1
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
2
|
Pereira CH, Bare DJ, Rosas PC, Dias FAL, Banach K. The role of P21-activated kinase (Pak1) in sinus node function. J Mol Cell Cardiol 2023; 179:90-101. [PMID: 37086972 PMCID: PMC10294268 DOI: 10.1016/j.yjmcc.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Sinoatrial node (SAN) dysfunction (SND) and atrial arrhythmia frequently occur simultaneously with a hazard ratio of 4.2 for new onset atrial fibrillation (AF) in SND patients. In the atrial muscle attenuated activity of p21-activated kinase 1 (Pak1) increases the risk for AF by enhancing NADPH oxidase 2 dependent production of reactive oxygen species (ROS). However, the role of Pak1 dependent ROS regulation in SAN function has not yet been determined. We hypothesize that Pak1 activity maintains SAN activity by regulating the expression of the hyperpolarization activated cyclic nucleotide gated cation channel (HCN). To determine Pak1 dependent changes in heart rate (HR) regulation we quantified the intrinsic sinus rhythm in wild type (WT) and Pak1 deficient (Pak1-/-) mice of both sexes in vivo and in isolated Langendorff perfused hearts. Pak1-/- hearts displayed an attenuated HR in vivo after autonomic blockage and in isolated hearts. The contribution of the Ca2+ clock to pacemaker activity remained unchanged, but Ivabradine (3 μM), a blocker of HCN channels that are a membrane clock component, eliminated the differences in SAN activity between WT and Pak1-/- hearts. Reduced HCN4 expression was confirmed in Pak1-/- right atria. The reduced HCN activity in Pak1-/- could be rescued by class II HDAC inhibition (LMK235), ROS scavenging (TEMPOL) or attenuation of Extracellular Signal-Regulated Kinase (ERK) 1/2 activity (SCH772984). No sex specific differences in Pak1 dependent SAN regulation were determined. Our results establish Pak1 as a class II HDAC regulator and a potential therapeutic target to attenuate SAN bradycardia and AF susceptibility.
Collapse
Affiliation(s)
- Carlos H Pereira
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA; Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Dan J Bare
- Dept. of Physiology & Biophysics, The Ohio State University, 5018 Graves Hall, 333 W.10th Ave., Columbus, OH 4321, USA.
| | - Paola C Rosas
- Dept. of Pharmacy Practice, College of Pharmacy, 833 S Wood St., Chicago, IL 60612, USA.
| | - Fernando A L Dias
- Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Kathrin Banach
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Kavianpour P, Gemmell MCM, Kahlert JU, Rendina LM. Histone Deacetylase 2 (HDAC2) Inhibitors Containing Boron. Chembiochem 2020; 21:2786-2791. [DOI: 10.1002/cbic.202000131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Poya Kavianpour
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Madeleine C. M. Gemmell
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Jan U. Kahlert
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
| | - Louis M. Rendina
- School of Chemistry, The University of Sydney The University of Sydney F11, Eastern Avenue Sydney NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2050 Sydney NSW 2006 Australia
| |
Collapse
|
4
|
Rhim C, E. Kraus W, A. Truskey G. Biomechanical effects on microRNA expression in skeletal muscle differentiation. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Revisiting Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer. Int J Mol Sci 2019; 20:ijms20061291. [PMID: 30875794 PMCID: PMC6471041 DOI: 10.3390/ijms20061291] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/24/2022] Open
Abstract
Urinary bladder cancer is a common malignancy, being characterized by substantial patient mortality and management cost. Its high somatic-mutation frequency and molecular heterogeneity usually renders tumors refractory to the applied regimens. Hitherto, methotrexate-vinblastine-adriamycin-cisplatin and gemcitabine-cisplatin represent the backbone of systemic chemotherapy. However, despite the initial chemosensitivity, the majority of treated patients will eventually develop chemoresistance, which severely reduces their survival expectancy. Since chromatin regulation genes are more frequently mutated in muscle-invasive bladder cancer, as compared to other epithelial tumors, targeted therapies against chromatin aberrations in chemoresistant clones may prove beneficial for the disease. “Acetyl-chromatin” homeostasis is regulated by the opposing functions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The HDAC/SIRT (super-)family contains 18 members, which are divided in five classes, with each family member being differentially expressed in normal urinary bladder tissues. Since a strong association between irregular HDAC expression/activity and tumorigenesis has been previously demonstrated, we herein attempt to review the accumulated published evidences that implicate HDACs/SIRTs as critical regulators in urothelial bladder cancer. Moreover, the most extensively investigated HDAC inhibitors (HDACis) are also analyzed, and the respective clinical trials are also described. Interestingly, it seems that HDACis should be preferably used in drug-combination therapeutic schemes, including radiation.
Collapse
|
6
|
Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Am J Cancer Res 2019; 9:1096-1114. [PMID: 30867818 PMCID: PMC6401400 DOI: 10.7150/thno.29673] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
The interplay between p53 and RAS signaling regulates cancer chemoresistance, but the detailed mechanism is unclear. In this study, we investigated the interactive effects of p53 and RAS on ovarian cancer cisplatin resistance to explore the potential therapeutic targets. Methods: An inducible p53 and RAS mutants active in either MAPK/ERK (S35 and E38) or PI3K/AKT (C40) or both (V12) were sequentially introduced into a p53-null ovarian cancer cell line-SKOV3. Comparative microarray analysis was performed using Gene Chip Prime View Human Gene Expression arrays (Affymetrix). In vitro assays of autophagy and apoptosis and in vivo animal experiments were performed by p53 induction and/or cisplatin treatment using the established cell lines. The correlation between HDAC4 and HIF-1α or CREBZF and the association of HDAC4, HIF-1α, CREBZF, ERK, AKT, and p53 mRNA levels with patient survival in 523 serous ovarian cancer cases from TCGA was assessed. Results: We show that p53 and RAS mutants differentially control cellular apoptosis and autophagy to inhibit or to promote chemoresistance through dysregulation of Bax, Bcl2, ATG3, and ATG12. ERK and AKT active RAS mutants are mutually suppressive to confer or to deprive cisplatin resistance. Further studies demonstrate that p53 induces HIF-1α degradation and HDAC4 cytoplasmic translocation and phosphorylation. S35, E38, and V12 but not C40 promote HDAC4 phosphorylation and its cytoplasmic translocation along with HIF-1α. Wild-type p53 expression in RAS mutant cells enhances HIF-1α turnover in ovarian and lung cancer cells. Autophagy and anti-apoptotic processes can be promoted by the overexpression and cytoplasmic translocation of HDAC4 and HIF1-α. Moreover, the phosphorylation and cytoplasmic translocation of HDAC4 activate the transcription factor CREBZF to promote ATG3 transcription. High HDAC4 or CREBZF expression predicted poor overall survival (OS) and/or progression-free survival (PFS) in ovarian cancer patients, whereas high HIF-1α expression was statistically correlated with poor or good OS depending on p53 status. Conclusion: HIF-1α and HDAC4 may mediate the interaction between p53 and RAS signaling to actively control ovarian cancer cisplatin resistance through dysregulation of apoptosis and autophagy. Targeting HDAC4, HIF-1α and CREBZF may be considered in treatment of ovarian cancer with p53 and RAS mutations.
Collapse
|
7
|
Doddi SK, Kummari G, M V J, Kalle AM. Protein kinase A mediates novel serine-584 phosphorylation of HDAC4. Biochem Cell Biol 2019; 97:526-535. [PMID: 30661366 DOI: 10.1139/bcb-2018-0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Given the well-established diversified signaling pathways for histone deacetylase 4 (HDAC4) and the regulation of HDAC4 by several post-translational modifications (PTMs), including phosphorylation, sumoylation, and ubiquitination, an unbiased and detailed analysis of HDAC4 PTMs is needed. In this study, we used matrix-assisted laser desorption/ionization time of flight (MALDI-TOF/TOF) to describe phosphorylation at serine 584 (Ser584) along with already-known dual phosphorylation at serines 265 and 266 (Ser265/266), that together regulate HDAC4 activity. Overexpression of site-specific HDAC4 mutants (S584A, S265/266A) in HEK 293T cells, followed by HDAC activity assays, revealed the mutants to be less active than the wild-type protein. In vitro kinase assays have established that Ser584 and Ser265/266 are phosphorylated by protein kinase A (PKA). Luciferase assays driven by the myocyte enhancer factor 2 (MEF2) promoter and real-time PCR analysis of the MEF2 target genes show that the S584A and S265/266A mutants are less repressive than the wild-type. Furthermore, treatment with PKA activators such as 8-Bromo-cAMP and forskolin, and silencing either by shRNA or its inhibitor H-89 in a mouse myoblast cell line (C2C12) and in a non-muscle human cell line (K562), confirmed in vivo phosphorylation of HDAC4 in C2C12 but not in K562 cells, indicating the specific functional significance of HDAC4 phosphorylation in muscle cells. Thus, we identified PKA-induced Ser584 phosphorylation of HDAC4 as a yet unknown regulatory mechanism of the HDAC4-MEF2 axis.
