1
|
Sun Y, Bakhtiari S, Valente-Paterno M, Wu Y, Nishimura Y, Shen W, Law C, Dhaliwal J, Dai D, Bui KH, Zerges W. Chloroplast biogenesis involves spatial coordination of nuclear and organellar gene expression in Chlamydomonas. PLANT PHYSIOLOGY 2024; 196:112-123. [PMID: 38709497 PMCID: PMC11376380 DOI: 10.1093/plphys/kiae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
The localization of translation can direct the polypeptide product to the proper intracellular compartment. Our results reveal translation by cytosolic ribosomes on a domain of the chloroplast envelope in the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii). We show that this envelope domain of isolated chloroplasts retains translationally active ribosomes and mRNAs encoding chloroplast proteins. This domain is aligned with localized translation by chloroplast ribosomes in the translation zone, a chloroplast compartment where photosystem subunits encoded by the plastid genome are synthesized and assembled. Roles of localized translation in directing newly synthesized subunits of photosynthesis complexes to discrete regions within the chloroplast for their assembly are suggested by differences in localization on the chloroplast of mRNAs encoding either subunit of the light-harvesting complex II or the small subunit of Rubisco. Transcription of the chloroplast genome is spatially coordinated with translation, as revealed by our demonstration of a subpopulation of transcriptionally active chloroplast nucleoids at the translation zone. We propose that the expression of chloroplast proteins by the nuclear-cytosolic and organellar genetic systems is organized in spatially aligned subcompartments of the cytoplasm and chloroplast to facilitate the biogenesis of the photosynthetic complexes.
Collapse
Affiliation(s)
- Yi Sun
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Shiva Bakhtiari
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Melissa Valente-Paterno
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - Yanxia Wu
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Graduate School of Sciences, Koyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto-shi 606-8502, Japan
| | - Weike Shen
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Christopher Law
- Centre for Microscopy and Cell Imaging, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - James Dhaliwal
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Daniel Dai
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - William Zerges
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
2
|
Jin F, Chang Z. Uncovering the membrane-integrated SecA N protein that plays a key role in translocating nascent outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140865. [PMID: 36272538 DOI: 10.1016/j.bbapap.2022.140865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
Abstract
A large number of nascent polypeptides have to get across a membrane in targeting to the proper subcellular locations. The SecYEG protein complex, a homolog of the Sec61 complex in eukaryotic cells, has been viewed as the common translocon at the inner membrane for targeting proteins to three extracytoplasmic locations in Gram-negative bacteria, despite the lack of direct verification in living cells. Here, via unnatural amino acid-mediated protein-protein interaction analyses in living cells, in combination with genetic studies, we unveiled a hitherto unreported SecAN protein that seems to be directly involved in translocationg nascent outer membrane proteins across the plasma membrane; it consists of the N-terminal 375 residues of the SecA protein and exists as a membrane-integrated homooligomer. Our new findings place multiple previous observations related to bacterial protein targeting in proper biochemical and evolutionary contexts.
Collapse
Affiliation(s)
- Feng Jin
- State key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing 100871, China
| | - Zengyi Chang
- State key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Protein Science, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Uversky VN, Kulkarni P. Intrinsically disordered proteins: Chronology of a discovery. Biophys Chem 2021; 279:106694. [PMID: 34607199 DOI: 10.1016/j.bpc.2021.106694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Intrinsic disorder is a new reality that appears to penetrate every corner of modern protein science. It is difficult to imagine that only 20 years ago the situation was completely different, and almost nobody had heard about 'structure-less' but functional proteins. As a matter of fact, for many at that time, this idea was completely heretical when viewed in light of the then dominating lock-and-key model describing the protein structure-function relationship, where a unique amino acid sequence defines a unique crystal-like 3D structure that serves as a prerequisite for a unique function of a protein. It seems like the entire field of protein intrinsic disorder has magically emerged at the turn of the century due to a revelation to a small group of researchers. Although this may very well be true, literature shows that the first observations contradicting the lock-and-key view of protein functionality started to appear almost immediately after this model was proposed. The goal of this article is to provide a brief chronology (though admittedly a subjective one) of the events in the field of protein science that eventually culminated in the discovery of the protein intrinsic disorder phenomenon. The entire process represents a good example of the "dwarf standing on the shoulders of giants" (Latin: nanos gigantum humeris insidentes) metaphor, where the truth is discovered by building on previous discoveries.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700 Moscow region, Russia.
