolini A, Mirabella M. Hereditary inclusion-body myopathies. Biochim Biophys Acta Mol Basis Dis 2014; 1852:644-50. [PMID: 25149037 DOI: 10.1016/j.bbadis.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/29/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
The term hereditary inclusion-body myopathies (HIBMs) defines a group of rare muscle disorders with autosomal recessive or dominant inheritance and presence of muscle fibers with rimmed vacuoles and collection of cytoplasmic or nuclear 15-21 nm diameter tubulofilaments as revealed by muscle biopsy. The most common form of HIBM is due to mutations of the GNE gene that codes for a rate-limiting enzyme in the sialic acid biosynthetic pathway. This results in abnormal sialylation of glycoproteins that possibly leads to muscle fiber degeneration. Mutations of the valosin containing protein are instead responsible for hereditary inclusion-body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD), with these three phenotypic features having a variable penetrance. IBMPFD probably represents a disorder of abnormal cellular trafficking of proteins and maturation of the autophagosome. HIBM with congenital joint contractures and external ophthalmoplegia is due to mutations of the Myosin Heavy Chain IIa gene that exerts a pathogenic effect through interference with filament assembly or functional defects in ATPase activity. This review illustrates the clinical and pathologic characteristics of HIBMs and the main clues available to date concerning the possible pathogenic mechanisms and therapeutic perspectives of these disorders. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Aldobrando Broccolini
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, Catholic University School of Medicine, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Massimiliano Mirabella
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, Catholic University School of Medicine, L.go A. Gemelli 8, 00168 Rome, Italy.
| |
Collapse
|
44
|
Recessive myosin myopathy with external ophthalmoplegia associated with MYH2 mutations. Eur J Hum Genet 2013; 22:801-8. [PMID: 24193343 DOI: 10.1038/ejhg.2013.250] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/28/2013] [Accepted: 10/01/2013] [Indexed: 11/08/2022] Open
Abstract
Myosin myopathies comprise a group of inherited diseases caused by mutations in myosin heavy chain (MyHC) genes. Homozygous or compound heterozygous truncating MYH2 mutations have been demonstrated to cause recessive myopathy with ophthalmoplegia, mild-to-moderate muscle weakness and complete lack of type 2A muscle fibers. In this study, we describe for the first time the clinical and morphological characteristics of recessive myosin IIa myopathy associated with MYH2 missense mutations. Seven patients of five different families with a myopathy characterized by ophthalmoplegia and mild-to-moderate muscle weakness were investigated. Muscle biopsy was performed to study morphological changes and MyHC isoform expression. Five of the patients were homozygous for MYH2 missense mutations, one patient was compound heterozygous for a missense and a nonsense mutation and one patient was homozygous for a frame-shift MYH2 mutation. Muscle biopsy demonstrated small or absent type 2A muscle fibers and reduced or absent expression of the corresponding MyHC IIa transcript and protein. We conclude that mild muscle weakness and ophthalmoplegia in combination with muscle biopsy demonstrating small or absent type 2A muscle fibers are the hallmark of recessive myopathy associated with MYH2 mutations.
Collapse
|
45
|
Cai H, Yabe I, Shirai S, Nishimura H, Hirotani M, Kano T, Houzen H, Yoshida K, Sasaki H. Novel GNE compound heterozygous mutations in a GNE myopathy patient. Muscle Nerve 2013; 48:594-8. [PMID: 23558691 DOI: 10.1002/mus.23862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Molecular studies have revealed that some patients with myopathies with rimmed vacuoles have pathogenic mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) and Z-band alternatively spliced PDZ motif-containing protein (ZASP) genes. METHODS We investigated a patient with distal myopathy with rimmed vacuoles by muscle biopsy and sequenced 6 candidate genes. RESULTS The patient carried GNE compound heterozygous missense mutations (p.V421A and p.N635K) and a ZASP variant (p.D673N). This patient also presented with distal weakness sparing the quadriceps muscles and had atypical results for Z-band-associated protein immunostaining. This finding indicates that the GNE mutations are pathogenic, and the diagnosis is compatible with GNE myopathy. CONCLUSIONS By combining pathological studies and candidate gene screening, we identified a patient with GNE myopathy due to novel GNE compound heterozygous mutations.