Collapse
Affiliation(s)
- Shanmukha K Doddi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS-500046, India
| | - Githavani Kummari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS-500046, India
| | - Jagannadham M V
- Center for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad TS-500007, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, TS-500046, India
| |
Collapse
|
8
|
Sanna MD, Galeotti N. The HDAC1/c-JUN complex is essential in the promotion of nerve injury-induced neuropathic pain through JNK signaling. Eur J Pharmacol 2018; 825:99-106. [PMID: 29477655 DOI: 10.1016/j.ejphar.2018.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/23/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. Administration of a selective HDAC1 inhibitor (LG325) in SNI-subjected mice significantly attenuated behavior related to injury-induced pain. Understanding the HDAC1 pathway in epigenetic regulation of pathological pain is of great medical relevance. Spared nerve injury (SNI) mice showed a significant increase in the HDAC1 protein levels within spinal cord in coincidence with the nociceptive phenotype at 1 and 3 weeks after nerve injury. No variation in HDAC3, DNMT3a, AcH3, MBD3 and MeCP2 levels was detected. Increased expression of HDAC1 is accompanied by activation of the JNK-c-Jun signaling pathway. A robust spinal JNK-1 overphosphorylation was observed post nerve-injury along with a selective JNK-dependent increase in p-c-Jun and HDAC1 protein levels. Co-immunoprecipitation experiments showed the presence of a heterodimeric complex between HDAC1 and c-Jun in SNI mice indicating that these transcription factors can act together to regulate transcription through heterodimerization. Stimulation of c-Jun phosphorylation was prevented by the selective HDAC1 inhibitor LG325. We found that HDAC1 was associated with c-Jun in nuclei of spinal dorsal horn astrocytes expressing JNK. On the other hand, the presence of HDAC1 and c-Jun interaction was not detected in control mice. These findings provide new insights into the mechanisms underlying the anti-nociceptive activity of HDAC inhibitors. Taken together, these data support a role for histone deacetylase in the emergence of neuropathic pain.
Collapse
Affiliation(s)
- Maria Domenica Sanna
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, Viale G. Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
9
|
Folkerts J, Stadhouders R, Redegeld FA, Tam SY, Hendriks RW, Galli SJ, Maurer M. Effect of Dietary Fiber and Metabolites on Mast Cell Activation and Mast Cell-Associated Diseases. Front Immunol 2018; 9:1067. [PMID: 29910798 PMCID: PMC5992428 DOI: 10.3389/fimmu.2018.01067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Many mast cell-associated diseases, including allergies and asthma, have seen a strong increase in prevalence during the past decades, especially in Western(ized) countries. It has been suggested that a Western diet may contribute to the prevalence and manifestation of allergies and asthma through reduced intake of dietary fiber and the subsequent production of their metabolites. Indeed, dietary fiber and its metabolites have been shown to positively influence the development of immune disorders via changes in microbiota composition and the regulation of B- and T-cell activation. However, the effects of these dietary components on the activation of mast cells, key effector cells of the inflammatory response in allergies and asthma, remain poorly characterized. Due to their location in the gut and vascularized tissues, mast cells are exposed to high concentrations of dietary fiber and/or its metabolites. Here, we provide a focused overview of current findings regarding the direct effects of dietary fiber and its various metabolites on the regulation of mast cell activity and the pathophysiology of mast cell-associated diseases.
Collapse
Affiliation(s)
- Jelle Folkerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Li Y, Tang CB, Kilian KA. Matrix Mechanics Influence Fibroblast-Myofibroblast Transition by Directing the Localization of Histone Deacetylase 4. Cell Mol Bioeng 2017; 10:405-415. [PMID: 31719870 PMCID: PMC6816600 DOI: 10.1007/s12195-017-0493-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The propagation of mechanochemical signals from the extracellular matrix to the cell nucleus has emerged as a central feature in regulating cellular differentiation and de-differentiation. This process of outside-in signaling and the associated mechanotransduction pathways have been well described in numerous developmental and pathological contexts. However, it remains less clear how mechanotransduction influences the activity of chromatin modifying enzymes that direct gene expression programs. OBJECTIVES The primary objective of this study was to explore how matrix mechanics and geometric confinement influence histone deacetylase (HDAC) activity in fibroblast culture. METHODS Polyacrylamide hydrogels were formed and functionalized with fibronectin patterns using soft lithography. Primary mouse embryonic fibroblasts (MEFs) were cultured on the islands until confluent, fixed, and immunolabeled for microscopy. RESULTS After 24 h MEFs cultured on soft hydrogels (0.5 kPa) show increased expression of class I HDACs relative to MEFs cultured on stiff hydrogels (100 kPa). A member of the class II family, HDAC4 shows a similar trend; however, there is a pronounced cytoplasmic localization on soft hydrogels suggesting a role in outside-in cytoplasmic signaling. Pharmacological inhibitor studies suggest that the opposing activities of extracellular related kinase 1/2 (ERK) and protein phosphatase 2a (PP2a) influence the localization of HDAC4. MEFs cultured on the soft hydrogels show enhanced expression of markers associated with a fibroblast-myofibroblast transition (Paxillin, αSMA). CONCLUSIONS We show that the phosphorylation state and cellular localization of HDAC4 is influenced by matrix mechanics, with evidence for a role in mechanotransduction and the regulation of gene expression associated with fibroblast-myofibroblast transitions. This work establishes a link between outside-in signaling and epigenetic regulation, which will assist efforts aimed at controlling gene regulation in engineered extracellular matrices.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Claire B. Tang
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kristopher A. Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
11
|
Guo W, Saito S, Sanchez CG, Zhuang Y, Gongora Rosero RE, Shan B, Luo F, Lasky JA. TGF-β 1 stimulates HDAC4 nucleus-to-cytoplasm translocation and NADPH oxidase 4-derived reactive oxygen species in normal human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 312:L936-L944. [PMID: 28336812 PMCID: PMC5495947 DOI: 10.1152/ajplung.00256.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/17/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022] Open
Abstract
Myofibroblasts are important mediators of fibrogenesis; thus blocking fibroblast-to-myofibroblast differentiation (FMD) may be an effective strategy to treat pulmonary fibrosis (PF). Previously, we reported that histone deacetylase 4 (HDAC4) activity is necessary for transforming growth factor-β1 (TGF-β1)-induced human lung FMD. Here, we show that TGF-β1 increases NADPH oxidase 4 (NOX4) mRNA and protein expression in normal human lung fibroblasts (NHLFs) and causes nuclear export of HDAC4. Application of the NOX family inhibitor diphenyleneiodonium chloride reduces TGF-β1-induced HDAC4 nuclear export, expression of the myofibroblast marker α-smooth muscle actin (α-SMA), and α-SMA fiber formation. Inhibition of HDAC4 nucleus-to-cytoplasm translocation using leptomycin B (LMB) had little effect on α-SMA expression but blocked α-SMA fiber formation. A coimmunoprecipitation assay showed that HDAC4 associates with α-SMA. Moreover, LMB abolishes TGF-β1-induced α-SMA fiber formation and cell contraction. Relevant to human pulmonary fibrosis, idiopathic PF specimens showed significantly higher NOX4 RNA expression and scant HDAC4 staining within nuclei of fibroblast foci myofibroblasts. Taken together, these results indicate that reactive oxygen species promote TGF-β1-mediated myofibroblast differentiation and HDAC4 nuclear export. The physical association of HDAC4 with α-SMA suggests that HDAC4 has a role in regulating the α-SMA cytoskeleton arrangement.
Collapse
Affiliation(s)
- Weichao Guo
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| | - Shigeki Saito
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| | - Cecilia G Sanchez
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| | - Yan Zhuang
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| | - Rafael E Gongora Rosero
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| | - Bin Shan
- College of Medical Sciences, Washington State University-Spokane, Spokane, Washington; and
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas
| | - Joseph A Lasky
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, Louisiana;
| |
Collapse
|
12
|
Newton R, Shah S, Altonsy MO, Gerber AN. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance. J Biol Chem 2017; 292:7163-7172. [PMID: 28283576 DOI: 10.1074/jbc.r117.777318] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid.
Collapse
Affiliation(s)
- Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta T2N 4Z6, Canada,
| | - Suharsh Shah
- the Arnie Charbonneau Cancer Institute, Department of Oncology, University of Calgary, Alberta T2N 4Z6, Canada
| | - Mohammed O Altonsy
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta T2N 4Z6, Canada.,the Faculty of Science, Sohag University, Sohag 82524, Egypt, and
| | - Antony N Gerber
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| |
Collapse
|
13
|
Role of Phosphorylated HDAC4 in Stroke-Induced Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2957538. [PMID: 28127553 PMCID: PMC5239970 DOI: 10.1155/2017/2957538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/01/2016] [Indexed: 12/30/2022]
Abstract
Acetylation or deacetylation of chromatin proteins and transcription factors is part of a complex signaling system that is involved in the control of neurological disorders. Recent studies have demonstrated that histone deacetylases (HDACs) exert protective effects in attenuating neuronal injury after ischemic insults. Class IIa HDAC4 is highly expressed in the brain, and neuronal activity depends on the nucleocytoplasmic shuttling of HDAC4. However, little is known about HDAC4 and its roles in ischemic stroke. In this study, we report that phosphorylation of HDAC4 was remarkably upregulated after stroke and blockade of HDAC4 phosphorylation with GÖ6976 repressed stroke-induced angiogenesis. Phosphorylation of HDAC4 was also increased in endothelial cells hypoxia model and suppression of HDAC4 phosphorylation inhibited the tube formation and migration of endothelial cells in vitro. Furthermore, in addition to the inhibition of angiogenesis, blockade of HDAC4 phosphorylation suppressed the expression of genes downstream of HIF-VEGF signaling in vitro and in vivo. These data indicate that phosphorylated HDAC4 may serve as an important regulator in stroke-induced angiogenesis. The protective mechanism of phosphorylated HDAC4 is associated with HIF-VEGF signaling, implicating a novel therapeutic target in stroke.