| | - Prakash Kulkarni
- Department of Medical Oncology, City of Hope National Medical Center, 1500 Duarte Rd, Duarte, CA, United States
| |
Collapse
|
4
|
Steinberg R, Origi A, Natriashvili A, Sarmah P, Licheva M, Walker PM, Kraft C, High S, Luirink J, Shi WQ, Helmstädter M, Ulbrich MH, Koch HG. Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. PLoS Biol 2020; 18:e3000874. [PMID: 32997663 PMCID: PMC7549839 DOI: 10.1371/journal.pbio.3000874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/12/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Small membrane proteins represent a largely unexplored yet abundant class of proteins in pro- and eukaryotes. They essentially consist of a single transmembrane domain and are associated with stress response mechanisms in bacteria. How these proteins are inserted into the bacterial membrane is unknown. Our study revealed that in Escherichia coli, the 27-amino-acid-long model protein YohP is recognized by the signal recognition particle (SRP), as indicated by in vivo and in vitro site-directed cross-linking. Cross-links to SRP were also observed for a second small membrane protein, the 33-amino-acid-long YkgR. However, in contrast to the canonical cotranslational recognition by SRP, SRP was found to bind to YohP posttranslationally. In vitro protein transport assays in the presence of a SecY inhibitor and proteoliposome studies demonstrated that SRP and its receptor FtsY are essential for the posttranslational membrane insertion of YohP by either the SecYEG translocon or by the YidC insertase. Furthermore, our data showed that the yohP mRNA localized preferentially and translation-independently to the bacterial membrane in vivo. In summary, our data revealed that YohP engages an unique SRP-dependent posttranslational insertion pathway that is likely preceded by an mRNA targeting step. This further highlights the enormous plasticity of bacterial protein transport machineries.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Princess M. Walker
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stephen High
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Joen Luirink
- Molecular Microbiology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wei. Q. Shi
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Martin Helmstädter
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian H. Ulbrich
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
LaBonte ML. Blobel and Sabatini's "Beautiful Idea": Visual Representations of the Conception and Refinement of the Signal Hypothesis. JOURNAL OF THE HISTORY OF BIOLOGY 2017; 50:797-833. [PMID: 28130697 DOI: 10.1007/s10739-016-9462-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 1971, Günter Blobel and David Sabatini proposed a novel and quite speculative schematic model to describe how proteins might reach the proper cellular location. According to their proposal, proteins destined to be secreted from the cell contain a "signal" to direct their release. Despite the fact that Blobel and Sabatini presented their signal hypothesis as a "beautiful idea" not grounded in experimental evidence, they received criticism from other scientists who opposed such speculation. Following the publication of the 1971 model, Blobel persisted in conducting experiments and revising the model to incorporate new data. In fact, over the period of 1975-1984, Blobel and colleagues published five subsequent schematic models of the signal hypothesis, each revised based on new laboratory evidence. I propose that the original 1971 model can be viewed as an epistemic creation. Additionally, analysis of the subsequent schematic diagrams over the period of 1975-1984 allows one to track Blobel's changing conception of an epistemic object over time. Furthermore, the entire series of schematic diagrams presented by Blobel from 1971 to 1984 allow one to visualize the initial conception and subsequent reworking of a scientific theory. In 1999, Blobel was awarded the Nobel Prize in Physiology or Medicine for his work on the signal hypothesis, which was ultimately supported by experimental evidence gathered after the speculative model was published.