Collapse
Affiliation(s)
- Huaying Cai
- Department of Neurology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 2013; 152:183-95. [PMID: 23332754 PMCID: PMC3549490 DOI: 10.1016/j.cell.2012.12.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 12/11/2012] [Indexed: 01/16/2023]
Abstract
The UCS (UNC-45/CRO1/She4) chaperones play an evolutionarily conserved role in promoting myosin-dependent processes, including cytokinesis, endocytosis, RNA transport, and muscle development. To investigate the protein machinery orchestrating myosin folding and assembly, we performed a comprehensive analysis of Caenorhabditis elegans UNC-45. Our structural and biochemical data demonstrate that UNC-45 forms linear protein chains that offer multiple binding sites for cooperating chaperones and client proteins. Accordingly, Hsp70 and Hsp90, which bind to the TPR domain of UNC-45, could act in concert and with defined periodicity on captured myosin molecules. In vivo analyses reveal the elongated canyon of the UCS domain as a myosin-binding site and show that multimeric UNC-45 chains support organization of sarcomeric repeats. In fact, expression of transgenes blocking UNC-45 chain formation induces dominant-negative defects in the sarcomere structure and function of wild-type worms. Together, these findings uncover a filament assembly factor that directly couples myosin folding with myofilament formation.
Collapse
|
47
|
D'Amico A, Fattori F, Bellacchio E, Catteruccia M, Servidei S, Bertini E. A new de novo missense mutation in MYH2 expands clinical and genetic findings in hereditary myosin myopathies. Neuromuscul Disord 2013; 23:437-40. [PMID: 23489661 PMCID: PMC3639366 DOI: 10.1016/j.nmd.2013.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 11/30/2022]
Abstract
Congenital myopathy related to mutations in myosin MyHC IIa gene (MYH2) is a rare neuromuscular disease. A single dominant missense mutation has been reported so far in a family in which the affected members had congenital joint contractures at birth, external ophthalmoplegia and proximal muscle weakness. Afterward only additional 4 recessive mutations have been identified in 5 patients presenting a mild non-progressive early-onset myopathy associated with ophthalmoparesis. We report a new de novo MYH2 missense mutation in a baby affected by a congenital myopathy characterized by severe dysphagia, respiratory distress at birth and external ophthalmoplegia. We describe clinical, histopathological and muscle imaging findings expanding the clinical and genetic spectrum of MYH2-related myopathy.
Collapse
Affiliation(s)
- A D'Amico
- Laboratory of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Lossos A, Oldfors A, Fellig Y, Meiner V, Argov Z, Tajsharghi H. MYH2 mutation in recessive myopathy with external ophthalmoplegia linked to chromosome 17p13.1-p12. ACTA ACUST UNITED AC 2013; 136:e238. [PMID: 23388406 DOI: 10.1093/brain/aws365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Tajsharghi H, Oldfors A. Myosinopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:3-18. [PMID: 22918376 PMCID: PMC3535372 DOI: 10.1007/s00401-012-1024-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/27/2012] [Accepted: 07/19/2012] [Indexed: 11/24/2022]
Abstract
The myosin heavy chain (MyHC) is the molecular motor of muscle and forms the backbone of the sarcomere thick filaments. Different MyHC isoforms are of importance for the physiological properties of different muscle fiber types. Hereditary myosin myopathies have emerged as an important group of diseases with variable clinical and morphological expression depending on the mutated isoform and type and location of the mutation. Dominant mutations in developmental MyHC isoform genes (MYH3 and MYH8) are associated with distal arthrogryposis syndromes. Dominant or recessive mutations affecting the type IIa MyHC (MYH2) are associated with early-onset myopathies with variable muscle weakness and ophthalmoplegia as a consistent finding. Myopathies with scapuloperoneal, distal or limb-girdle muscle weakness including entities, such as myosin storage myopathy and Laing distal myopathy are the result of usually dominant mutations in the gene for slow/β cardiac MyHC (MYH7). Protein aggregation is part of the features in some of these myopathies. In myosin storage myopathy protein aggregates are formed by accumulation of myosin beneath the sarcolemma and between myofibrils. In vitro studies on the effects of different mutations associated with myosin storage myopathy and Laing distal myopathy indicate altered biochemical and biophysical properties of the light meromyosin, which is essential for thick filament assembly. Protein aggregates in the form of tubulofilamentous inclusions in association with vacuolated muscle fibers are present at late stage of dominant myosin IIa myopathy and sometimes in Laing distal myopathy. These protein aggregates exhibit features indicating defective degradation of misfolded proteins. In addition to protein aggregation and muscle fiber degeneration some of the myosin mutations cause functional impairment of the molecular motor adding to the pathogenesis of myosinopathies.
Collapse
Affiliation(s)
- Homa Tajsharghi
- Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Anders Oldfors
- Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
50
|
|