Collapse
|
14
|
Shah S, King EM, Mostafa MM, Altonsy MO, Newton R. DUSP1 Maintains IRF1 and Leads to Increased Expression of IRF1-dependent Genes: A MECHANISM PROMOTING GLUCOCORTICOID INSENSITIVITY. J Biol Chem 2016; 291:21802-21816. [PMID: 27551049 DOI: 10.1074/jbc.m116.728964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/19/2016] [Indexed: 11/06/2022] Open
Abstract
Although the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, mediates dexamethasone-induced repression of MAPKs, 14 of 46 interleukin-1β (IL1B)-induced mRNAs were significantly enhanced by DUSP1 overexpression in pulmonary A549 cells. These include the interferon regulatory factor, IRF1, and the chemokine, CXCL10. Of these, DUSP1-enhanced mRNAs, 10 including CXCL10, were IRF1-dependent. MAPK inhibitors and DUSP1 overexpression prolonged IRF1 expression by elevating transcription and increasing IRF1 mRNA and protein stability. Conversely, DUSP1 silencing increased IL1B-induced MAPK phosphorylation while significantly reducing IRF1 protein expression at 4 h. This confirms a regulatory network whereby DUSP1 switches off MAPKs to maintain IRF1 expression. There was no repression of IRF1 expression by dexamethasone in primary human bronchial epithelial cells, and in A549 cells IL1B-induced IRF1 protein was only modestly and transiently repressed. Although dexamethasone did not repress IL1B-induced IRF1 protein expression at 4-6 h, silencing of IL1B plus dexamethasone-induced DUSP1 significantly reduced IRF1 expression. IL1B-induced expression of CXCL10 was largely insensitive to dexamethasone, whereas other DUSP1-enhanced, IRF1-dependent mRNAs showed various degrees of repression. With IL1B plus dexamethasone, CXCL10 expression was also IRF1-dependent, and expression was reduced by DUSP1 silencing. Thus, IL1B plus dexamethasone-induced DUSP1 maintains expression of IRF1 and the IRF1-dependent gene, CXCL10. This is supported by chromatin immunoprecipitation showing IRF1 recruitment to be essentially unaffected by dexamethasone at the CXCL10 promoter or at the promoters of more highly repressed IRF1-dependent genes. Since IRF1-dependent genes, such as CXCL10, are central to host defense, these data may help explain the reduced effectiveness of glucocorticoids during asthma exacerbations.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Elizabeth M King
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Mohammed O Altonsy
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and.,Department of Zoology, Sohag University, Sohag 825224, Egypt
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| |
Collapse
|
15
|
Hsp90 as a "Chaperone" of the Epigenome: Insights and Opportunities for Cancer Therapy. Adv Cancer Res 2015; 129:107-40. [PMID: 26916003 DOI: 10.1016/bs.acr.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cellular functions of Hsp90 have historically been attributed to its ability to chaperone client proteins involved in signal transduction. Although numerous stimuli and the signaling cascades they activate contribute to cancer progression, many of these pathways ultimately require transcriptional effectors to elicit tumor-promoting effects. Despite this obvious connection, the majority of studies evaluating Hsp90 function in malignancy have focused upon its regulation of cytosolic client proteins, and particularly members of receptor and/or kinase families. However, in recent years, Hsp90 has emerged as a pivotal orchestrator of nuclear events. Discovery of an expanding repertoire of Hsp90 clients has illuminated a vital role for Hsp90 in overseeing nuclear events and influencing gene transcription. Hence, this chapter will cast a spotlight upon several regulatory themes involving Hsp90-dependent nuclear functions. Highlighted topics include a summary of chaperone-dependent regulation of key transcription factors (TFs) and epigenetic effectors in malignancy, as well as a discussion of how the complex interplay among a subset of these TFs and epigenetic regulators may generate feed-forward loops that further support cancer progression. This chapter will also highlight less recognized indirect mechanisms whereby Hsp90-supported signaling may impinge upon epigenetic regulation. Finally, the relevance of these nuclear events is discussed within the framework of Hsp90's capacity to enable phenotypic variation and drug resistance. These newly acquired insights expanding our understanding of Hsp90 function support the collective notion that nuclear clients are major beneficiaries of Hsp90 action, and their impairment is likely responsible for many of the anticancer effects elicited by Hsp90-targeted approaches.
Collapse
|
16
|
Schmitz ML, de la Vega L. New Insights into the Role of Histone Deacetylases as Coactivators of Inflammatory Gene Expression. Antioxid Redox Signal 2015; 23:85-98. [PMID: 24359078 DOI: 10.1089/ars.2013.5750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE The expression and/or activity of histone deacetylases (HDACs) can be regulated by a variety of environmental conditions, including inflammation and oxidative stress. These events result in diminished or exaggerated protein acetylation, both of which can be causative for many ailments. While the anti-inflammatory activity of HDAC inhibitors (HDACis) is well known, recent studies started unraveling details of the molecular mechanisms underlying the pro-inflammatory function of HDACs. RECENT ADVANCES Recent evidence shows that HDACs are found in association with transcribed regions and ensure proper transcription by maintaining acetylation homeostasis. We also discuss current insights in the molecular mechanisms mediating acetylation-dependent inhibition of pro-inflammatory transcription factors of the NF-κB, HIF-1, IRF, and STAT families. CRITICAL ISSUES The high number of acetylations and the complexity of the regulatory consequences make it difficult to assign biological effects directly to a single acetylation event. The vast majority of acetylated proteins are nonhistone proteins, and it remains to be shown whether the therapeutic effects of HDACis are attributable to altered histone acetylation. FUTURE DIRECTIONS In the traditional view, only exaggerated acetylation is harmful and causative for diseases. Recent data show the relevance of acetylation homeostasis and suggest that both diminished and inflated acetylation can enable the development of ailments. Since acetylation of nonhistone proteins is essential for the induction of a substantial part of the inflammatory gene expression program, HDACis are more than "epigenetic drugs." The identification of substrates for individual HDACs will be the prerequisite for the adequate use of highly specific HDACis.
Collapse
Affiliation(s)
- Michael Lienhard Schmitz
- 1 Medical Faculty, Institute of Biochemistry, Justus-Liebig-University , Giessen, Germany .,2 The German Center for Lung Research, Giessen, Germany
| | - Laureano de la Vega
- 3 Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee , Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
17
|
Wang Z, Qin G, Zhao TC. HDAC4: mechanism of regulation and biological functions. Epigenomics 2014; 6:139-50. [PMID: 24579951 DOI: 10.2217/epi.13.73] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The acetylation and deacetylation of histones plays an important role in the regulation of gene transcriptions. Histone acetylation is mediated by histone acetyltransferase; the resulting modification in the structure of chromatin leads to nucleosomal relaxation and altered transcriptional activation. The reverse reaction is mediated by histone deacetylase (HDAC), which induces deacetylation, chromatin condensation and transcriptional repression. HDACs are divided into three distinct classes: I, II, and III, on the basis of size and sequence homology, as well as formation of distinct complexes. Among class II HDACs, HDAC4 is implicated in controlling gene expression important for diverse cellular functions. Basic and clinical experimental evidence has established that HDAC4 performs a wide variety of functions. Understanding the biological significance of HDAC4 will not only provide new insight into the mechanisms of HDAC4 involved in mediating biological response, but also form a platform to develop a therapeutic strategy to achieve clinical implications.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Medicine, Roger Williams Medical Center, Boston University Medical School, Providence, RI 02908, USA
| | | | | |
Collapse
|
18
|
Plotkin A, Volmar CH, Wahlestedt C, Ayad N, El-Ashry D. Transcriptional repression of ER through hMAPK dependent histone deacetylation by class I HDACs. Breast Cancer Res Treat 2014; 147:249-63. [PMID: 25129342 DOI: 10.1007/s10549-014-3093-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/06/2014] [Indexed: 11/26/2022]
Abstract
Anti-estrogen therapies are not effective in ER- breast cancers, thus identifying mechanisms underlying lack of ER expression in ER- breast cancers is imperative. We have previously demonstrated that hyperactivation of MAPK (hMAPK) downstream of overexpressed EGFR or overexpression/amplification of Her2 represses ER protein and mRNA expression. Abrogation of hMAPK in ER- breast cancer cell lines and primary cultures causes re-expression of ER and restoration of anti-estrogen responses. This study was performed to identify mechanisms of hMAPK-induced transcriptional repression of ER. We found that ER promoter activity is significantly reduced in the presence of hMAPK signaling, yet did not identify specific promoter sequences responsible for this repression. We performed an epigenetic compound screen in an ER- breast cancer cell line that expresses hMAPK yet does not exhibit ER promoter hypermethylation. A number of HDAC inhibitors were identified and confirmed to modulate ER expression and estrogen signaling in multiple ER- cell lines and tumor samples lacking ER promoter methylation. siRNA-mediated knockdown of HDACs 1, 2, and 3 reversed the mRNA repression in multiple breast cancer cell lines and primary cultures and ER promoter-associated histone acetylation increased following MAPK inhibition. These data implicate histone deacetylation downstream of hMAPK in the observed ER mRNA repression associated with hMAPK. Importantly, histone deacetylation appears to be a common mechanism in the transcriptional repression of ER between ER- breast cancers with or without ER promoter hypermethylation.