Collapse
Affiliation(s)
- Michelle Lynne LaBonte
- The Department of the History of Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Abstract
Secretion is the cellular process present in every organism that delivers soluble proteins and cargoes to the extracellular space. In eukaryotes, conventional protein secretion (CPS) is the trafficking route that secretory proteins undertake when are transported from the endoplasmic reticulum (ER) to the Golgi apparatus (GA), and subsequently to the plasma membrane (PM) via secretory vesicles or secretory granules. This book chapter recalls the fundamental steps in cell biology research contributing to the elucidation of CPS; it describes the most prominent examples of conventionally secreted proteins in eukaryotic cells and the molecular mechanisms necessary to regulate each step of this process.
Collapse
|
7
|
Grou CP, Pinto MP, Mendes AV, Domingues P, Azevedo JE. The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Sci Rep 2015; 5:12836. [PMID: 26235645 PMCID: PMC4522658 DOI: 10.1038/srep12836] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/09/2015] [Indexed: 12/24/2022] Open
Abstract
Protein ubiquitination, a major post-translational modification in eukaryotes, requires an adequate pool of free ubiquitin. Cells maintain this pool by two pathways, both involving deubiquitinases (DUBs): recycling of ubiquitin from ubiquitin conjugates and processing of ubiquitin precursors synthesized de novo. Although many advances have been made in recent years regarding ubiquitin recycling, our knowledge on ubiquitin precursor processing is still limited, and questions such as when are these precursors processed and which DUBs are involved remain largely unanswered. Here we provide data suggesting that two of the four mammalian ubiquitin precursors, UBA52 and UBA80, are processed mostly post-translationally whereas the other two, UBB and UBC, probably undergo a combination of co- and post-translational processing. Using an unbiased biochemical approach we found that UCHL3, USP9X, USP7, USP5 and Otulin/Gumby/FAM105b are by far the most active DUBs acting on these precursors. The identification of these DUBs together with their properties suggests that each ubiquitin precursor can be processed in at least two different manners, explaining the robustness of the ubiquitin de novo synthesis pathway.
Collapse
Affiliation(s)
- Cláudia P Grou
- 1] Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal [2] Organelle Biogenesis and Function Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Manuel P Pinto
- 1] Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal [2] Organelle Biogenesis and Function Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Andreia V Mendes
- 1] Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal [2] Organelle Biogenesis and Function Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, UI-QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge E Azevedo
- 1] Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal [2] Organelle Biogenesis and Function Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal [3] Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Schekman R. [The genes and proteins which control the process of secretion]. Biol Aujourdhui 2015; 209:35-61. [PMID: 26115712 DOI: 10.1051/jbio/2015011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Baboo S, Bhushan B, Jiang H, Grovenor CRM, Pierre P, Davis BG, Cook PR. Most human proteins made in both nucleus and cytoplasm turn over within minutes. PLoS One 2014; 9:e99346. [PMID: 24911415 PMCID: PMC4050049 DOI: 10.1371/journal.pone.0099346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/13/2014] [Indexed: 12/25/2022] Open
Abstract
In bacteria, protein synthesis can be coupled to transcription, but in eukaryotes it is believed to occur solely in the cytoplasm. Using pulses as short as 5 s, we find that three analogues – L-azidohomoalanine, puromycin (detected after attaching fluors using ‘click’ chemistry or immuno-labeling), and amino acids tagged with ‘heavy’ 15N and 13C (detected using secondary ion mass spectrometry) – are incorporated into the nucleus and cytoplasm in a process sensitive to translational inhibitors. The nuclear incorporation represents a significant fraction of the total, and labels in both compartments have half-lives of less than a minute; results are consistent with most newly-made peptides being destroyed soon after they are made. As nascent RNA bearing a premature termination codon (detected by fluorescence in situ hybridization) is also eliminated by a mechanism sensitive to a translational inhibitor, the nuclear turnover of peptides is probably a by-product of proof-reading the RNA for stop codons (a process known as nonsense-mediated decay). We speculate that the apparently-wasteful turnover of this previously-hidden (‘dark-matter’) world of peptide is involved in regulating protein production.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Bhaskar Bhushan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Haibo Jiang