Collapse
Affiliation(s)
- Amy Plotkin
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, 1501 NW 10th Ave., Miami, FL, 33136, USA
| | | | | | | | | |
Collapse
|
19
|
Wang Z, Qin G, Zhao TC. HDAC4: mechanism of regulation and biological functions. Epigenomics 2014. [PMID: 24579951 DOI: 10.2217/epi.13.73.histone] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The acetylation and deacetylation of histones plays an important role in the regulation of gene transcriptions. Histone acetylation is mediated by histone acetyltransferase; the resulting modification in the structure of chromatin leads to nucleosomal relaxation and altered transcriptional activation. The reverse reaction is mediated by histone deacetylase (HDAC), which induces deacetylation, chromatin condensation and transcriptional repression. HDACs are divided into three distinct classes: I, II, and III, on the basis of size and sequence homology, as well as formation of distinct complexes. Among class II HDACs, HDAC4 is implicated in controlling gene expression important for diverse cellular functions. Basic and clinical experimental evidence has established that HDAC4 performs a wide variety of functions. Understanding the biological significance of HDAC4 will not only provide new insight into the mechanisms of HDAC4 involved in mediating biological response, but also form a platform to develop a therapeutic strategy to achieve clinical implications.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Medicine, Roger Williams Medical Center, Boston University Medical School, Providence, RI 02908, USA
| | | | | |
Collapse
|
20
|
Abstract
AbstractRas genes are pre-eminent genes that are frequently linked with cancer biology. The functional loss of ras protein caused by various point mutations within the gene, is established as a prognostic factor for the genesis of a constitutively active Ras-MAPK pathway leading to cancer. Ras signaling circuit follows a complex pathway, which connects many signaling molecules and cells. Several strategies have come up for targeting mutant ras proteins for cancer therapy, however, the clinical benefits remain insignificant. Targeting the Ras-MAPK pathway is extremely complicated due its intricate networks involving several upstream and downstream regulators. Blocking oncogenic Ras is still in latent stage and requires alternative approaches to screen the genes involved in Ras transformation. Understanding the mechanism of Ras induced tumorigenesis in diverse cancers and signaling networks will open a path for drug development and other therapeutic approaches.
Collapse
|
21
|
de la Vega L, Hornung J, Kremmer E, Milanovic M, Schmitz ML. Homeodomain-interacting protein kinase 2-dependent repression of myogenic differentiation is relieved by its caspase-mediated cleavage. Nucleic Acids Res 2013; 41:5731-45. [PMID: 23620283 PMCID: PMC3675480 DOI: 10.1093/nar/gkt262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Differentiation of skeletal muscle cells is accompanied by drastic changes in gene expression programs that depend on activation and repression of genes at defined time points. Here we identify the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) as a corepressor that inhibits myocyte enhancer factor 2 (MEF2)-dependent gene expression in undifferentiated myoblasts. Downregulation of HIPK2 expression by shRNAs results in elevated expression of muscle-specific genes, whereas overexpression of the kinase dampens transcription of these genes. HIPK2 is constitutively associated with a multi-protein complex containing histone deacetylase (HDAC)3 and HDAC4 that serves to silence MEF2C-dependent transcription in undifferentiated myoblasts. HIPK2 interferes with gene expression on phosphorylation and HDAC3-dependent deacetylation of MEF2C. Ongoing muscle differentiation is accompanied by elevated caspase activity, which results in caspase-mediated cleavage of HIPK2 following aspartic acids 916 and 977 and the generation of a C-terminally truncated HIPK2 protein. The short form of the kinase loses its affinity to the repressive multi-protein complex and its ability to bind HDAC3 and HDAC4, thus alleviating its repressive function for expression of muscle genes. This study identifies HIPK2 as a further protein that determines the threshold and kinetics of gene expression in proliferating myoblasts and during the initial steps of myogenesis.
Collapse
Affiliation(s)
- Laureano de la Vega
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
22
|
Van Lishout F, Mahachie John JM, Gusareva ES, Urrea V, Cleynen I, Théâtre E, Charloteaux B, Calle ML, Wehenkel L, Van Steen K. An efficient algorithm to perform multiple testing in epistasis screening. BMC Bioinformatics 2013; 14:138. [PMID: 23617239 PMCID: PMC3648350 DOI: 10.1186/1471-2105-14-138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 04/12/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn's disease. RESULTS In the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn's disease (CD) data. CONCLUSIONS Our software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn's disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.
Collapse
Affiliation(s)
- François Van Lishout
- Systems and Modeling Unit, Montefiore Institute, University of Liège, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xu Q, Lin X, Andrews L, Patel D, Lampe PD, Veenstra RD. Histone deacetylase inhibition reduces cardiac connexin43 expression and gap junction communication. Front Pharmacol 2013; 4:44. [PMID: 23596417 PMCID: PMC3625725 DOI: 10.3389/fphar.2013.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/27/2013] [Indexed: 01/02/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are being investigated as novel therapies for cancer, inflammation, neurodegeneration, and heart failure. The effects of HDACIs on the functional expression of cardiac gap junctions (GJs) are essentially unknown. The purpose of this study was to determine the effects of trichostatin A (TSA) and vorinostat (VOR) on functional GJ expression in ventricular cardiomyocytes. The effects of HDAC inhibition on connexin43 (Cx43) expression and functional GJ assembly were examined in primary cultured neonatal mouse ventricular myocytes. TSA and VOR reduced Cx43 mRNA, protein expression, and immunolocalized Cx43 GJ plaque area within ventricular myocyte monolayer cultures in a dose-dependent manner. Chromatin immunoprecipitation experiments revealed altered protein interactions with the Cx43 promoter. VOR also altered the phosphorylation state of several key regulatory Cx43 phospho-serine sites. Patch clamp analysis revealed reduced electrical coupling between isolated ventricular myocyte pairs, altered transjunctional voltage-dependent inactivation kinetics, and steady state junctional conductance inactivation and recovery relationships. Single GJ channel conductance was reduced to 54 pS only by maximum inhibitory doses of TSA (≥ 100 nM). These two hydroxamate pan-HDACIs exert multiple levels of regulation on ventricular GJ communication by altering Cx43 expression, GJ area, post-translational modifications (e.g., phosphorylation, acetylation), gating, and channel conductance. Although a 50% downregulation of Cx43 GJ communication alone may not be sufficient to slow ventricular conduction or induce arrhythmias, the development of class-selective HDACIs may help avoid the potential negative cardiovascular effects of pan-HDACI.
Collapse
Affiliation(s)
- Qin Xu
- Department of Pharmacology, State University of New York Upstate Medical University Syracuse, NY, USA
| | | | | | | | | | | |
Collapse
|
24
|
Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol Oncol 2012; 6:579-89. [PMID: 22963873 DOI: 10.1016/j.molonc.2012.07.003] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022] Open
Abstract
Reversible acetylation of histone and non-histone proteins is one of the most abundant post-translational modifications in eukaryotic cells. Protein acetylation and deacetylation are achieved by the antagonistic actions of two families of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Aberrant protein acetylation, particularly on histones, has been related to cancer while abnormal expression of HDACs has been found in a broad range of cancer types. Therefore, HDACs have emerged as promising targets in cancer therapeutics, and the development of HDAC inhibitors (HDIs), a rapidly evolving area of clinical research. However, the contributions of specific HDACs to a given cancer type remain incompletely understood. The aim of this review is to summarize the current knowledge concerning the role of HDACs in cancer with special emphasis on what we have learned from the analysis of patient samples.
Collapse
Affiliation(s)
- Bruna Barneda-Zahonero
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Av. Gran Via s/n km 2.7, 08908 L'Hospitalet, Barcelona, Spain
| | | |
Collapse
|
25
|
Elucidating the mechanism of regulation of transforming growth factor β Type II receptor expression in human lung cancer cell lines. Neoplasia 2012; 13:912-22. [PMID: 22028617 DOI: 10.1593/neo.11576] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 02/01/2023] Open
Abstract
Lung carcinogenesis in humans involves an accumulation of genetic and epigenetic changes that lead to alterations in normal lung epithelium, to in situ carcinoma, and finally to invasive and metastatic cancers. The loss of transforming growth factor β (TGF-β)-induced tumor suppressor function in tumors plays a pivotal role in this process, and our previous studies have shown that resistance to TGF-β in lung cancers occurs mostly through the loss of TGF-β type II receptor expression (TβRII). However, little is known about the mechanism of down-regulation of TβRII and how histone deacetylase (HDAC) inhibitors (HDIs) can restore TGF-β-induced tumor suppressor function. Here we show that HDIs restore TβRII expression and that DNA hypermethylation has no effect on TβRII promoter activity in lung cancer cell lines. TGF-β-induced tumor suppressor function is restored by HDIs in lung cancer cell lines that lack TβRII expression. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by either activated Ras or epidermal growth factor signaling is involved in the down-regulation of TβRII through histone deacetylation. We have immunoprecipitated the protein complexes by biotinylated oligonucleotides corresponding to the HDI-responsive element in the TβRII promoter (-127/-75) and identified the proteins/factors using proteomics studies. The transcriptional repressor Meis1/2 is involved in repressing the TβRII promoter activity, possibly through its recruitment by Sp1 and NF-YA to the promoter. These results suggest a mechanism for the downregulation of TβRII in lung cancer and that TGF-β tumor suppressor functions may be restored by HDIs in lung cancer patients with the loss of TβRII expression.
Collapse
|
26
|
Clocchiatti A, Florean C, Brancolini C. Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis. J Cell Mol Med 2012; 15:1833-46. [PMID: 21435179 PMCID: PMC3918040 DOI: 10.1111/j.1582-4934.2011.01321.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of gene expression. Specific structural features and distinct regulative mechanisms rationalize the separation of the 18 different human HDACs into four classes. The class II comprises a heterogeneous group of nuclear and cytosolic HDACs involved in the regulation of several cellular functions, not just limited to transcriptional repression. In particular, HDAC4, 5, 7 and 9 belong to the subclass IIa and share many transcriptional partners, including members of the MEF2 family. Genetic studies in mice have disclosed the fundamental contribution of class IIa HDACs to specific developmental/differentiation pathways. In this review, we discuss about the recent literature, which hints a role of class IIa HDACs in the development, growth and aggressiveness of cancer cells.
Collapse
Affiliation(s)
- Andrea Clocchiatti
- Dipartimento di Scienze Mediche e Biologiche and MATI Center of Excellence Università degli Studi di Udine, Udine, Italy
| | | | | |
Collapse
|
27
|
Abstract
Agents commonly used in cancer chemotherapy rely on the induction of cell death via apoptosis, mitotic catastrophe, premature senescence and autophagy. Chemoresistance is the major factor limiting long-term treatment success in patients with hepatocellular carcinoma (HCC). Recent studies have revealed that the hepatitis B virus X protein (HBx) exerts anti-apoptotic effects, resulting in an increased drug resistance in HCC cells. In this study, we showed that etoposide treatment activated caspase-8 and caspase-3, leading to cleavages of p53, Bid and PARP, which subsequently induced apoptosis. Furthermore, p53 and Bid were accumulated in cytoplasm following etoposide treatment. However, HBx significantly attenuated etoposide-induced cell death. In HBx-expressing cells, despite the translocation of p53 and Bid to cytoplasm, the activation of caspases was inhibited. Furthermore, the phosphorylation of extracellular-signal-regulated kinase (ERK) was markedly increased in HBx-expressing cells. Moreover, the pretreatment with trichostatin A (TSA, a histone deacetylase inhibitor) or TSA in combination with etoposide significantly sensitized HCC cells to apoptosis by inhibiting ERK phosphorylation, reactivating caspases and PARP, and inducing translocation of p53 and Bid to cytoplasm. Collectively, HBx reduces the sensitivity of HCC cells to chemotherapy. TSA in combination with etoposide can significantly overcome the increased resistance of HBx-expressing HCC cells to chemotherapy.
Collapse
|
28
|
Cernotta N, Clocchiatti A, Florean C, Brancolini C. Ubiquitin-dependent degradation of HDAC4, a new regulator of random cell motility. Mol Biol Cell 2011; 22:278-89. [PMID: 21118993 PMCID: PMC3020922 DOI: 10.1091/mbc.e10-07-0616] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 11/24/2022] Open
Abstract
HDAC4 (histone deacetylase 4) belongs to class IIa of histone deacetylases, which groups important regulators of gene expression, controlling pleiotropic cellular functions. Here we show that, in addition to the well-defined nuclear/cytoplasmic shuttling, HDAC4 activity is modulated by the ubiquitin-proteasome system. Serum starvation elicits the poly-ubiquitination and degradation of HDAC4 in nontransformed cells. Phosphorylation of serine 298 within the PEST1 sequence plays an important role in the control of HDAC4 stability. Serine 298 lies within a glycogen synthase kinase 3β consensus sequence, and removal of growth factors fails to trigger HDAC4 degradation in cells deficient in this kinase. GSK3β can phosphorylate HDAC4 in vitro, and phosphorylation of serine 302 seems to play the role of priming phosphate. We have also found that HDAC4 modulates random cell motility possibly through the regulation of KLF2 transcription. Apoptosis, autophagy, cell proliferation, and growth arrest were unaffected by HDAC4. Our data suggest a link between regulation of HDAC4 degradation and the control of cell motility as operated by growth factors.
Collapse
Affiliation(s)
| | | | | | - Claudio Brancolini
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Università degli Studi di Udine, Udine 33100, Italy
| |
Collapse
|
29
|
Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1619-33. [PMID: 21167873 DOI: 10.1016/j.bbamcr.2010.12.012] [Citation(s) in RCA: 631] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
The MAPK cascades are central signaling pathways that regulate a wide variety of stimulated cellular processes, including proliferation, differentiation, apoptosis and stress response. Therefore, dysregulation, or improper functioning of these cascades, is involved in the induction and progression of diseases such as cancer, diabetes, autoimmune diseases, and developmental abnormalities. Many of these physiological, and pathological functions are mediated by MAPK-dependent transcription of various regulatory genes. In order to induce transcription and the consequent functions, the signals transmitted via the cascades need to enter the nucleus, where they may modulate the activity of transcription factors and chromatin remodeling enzymes. In this review, we briefly cover the composition of the MAPK cascades, as well as their physiological and pathological functions. We describe, in more detail, many of the important nuclear activities of the MAPK cascades, and we elaborate on the mechanisms of ERK1/2 translocation into the nucleus, including the identification of their nuclear translocation sequence (NTS) binding to the shuttling protein importin7. Overall, the nuclear translocation of signaling components may emerge as an important regulatory layer in the induction of cellular processes, and therefore, may serve as targets for therapeutic intervention in signaling-related diseases such as cancer and diabetes. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Alexander Plotnikov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Isreal
| | | | | | | |
Collapse
|
30
|
Protein kinase C-related kinase targets nuclear localization signals in a subset of class IIa histone deacetylases. FEBS Lett 2010; 584:1103-10. [DOI: 10.1016/j.febslet.2010.02.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/05/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
31
|
Awale M, Kumar V, Saravanan P, Mohan CG. Homology modeling and atomic level binding study of Leishmania MAPK with inhibitors. J Mol Model 2009; 16:475-88. [PMID: 19649663 DOI: 10.1007/s00894-009-0565-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 07/08/2009] [Indexed: 12/11/2022]
Abstract
The current therapy for leishmaniasis is not sufficient and it has two severe drawbacks, host-toxicity and drug resistance. The substantial knowledge of parasite biology is not yet translating into novel drugs for leishmaniasis. Based on this observation, a 3D structural model of Leishmania mitogen-activated protein kinase (MAPK) homologue has been developed, for the first time, by homology modeling and molecular dynamics simulation techniques. The model provided clear insight in its structure features, i.e. ATP binding pocket, phosphorylation lip, and common docking site. Sequence-structure homology recognition identified Leishmania CRK3 (LCRK3) as a distant member of the MAPK superfamily. Multiple sequence alignment and 3D structure model provided the putative ATP binding pocket of Leishmania with respect to human ERK2 and LCRK3. This analysis was helpful in identifying the binding sites and molecular function of the Leishmania specific MAPK homologue. Molecular docking study was performed on this 3D structural model, using different classes of competitive ATP inhibitors of LCRK3, to check whether they exhibit affinity and could be identified as Leishmania MAPK specific inhibitors. It is well known that MAP kinases are extracellular signal regulated kinases ERK1 and ERK2, which are components of the Ras-MAPK signal transduction pathway which is complexed with HDAC4 protein, and their inhibition is of significant therapeutic interest in cancer biology. In order to understand the mechanism of action, docking of indirubin class of molecules to the active site of histone deacetylase 4 (HDAC4) protein is performed, and the binding affinity of the protein-ligand interaction was computed. The new structural insights obtained from this study are all consistent with the available experimental data, suggesting that the homology model of the Leishmania MAPK and its ligand interaction modes are reasonable. Further the comparative molecular electrostatic potential and cavity depth analysis of Leishmania MAPK and human ERK2 suggested several important differences in its ATP binding pocket. Such differences could be exploited in the future for designing Leishmania specific MAPK inhibitors.
Collapse
Affiliation(s)
- Mahendra Awale
- National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | | | | | | |
Collapse
|
32
|
Cadot B, Brunetti M, Coppari S, Fedeli S, de Rinaldis E, Dello Russo C, Gallinari P, De Francesco R, Steinkühler C, Filocamo G. Loss of histone deacetylase 4 causes segregation defects during mitosis of p53-deficient human tumor cells. Cancer Res 2009; 69:6074-82. [PMID: 19622775 DOI: 10.1158/0008-5472.can-08-2796] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the role of histone deacetylase 4 (HDAC4) using RNA interference (RNAi) and knockout cells to specifically address its role in cell cycle progression in tumor and normal cells. Ablation of HDAC4 led to growth inhibition in human tumor cells but not to detectable effects in normal human dermal fibroblasts (NHDF) or myelopoietic progenitors. HDAC4-/+ or HDAC4-/- murine embryonic fibroblasts showed no detectable growth defects. On the other hand, HDAC4 RNAi in HeLa cells produced mitotic arrest followed by caspase-dependent apoptosis. Mitotically arrested cells showed chromosome segregation defects. Even though the growth of both p53-wild-type and p53-null tumor cells were affected by HDAC4 ablation, segregation defects were observed only in p53-null cells. HDAC4 associates with the PP2A-B56 regulatory subunit, which is known to be involved in chromosome segregation, and RNAi of either the structural subunit A or the regulatory subunit B56 of PP2A also caused chromosome segregation defects. We conclude that HDAC4 is required for cell cycle progression of tumor cells by multiple mechanisms, one of which seems to be specific to p53-deficient cells through chromosome segregation defects. On the contrary, HDAC4 is not required for the progression of NHDF. We therefore suggest that systemic selective interference with the expression or function of HDAC4 is expected to have a significant therapeutic window, in particular, for p53-deficient tumors.