- Department of Materials, University of Oxford, Oxford, United Kingdom
| | | | - Philippe Pierre
- Centre d′Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
- Institut National de la Santé et de la Recherche Médicale, U1104, Marseille, France
- Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 7280, Marseille, France
| | - Benjamin G. Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Peter R. Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Cui XA, Palazzo AF. Localization of mRNAs to the endoplasmic reticulum. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:481-92. [PMID: 24644132 DOI: 10.1002/wrna.1225] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/17/2022]
Abstract
Almost all cells use mRNA localization to establish spatial control of protein synthesis. One of the best-studied examples is the targeting and anchoring of mRNAs encoding secreted, organellar, and membrane-bound proteins to the surface of the endoplasmic reticulum (ER). In this review, we provide a historical perspective on the research that elucidated the canonical protein-mediated targeting of nascent-chain ribosome mRNA complexes to the surface of the ER. We then discuss subsequent studies which provided concrete evidence that a subpopulation of mRNAs utilize a translation-independent mechanism to localize to the surface of this organelle. This alternative mechanism operates alongside the signal recognition particle (SRP) mediated co-translational targeting pathway to promote proper mRNA localization to the ER. Recent work has uncovered trans-acting factors, such as the mRNA receptor p180, and cis-acting elements, such as transmembrane domain coding regions, that are responsible for this alternative mRNA localization process. Furthermore, some unanticipated observations have raised the possibility that this alternative pathway may be conserved from bacteria to mammalian cells.
Collapse
Affiliation(s)
- Xianying A Cui
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
11
|
Cox RA, Hüvös P, Godwin EA. Unusual Features of the Structure of the Major RNA Component of the Larger Subribosomal Particle of the Rabbit Reticulocyte. Isr J Chem 2013. [DOI: 10.1002/ijch.197300038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Mandon EC, Trueman SF, Gilmore R. Protein translocation across the rough endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013342. [PMID: 23251026 DOI: 10.1101/cshperspect.a013342] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
13
|
Abstract
The signal hypothesis, formulated by Günter Blobel and David Sabatini in 1971, and elaborated by Blobel and his colleagues between 1975 and 1980, fundamentally expanded our view of cells by introducing the concept of topogenic signals. Cells were no longer just morphological entities with compartmentalized biochemical functions; they were now active participants in the creation and perpetuation of their own form and identity, the decoders of linear genetic information into three dimensions.
Collapse
Affiliation(s)
- Karl S Matlin
- Department of Surgery, The University of Chicago, 5841 South Maryland Avenue, MC 5032, SBRI J557, Chicago, Illinois 60637-1470, USA.
| |
Collapse
|
14
|
Higgins JA, Barrnett RJ. STUDIES ON THE BIOGENESIS OF SMOOTH ENDOPLASMIC RETICULUM MEMBRANES IN LIVERS OF PHENOBARBITAL-TREATED RATS : I. The Site of Activity of Acyltransferases Involved in Synthesis of the Membrane Phospholipid. ACTA ACUST UNITED AC 2010; 55:282-98. [PMID: 19866788 PMCID: PMC2108796 DOI: 10.1083/jcb.55.2.282] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The localization of acyltransferases involved in acylation of α-glycerophosphate, during phenobarbital induced proliferation of smooth endoplasmic reticulum (ser) membranes, has been investigated using cytochemical and cell fractionation techniques. In cytochemical studies of normal rat liver, reaction product marking acyltransferase activity was associated to the greatest extent with the rough endoplasmic reticulum (rer) membranes and to a lesser extent with ser membranes. In liver from phenobarbital-treated rats, reaction product was largely restricted to ser membranes. The specific activity of the acyltransferases of rough microsomes from normal rat liver was higher than that of the smooth microsomes. On injection of phenobarbital, this fell rapidly after three injections to a low level, at which it remained during subsequent treatment. The specific activity of the smooth microsomes, on injection of phenobarbital, rose to a peak 12 hr after the first injection, after which it fell to a level at an activity above that of smooth microsomes of normal liver. A mechanism is postulated for the biogenesis of smooth membranes in which the phospholipid is synthesized in situ and the protein is synthesized in the rer and moves to the site of newly synthesized phospholipid, where it is inserted to produce a whole membrane.