Collapse
Affiliation(s)
- Bruno Cadot
- Department of Oncology, IRBM-Merck Research Laboratories, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Floris G, Debiec-Rychter M, Sciot R, Stefan C, Fieuws S, Machiels K, Atadja P, Wozniak A, Faa G, Schöffski P. High efficacy of panobinostat towards human gastrointestinal stromal tumors in a xenograft mouse model. Clin Cancer Res 2009; 15:4066-76. [PMID: 19509176 DOI: 10.1158/1078-0432.ccr-08-2588] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Histone deacetylase inhibitors have emerged as potent anticancer compounds. Using a nude-mouse xenograft model, for the first time we evaluated the response of human gastrointestinal stromal tumors (GIST) carrying different oncogenic KIT mutations to panobinostat (LBH589), administered single or in combination with imatinib. EXPERIMENTAL DESIGN We grafted the human GIST882 cell line with KIT exon 13 mutation and two biopsies from patients radiologically progressing under imatinib showing KIT exon11 and KIT exon9 mutations, respectively. Our study included 4 groups: A (n = 9; control), B (n = 10; panobinostat 10 mg/kg daily, i.p.), C (n = 9; imatinib 150 mg/kg bidaily, p.o), and D (n = 8; combination panobinostat-imatinib, same dose/schedule as above). Treatment lasted 12 days. Tumor size was measured regularly using standard variables. Histopathological assessment was by H&E, and immunohistochemically with KIT, cleaved caspase-3, Ki-67, and histone acetylation staining. RESULTS Overall, GIST xenografts responded rapidly to panobinostat as indicated by tumor regression, necrosis, hemorrhages, fibrosis, and/or myxoid degeneration, remarkable apoptosis, and substantial decline of cell proliferation. H3 and H4 acetylation increased significantly from control level in all treated groups. The combination of panobinostat and imatinib further enhanced most of the assessed parameters. CONCLUSIONS We show for the first time potential therapeutic activity of panobinostat in human GISTs, in vivo. Our results warrant further exploration of histone deacetylase inhibitors for the treatment of advanced GISTs. Our study is also the first one on human GIST mouse xenografts established using patient biopsies.
Collapse
Affiliation(s)
- Giuseppe Floris
- Department of General Medical Oncology, Laboratory of Experimental Oncology, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
14-3-3 regulates the nuclear import of class IIa histone deacetylases. Biochem Biophys Res Commun 2008; 377:852-6. [PMID: 18952052 DOI: 10.1016/j.bbrc.2008.10.079] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
Class IIa histone deacetylases (HDACs) form complexes with a class of transcriptional repressors in the nucleus. While screening for compounds that could block the association of HDAC4 with the BTB domain-containing transcriptional repressor Bach2, we discovered that phorbol 12-myristate 13-acetate (PMA) induced the cytoplasmic retention of HDAC4 mutants lacking a nuclear export signal (NES). Although PMA treatment and PKD overexpression has been proposed to facilitate the nuclear export of class IIa HDACs by creating 14-3-3 binding sites containing phosphoserines, our experiments using HDAC mutants demonstrated that PMA greatly reduces nuclear import. PMA treatment repressed the NLS activity in a manner dependent on 14-3-3 binding. These results suggest that nuclear HDAC4 is not tethered in the nucleus, but instead shuttles between the nucleus and the cytoplasm. Phosphorylation-induced 14-3-3 binding biases the balance of nucleo-cytoplasmic shuttling toward the cytoplasm by inhibiting nuclear import.
Collapse
|
35
|
Wakamatsu N, Collins JB, Parker JS, Tessema M, Clayton NP, Ton TVT, Hong HHL, Belinsky S, Devereux TR, Sills RC, Lahousse SA. Gene Expression Studies Demonstrate that the K-ras/Erk MAP Kinase Signal Transduction Pathway and Other Novel Pathways Contribute to the Pathogenesis of Cumene-induced Lung Tumors. Toxicol Pathol 2008; 36:743-52. [DOI: 10.1177/0192623308320801] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K- ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K- ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K- ras mutations compared to tumors without K- ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K- ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K- ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K- ras, which results in increased Erk MAP kinase signaling and modification of histones.
Collapse
Affiliation(s)
- Nobuko Wakamatsu
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jennifer B. Collins
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Mathewos Tessema
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Natasha P. Clayton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Thai-Vu T. Ton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hue-Hua L. Hong
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Steven Belinsky
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Theodora R. Devereux
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Stephanie A. Lahousse
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
36
|
Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D, Figueroa M, Melnick A, Kao GD, Augenlicht LH, Mariadason JM. HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 2008; 19:4062-75. [PMID: 18632985 DOI: 10.1091/mbc.e08-02-0139] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The class II Histone deacetylase (HDAC), HDAC4, is expressed in a tissue-specific manner, and it represses differentiation of specific cell types. We demonstrate here that HDAC4 is expressed in the proliferative zone in small intestine and colon and that its expression is down-regulated during intestinal differentiation in vivo and in vitro. Subcellular localization studies demonstrated HDAC4 expression was predominantly nuclear in proliferating HCT116 cells and relocalized to the cytoplasm after cell cycle arrest. Down-regulating HDAC4 expression by small interfering RNA (siRNA) in HCT116 cells induced growth inhibition and apoptosis in vitro, reduced xenograft tumor growth, and increased p21 transcription. Conversely, overexpression of HDAC4 repressed p21 promoter activity. p21 was likely a direct target of HDAC4, because HDAC4 down-regulation increased p21 mRNA when protein synthesis was inhibited by cycloheximide. The importance of p21 repression in HDAC4-mediated growth promotion was demonstrated by the failure of HDAC4 down-regulation to induce growth arrest in HCT116 p21-null cells. HDAC4 down-regulation failed to induce p21 when Sp1 was functionally inhibited by mithramycin or siRNA-mediated down-regulation. HDAC4 expression overlapped with that of Sp1, and a physical interaction was demonstrated by coimmunoprecipitation. Chromatin immunoprecipitation (ChIP) and sequential ChIP analyses demonstrated Sp1-dependent binding of HDAC4 to the proximal p21 promoter, likely directed through the HDAC4-HDAC3-N-CoR/SMRT corepressor complex. Consistent with increased transcription, HDAC4 or SMRT down-regulation resulted in increased histone H3 acetylation at the proximal p21 promoter locus. These studies identify HDAC4 as a novel regulator of colon cell proliferation through repression of p21.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, NY 10467, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gupta MP, Samant SA, Smith SH, Shroff SG. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem 2008; 283:10135-46. [PMID: 18250163 DOI: 10.1074/jbc.m710277200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reversible acetylation of lysine residues within a protein is considered a biologically relevant modification that rivals phosphorylation ( Kouzarides, T. (2000) EMBO J. 19, 1176-1179 ). The enzymes responsible for such protein modification are called histone acetyltransferases (HATs) and deacetylases (HDACs). A role of protein phosphorylation in regulating muscle contraction is well established ( Solaro, R. J., Moir, A. J., and Perry, S. V. (1976) Nature 262, 615-617 ). Here we show that reversible protein acetylation carried out by HATs and HDACs also plays a role in regulating the myofilament contractile activity. We found that a Class II HDAC, HDAC4, and an HAT, PCAF, associate with cardiac myofilaments. Primary cultures of cardiomyocytes as well as mouse heart sections examined by immunohistochemical and electron microscopic analyses revealed that both HDAC4 and PCAF associate with the Z-disc and I- and A-bands of cardiac sarcomeres. Increased acetylation of sarcomeric proteins by HDAC inhibition (using class I and II HDAC inhibitors or anti-HDAC4 antibody) enhanced the myofilament calcium sensitivity. We identified the Z-disc-associated protein, MLP, a sensor of cardiac mechanical stretch, as an acetylated target of PCAF and HDAC4. We also show that trichostatin-A, a class I and II HDAC inhibitor, increases myofilament calcium sensitivity of wild-type, but not of MLP knock-out mice, thus demonstrating a role of MLP in acetylation-dependent increased contractile activity of myofilaments. These studies provide the first evidence that HATs and HDACs play a role in regulation of muscle contraction.
Collapse
Affiliation(s)
- Mahesh P Gupta
- Department of Surgery, Committee on Molecular Medicine, Biological Science Division, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
38
|
Paroni G, Cernotta N, Dello Russo C, Gallinari P, Pallaoro M, Foti C, Talamo F, Orsatti L, Steinkühler C, Brancolini C. PP2A regulates HDAC4 nuclear import. Mol Biol Cell 2008; 19:655-67. [PMID: 18045992 PMCID: PMC2230598 DOI: 10.1091/mbc.e07-06-0623] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/12/2007] [Accepted: 11/20/2007] [Indexed: 11/11/2022] Open
Abstract
Different signal-regulated serine/threonine kinases phosphorylate class II histone deacetylases (HDACs) to promote nuclear export, cytosolic accumulation, and activation of gene transcription. However, little is known about mechanisms operating in the opposite direction, which, possibly through phosphatases, should promote class II HDACs nuclear entry and subsequent gene repression. Here we show that HDAC4 forms a complex with the PP2A holoenzyme C alpha, A alpha, B/PR55 alpha. In vitro and in vivo binding studies demonstrate that the N-terminus of HDAC4 interacts with the catalytic subunit of PP2A. HDAC4 is dephosphorylated by PP2A and experiments using okadaic acid or RNA interference have revealed that PP2A controls HDAC4 nuclear import. Moreover, we identified serine 298 as a putative phosphorylation site important for HDAC4 nuclear import. The HDAC4 mutant mimicking phosphorylation of serine 298 is defective in nuclear import. Mutation of serine 298 to alanine partially rescues the defect in HDAC4 nuclear import observed in cells with down-regulated PP2A. These observations suggest that PP2A, via the dephosphorylation of multiple serines including the 14-3-3 binding sites and serine 298, controls HDAC4 nuclear import.