Collapse
Affiliation(s)
- J A Higgins
- Department of Anatomy, Yale School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
15
|
Freeman KB, Haldar D, Work TS. The morphological site of synthesis of cytochrome c in mammalian cells (Krebs cells). Biochem J 2010; 105:947-52. [PMID: 16742570 PMCID: PMC1198412 DOI: 10.1042/bj1050947] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Krebs ascites-tumour cells, cytochrome c is segregated in the mitochondria and the level in microsomes could not be measured. At 22 degrees in glucose-buffer Krebs cells synthesized a spectrum of proteins including cytochrome c. Mild osmotic shock in the presence of ribonuclease had little effect on incorporation of [(14)C]-leucine or [(14)C]valine into mixed mitochondrial protein but strongly inhibited synthesis of non-mitochondrial cytoplasmic proteins. Under these conditions, labelling of cytochrome c was also strongly inhibited. After pulse labelling of Krebs cells at 22 degrees for 10min. the cytcchrome radioactivity found in mitochondria was higher than in microsomes. After addition of unlabelled amino acid as ;chase' there was 137% increase in radioactivity of cytochrome c but only a 3% increase in radioactivity of whole-cell protein. It is concluded that the peptide chain of cytochome c is synthesized on cytoplasmic ribosomes. Mitochondria therefore do not have the character of self-replicating entities, but are formed by the cooperative function of messenger RNA of cytoplasmic ribosomes and, possibly, of intramitochondrial messenger derived from the mitochondrial DNA.
Collapse
Affiliation(s)
- K B Freeman
- National Institute for Medical Research, Mill Hill, London, N.W. 7
| | | | | |
Collapse
|
16
|
Calì T, Vanoni O, Molinari M. The endoplasmic reticulum crossroads for newly synthesized polypeptide chains. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:135-79. [PMID: 19186254 DOI: 10.1016/s0079-6603(08)00604-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tito Calì
- Institute for Research in Biomedicine, Bellizona, Switzerland
| | | | | |
Collapse
|
17
|
Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007; 87:1377-408. [PMID: 17928587 DOI: 10.1152/physrev.00050.2006] [Citation(s) in RCA: 498] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A substantial fraction of eukaryotic gene products are synthesized by ribosomes attached at the cytosolic face of the endoplasmic reticulum (ER) membrane. These polypeptides enter cotranslationally in the ER lumen, which contains resident molecular chaperones and folding factors that assist their maturation. Native proteins are released from the ER lumen and are transported through the secretory pathway to their final intra- or extracellular destination. Folding-defective polypeptides are exported across the ER membrane into the cytosol and destroyed. Cellular and organismal homeostasis relies on a balanced activity of the ER folding, quality control, and degradation machineries as shown by the dozens of human diseases related to defective maturation or disposal of individual polypeptides generated in the ER.