Collapse
Affiliation(s)
- Gabriela Paroni
- *Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, 33100 Udine, Italy; and
| | - Nadia Cernotta
- *Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, 33100 Udine, Italy; and
| | | | | | | | - Carmela Foti
- *Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, 33100 Udine, Italy; and
| | - Fabio Talamo
- IRBM/Merck Research Laboratories Rome, 00040 Pomezia, Italy
| | - Laura Orsatti
- IRBM/Merck Research Laboratories Rome, 00040 Pomezia, Italy
| | | | - Claudio Brancolini
- *Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, 33100 Udine, Italy; and
| |
Collapse
|
39
|
Pillai JB, Chen M, Rajamohan SB, Samant S, Pillai VB, Gupta M, Gupta MP. Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am J Physiol Heart Circ Physiol 2008; 294:H1388-97. [PMID: 18192211 DOI: 10.1152/ajpheart.01339.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fructose feeding has been shown to induce the cardiac alpha-myosin heavy chain (MHC) expression and protect the heart from ischemia- and reperfusion-mediated cell injury. This study was designed to investigate the mechanism involved in the effect of this sugar on MHC gene expression and cardiac protection. Adult mice were fed with a 6-propyl-2-thiouracil (PTU) diet or PTU combined with a fructose-rich diet. PTU treatment made animals hypothyroid and that resulted in total replacement of cardiac alpha-MHC with the beta-MHC isoform. Addition of fructose in the PTU diet led to reexpression of the alpha-MHC isoform to a significant level. Similar induction of alpha-MHC expression was also seen when PTU diet was combined with resveratrol, an agonist of sirtuin (SIRT) 1 deacetylase. Analysis of heart lysate of these animals indicated that fructose feeding augmented the NAD-to-NADH ratio and the cardiac SIRT1 levels, thus suggesting a role of SIRT1 in fructose-mediated activation of alpha-MHC isoform. To analyze a direct effect of SIRT1 on MHC isoform expression, we generated transgenic mice expressing SIRT1 in the heart. Treatment of these transgenic mice with PTU diet did not lead to disappearance of alpha-MHC, as it did in the nontransgenic animals. SIRT1 overexpression also activated the alpha-MHC gene promoter in transient transfection assays, thus confirming a role of SIRT1 in the induction of alpha-MHC expression. Fructose feeding also attenuated the MHC isoform shift and blocked the cardiac hypertrophy response associated with pressure overload, which was again associated with the induction of cardiac SIRT1 levels. These results demonstrate that fructose feeding protects the heart by induction of the SIRT1 deacetylase and highlight its role in the induction of alpha-MHC gene expression.
Collapse
Affiliation(s)
- Jyothish B Pillai
- Division of Cardiothoracic Surgery, Department of Surgery, Committee on Molecular Medicine and Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Staudinger JL, Lichti K. Cell signaling and nuclear receptors: new opportunities for molecular pharmaceuticals in liver disease. Mol Pharm 2008; 5:17-34. [PMID: 18159925 PMCID: PMC2387130 DOI: 10.1021/mp700098c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver-enriched nuclear receptors (NRs) collectively function as metabolic and toxicological "sensors" that mediate liver-specific gene-activation in mammals. NR-mediated gene-environment interaction regulates important steps in the hepatic uptake, metabolism, and excretion of glucose, fatty acids, lipoproteins, cholesterol, bile acids, and xenobiotics. Hence, liver-enriched NRs play pivotal roles in the overall control of energy homeostasis in mammals. While it is well-recognized that ligand-binding is the primary mechanism behind activation of NRs, recent research reveals that multiple signal transduction pathways modulate NR-function in liver. The interface between specific signal transduction pathways and NRs helps to determine their overall responsiveness to various environmental and physiological stimuli. In general, phosphorylation of hepatic NRs regulates multiple biological parameters including their transactivation capacity, DNA binding, subcellular location, capacity to interact with protein-cofactors, and protein stability. Certain pathological conditions including inflammation, morbid obesity, hyperlipidemia, atherosclerosis, insulin resistance, and type-2 diabetes are known to modulate selected signal transduction pathways in liver. This review will focus upon recent insights regarding the molecular mechanisms that comprise the interface between disease-mediated activation of hepatic signal transduction pathways and liver-enriched NRs. This review will also highlight the exciting opportunities presented by this new knowledge to develop novel molecular and pharmaceutical strategies for combating these increasingly prevalent human diseases.
Collapse
Affiliation(s)
- Jeff L Staudinger
- University of Kansas, Department of Pharmacology and Toxicology, 1251 Wescoe Hall Dr, 5038 Malott Hall, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
41
|
Histone deacetylase inhibitors: a novel class of anti-cancer agents on its way to the market. PROGRESS IN MEDICINAL CHEMISTRY 2008; 46:205-80. [PMID: 18381127 DOI: 10.1016/s0079-6468(07)00005-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Ma X, Dang X, Claus P, Hirst C, Fandrich RR, Jin Y, Grothe C, Kirshenbaum LA, Cattini PA, Kardami E. Chromatin compaction and cell death by high molecular weight FGF-2 depend on its nuclear localization, intracrine ERK activation, and engagement of mitochondria. J Cell Physiol 2007; 213:690-8. [PMID: 17503459 DOI: 10.1002/jcp.21139] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fibroblast growth factor 2 (FGF-2) is produced as CUG-initiated, 22-34 kDa or AUG-initiated 18 kDa isoforms (hi- and lo-FGF-2, respectively), with potentially distinct functions. We report that expression of hi-FGF-2 in HEK293 cells elicited chromatin compaction preceding cell death with apoptotic features. Nuclear localization of the intact protein was required as expression of a non-nuclear hi-FGF-2 mutant failed to elicit chromatin compaction. Equally ineffective, despite nuclear localization, was the over-expression of the 18 kDa core sequence (lo-FGF-2). Chromatin compaction by hi-FGF-2 was accompanied by increased cytosolic cytochrome C, and was attenuated either by over-expression of Bcl-2 or by a peptide inhibitor of the pro-apoptotic protein Bax. In addition hi-FGF-2 elicited sustained activation of total and nuclear extracellular signal regulated kinase (ERK1/2) by an intracrine route, as it was not prevented by neutralizing anti-FGF-2 antibodies. Inhibition of the ERK1/2 activating pathway by dominant negative upstream activating kinase, or by PD 98059, prevented chromatin compaction by hi-FGF-2. ERK1/2 activation was not affected by the Bax-inhibiting peptide suggesting that it occurred upstream of mitochondrial involvement. We conclude that the hi-FGF-2-induced chromatin compaction and cell death requires its nuclear localization, intracrine ERK1/2 activation and mitochondrial engagement.
Collapse
Affiliation(s)
- Xin Ma
- Institute of Cardiovascular Sciences, SBRC, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In the last decade, the identification of enzymes that regulate acetylation of histones and nonhistone proteins has revealed the key role of dynamic acetylation and deacetylation in various cellular processes. Mammalian histone deacetylases (HDACs), which catalyse the removal of acetyl groups from lysine residues, are grouped into three classes, on the basis of similarity to yeast counterparts. An abundance of experimental evidence has established class IIa HDACs as crucial transcriptional regulators of various developmental and differentiation processes. In the past 5 years, a tremendous effort has been dedicated to characterizing the regulation of these enzymes. In this review, we summarize the latest discoveries in the field and discuss the molecular and structural determinants of class IIa HDACs regulation. Finally, we emphasize that comprehension of the mechanisms underlying class IIa HDAC functions is essential for potential therapeutic applications.
Collapse
Affiliation(s)
- M Martin
- Cellular and Molecular Biology Unit, FUSAGx, Gembloux, Belgium
| | | | | |
Collapse
|
44
|
Whitmarsh AJ. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1285-98. [PMID: 17196680 DOI: 10.1016/j.bbamcr.2006.11.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are key mediators of eukaryotic transcriptional responses to extracellular signals. These pathways control gene expression in a number of ways including the phosphorylation and regulation of transcription factors, co-regulatory proteins and chromatin proteins. MAPK pathways therefore target multiple components of transcriptional complexes at gene promoters and can regulate DNA binding, protein stability, cellular localization, transactivation or repression, and nucleosome structure. Recent work has uncovered further complexities in the mechanisms by which MAPKs control gene expression including their roles as integral components of transcription factor complexes and their interplay with other post-translational modification pathways. In this review I discuss these advances with particular focus on how MAPK signals are integrated by transcription factor complexes to provide specific transcriptional responses and how this relates to cellular function.
Collapse
Affiliation(s)
- Alan J Whitmarsh
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
45
|
Paroni G, Fontanini A, Cernotta N, Foti C, Gupta MP, Yang XJ, Fasino D, Brancolini C. Dephosphorylation and caspase processing generate distinct nuclear pools of histone deacetylase 4. Mol Cell Biol 2007; 27:6718-32. [PMID: 17636017 PMCID: PMC2099224 DOI: 10.1128/mcb.00853-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From the nucleus, histone deacetylase 4 (HDAC4) regulates a variety of cellular processes, including growth, differentiation, and survival, by orchestrating transcriptional changes. Extracellular signals control its repressive influence mostly through regulating its nuclear-cytoplasmic shuttling. In particular, specific posttranslational modifications such as phosphorylation and caspase-mediated proteolytic processing operate on HDAC4 to promote its nuclear accumulation or export. To understand the signaling properties of this deacetylase, we investigated its cell death-promoting activity and the transcriptional repression potential of different mutants that accumulate in the nucleus. Here we show that, compared to that of other nuclear forms of HDAC4, a caspase-generated nuclear fragment exhibits a stronger cell death-promoting activity coupled with increased repressive effect on Runx2- or SRF-dependent transcription. However, this mutant displays reduced repressive action on MEF2C-driven transcription. Photobleaching experiments and quantitative analysis of the raw data, based on a two-binding-state compartmental model, demonstrate the existence of two nuclear pools of HDAC4 with different chromatin-binding properties. The caspase-generated fragment is weakly bound to chromatin, whereas an HDAC4 mutant defective in 14-3-3 binding or the wild-type HDAC5 protein forms a more stable complex. The tightly bound species show an impaired ability to induce cell death and repress Runx2- or SRF-dependent transcription less efficiently. We propose that, through specific posttranslation modifications, extracellular signals control two distinct nuclear pools of HDAC4 to differentially dictate cell death and differentiation. These two nuclear pools of HDAC4 are characterized by different repression potentials and divergent dynamics of chromatin interaction.
Collapse
Affiliation(s)
- Gabriela Paroni
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia, and MATI Center of Excellence, Università di Udine, Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lim S, Luo M, Koh M, Yang M, bin Abdul Kadir MN, Tan JH, Ye Z, Wang W, Melamed P. Distinct mechanisms involving diverse histone deacetylases repress expression of the two gonadotropin beta-subunit genes in immature gonadotropes, and their actions are overcome by gonadotropin-releasing hormone. Mol Cell Biol 2007; 27:4105-20. [PMID: 17371839 PMCID: PMC1900021 DOI: 10.1128/mcb.00248-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced in the embryonic pituitary in response to delivery of the hypothalamic gonadotropin releasing hormone (GnRH). GnRH has a pivotal role in reestablishing gonadotropin levels at puberty in primates, and for many species with extended reproductive cycles, these are reinitiated in response to central nervous system-induced GnRH release. Thus, a clear role is evident for GnRH in overcoming repression of these genes. Although the mechanisms through which GnRH actively stimulates LH and FSH beta-subunit (FSHbeta) gene transcription have been described in some detail, there is currently no information on how GnRH overcomes repression in order to terminate reproductively inactive stages. We show here that GnRH overcomes histone deacetylase (HDAC)-mediated repression of the gonadotropin beta-subunit genes in immature gonadotropes. The repressive factors associated with each of these genes comprise distinct sets of HDACs and corepressors which allow for differentially regulated derepression of these two genes, produced in the same cell by the same regulatory hormone. We find that GnRH activation of calcium/calmodulin-dependent protein kinase I (CaMKI) plays a crucial role in the derepression of the FSHbeta gene involving phosphorylation of several class IIa HDACs associated with both the FSHbeta and Nur77 genes, and we propose a model for the mechanisms involved. In contrast, derepression of the LH beta-subunit gene is not CaMK dependent. This demonstration of HDAC-mediated repression of these genes could explain the temporal shut-down of reproductive function at certain periods of the life cycle, which can easily be reversed by the actions of the hypothalamic regulatory hormone.
Collapse
Affiliation(s)
- Stefan Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117542, Republic of Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schäfer R, Tchernitsa OI, Györffy B, Serra V, Abdul-Ghani R, Lund P, Sers C. Functional transcriptomics: an experimental basis for understanding the systems biology for cancer cells. ACTA ACUST UNITED AC 2007; 47:41-62. [PMID: 17335873 DOI: 10.1016/j.advenzreg.2006.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Reinhold Schäfer
- Laboratory of Molecular Tumor Pathology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Yoshida T, Gan Q, Shang Y, Owens GK. Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am J Physiol Cell Physiol 2006; 292:C886-95. [PMID: 16987998 DOI: 10.1152/ajpcell.00449.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A hallmark of smooth muscle cell (SMC) phenotypic switching is suppression of SMC marker gene expression. Although myocardin has been shown to be a key regulator of this process, the role of its related factors, MKL1 and MKL2, in SMC phenotypic switching remains unknown. The present studies were aimed at determining if: 1) MKL factors contribute to the expression of SMC marker genes in cultured SMCs; and 2) platelet-derived growth factor-BB (PDGF-BB)-induced repression of SMC marker genes is mediated by suppression of MKL factors. Results of gain- and loss-of-function experiments showed that MKL factors regulated the expression of single and multiple CArG [CC(AT-rich)(6)GG]-containing SMC marker genes, such as smooth muscle (SM) alpha-actin and telokin, but not CArG-independent SMC marker genes such as smoothelin-B. Treatment with PDGF-BB reduced the expression of CArG-containing SMC marker genes, as well as myocardin expression in cultured SMCs, while it had no effect on expression of MKL1 and MKL2. However, of interest, PDGF-BB induced the dissociation of MKL factors from the CArG-containing region of SMC marker genes, as determined by chromatin immunoprecipitation assays. This dissociation was caused by the competition between MKL factors and phosphorylated Elk-1 at early time points, but subsequently by the reduction in acetylated histone H4 levels at these promoter regions mediated by histone deacetylases, HDAC2, HDAC4, and HDAC5. Results provide novel evidence that PDGF-BB-induced repression of SMC marker genes is mediated through combinatorial mechanisms, including downregulation of myocardin expression and inhibition of the association of myocardin/MKL factors with CArG-containing SMC marker gene promoters.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia, MR5 Rm. 1220, 415 Lane Road, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
49
|
Polychronopoulos S, Verykokakis M, Yazicioglu MN, Sakarellos-Daitsiotis M, Cobb MH, Mavrothalassitis G. The Transcriptional ETS2 Repressor Factor Associates with Active and Inactive Erks through Distinct FXF Motifs. J Biol Chem 2006; 281:25601-11. [PMID: 16799155 DOI: 10.1074/jbc.m605185200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional ETS2 repressor factor (ERF) is phosphorylated by Erks both in vivo and in vitro. This phosphorylation determines the subcellular localization and biological function of ERF. Here, we show that active and inactive Erk2 proteins bind ERF with high affinity through a hydrophobic pocket formed by the alphaF and alphaG helices and the activation loop of Erk2. We have identified two FXF motifs on ERF that mediate the specific interaction with Erks. One of these motifs is utilized only by active Erks, whereas the other mediates the association with inactive Erks but also contributes to interaction with active Erks. Mutation of the phenylalanines of these motifs to alanines resulted in decreased association and phosphorylation of ERF by Erks both in cells and in vitro. ERF proteins carrying these mutations exhibited increased nuclear accumulation and increased inhibition of cellular proliferation. Expression of ERF regions harboring these motifs could inhibit Erk activity in cells. Our data suggest that, in the proper context, FXF motifs can mediate a strong and specific interaction not only with active but also inactive Erks and that these interactions determine protein function in vivo.
Collapse
Affiliation(s)
- Sarantis Polychronopoulos
- Medical School, University of Crete, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 710 03, Greece
| | | | | | | | | | | |
Collapse
|
50
|
Guo C, Mi J, Brautigan DL, Larner JM. ATM regulates ionizing radiation-induced disruption of HDAC1:PP1:Rb complexes. Cell Signal 2006; 19:504-10. [PMID: 17008050 DOI: 10.1016/j.cellsig.2006.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/11/2006] [Accepted: 08/13/2006] [Indexed: 01/03/2023]
Abstract
Ionizing radiation elicits signaling events that coordinate DNA repair and interruption of cell cycle progression. We previously demonstrated that ionizing radiation (IR) of cells activates nuclear protein phosphatase-1 (PP1) by promoting dephosphorylation of Thr320, an inhibitory site in the enzyme and that the ATM kinase is required for this response. We sought to identify potential targets of IR-activated PP1. Untreated and IR-treated Jurkat cells were labeled with (32)P orthophosphate, and nuclear extracts were subjected to microcystin affinity chromatography to recover phosphatase complexes that were analyzed by 2D-PAGE and mass spectrometry. Several proteins associated with protein phosphatases demonstrated a significant decrease in (32)P intensity following IR, and one of these was identified as HDAC1. Co-immunoprecipitation revealed complexes containing PP1 with HDAC1 and Rb in cell extracts. In response to IR, there was an ATM-dependent activation of PP1, dephosphorylation of HDAC1, dissociation of HDAC1-PP1-Rb complexes and increased HDAC1 activity. These results suggest that IR regulates HDAC1 phosphorylation and activity through ATM-dependent activation of PP1.
Collapse
Affiliation(s)
- Changyue Guo
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA 22908, United States
| | | | | | | |
Collapse
|