Collapse
Affiliation(s)
- Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
18
|
Rothman S. The incoherence of the vesicle theory of protein secretion. J Theor Biol 2007; 245:150-60. [PMID: 17101153 DOI: 10.1016/j.jtbi.2006.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
The rates at which cells secrete peptides and proteins must on average equal their rate of synthesis. This basic equality has unanticipated and seemingly categorical negative consequences for the vesicle theory of protein secretion. This is because the transport mechanisms it proposes, such as the budding and fusion of small vesicles and secretion by exocytosis, are not capable of balancing forces. What follows is an account of the analysis that leads to this conclusion.
Collapse
Affiliation(s)
- Stephen Rothman
- University of California, San Francisco, 98 Acacia Avenue, Berkeley, CA 94708, USA.
| |
Collapse
|
19
|
Abstract
Subcellular compartments have unique protein compositions, yet protein synthesis only occurs in the cytosol and in mitochondria and chloroplasts. How do proteins get where they need to go? The first steps are targeting to an organelle and efficient translocation across its limiting membrane. Given that most transport systems are exquisitely substrate specific, how are diverse protein sequences recognized for translocation? Are they translocated as linear polypeptide chains or after folding? During translocation, how are diverse amino acyl side chains accommodated? What are the proteins and the lipid environment that catalyze transport and couple it to energy? How is translocation coordinated with protein synthesis and folding, and how are partially translocated transmembrane proteins released into the lipid bilayer? We review here the marked progress of the past 35 years and salient questions for future work. Subcellular compartments have unique protein compositions, yet protein synthesis only occurs in the cytosol and in mitochondria and chloroplasts. How do proteins get where they need to go? The first steps are targeting to an organelle and efficient translocation across its limiting membrane. Given that most transport systems are exquisitely substrate specific, how are diverse protein sequences recognized for translocation? Are they translocated as linear polypeptide chains or after folding? During translocation, how are diverse amino acyl side chains accommodated? What are the proteins and the lipid environment that catalyze transport and couple it to energy? How is translocation coordinated with protein synthesis and folding, and how are partially translocated transmembrane proteins released into the lipid bilayer? We review here the marked progress of the past 35 years and salient questions for future work.
Collapse
Affiliation(s)
- William Wickner
- Department of Biological Chemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755-3844, USA.
| | | |
Collapse
|
20
|
Abstract
In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic.
Collapse
Affiliation(s)
- David D Sabatini
- New York University School of Medicine, New York, NY 10016-6497, USA.
| |
Collapse
|
21
|
Abstract
Membrane and organelle assembly has emerged as a dominant theme in cell biology of the twenty-first century. Current approaches and questions have been formulated as a result of numerous historical threads that together weave a complex picture of cellular compartments. The confluence of morphologic, genetic and biochemical approaches laid the foundations for study in this area, and they continue to strengthen our understanding of this essential aspect of cell structure and function.
Collapse
Affiliation(s)
- Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720-3202, USA.
| |
Collapse
|
22
|
Wollenberg MS, Simon SM. Signal sequence cleavage of peptidyl-tRNA prior to release from the ribosome and translocon. J Biol Chem 2004; 279:24919-22. [PMID: 15082722 DOI: 10.1074/jbc.c400018200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many secretory polypeptides undergo cleavage of their signal sequence. In this study, we observed and quantitated the presence of a tRNA-bound, ribosome-associated polypeptide subpopulation present in vitro. This subpopulation was accessible to signal peptidase on ribosome-associated polypeptides longer than 114 amino acids. This demonstrates that it is possible for a peptidyl-tRNA species, in the midst of translation, to be processed by the endoplasmic reticulum signal peptidase implying that the peptidase is closely associated with the mammalian translocon.
Collapse
Affiliation(s)
- Michael S Wollenberg
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
23
|
Abstract
As a pioneer molecular cell biologist, highly skilled in both morphological and biochemical approaches, David Sabatini was a key figure in laying the foundation for the field of intracellular protein trafficking with his seminal studies on cotranslational translocation of nascent polypeptides in the endoplasmic reticulum and the intracellular sorting of plasma membrane proteins in polarized epithelial cells.
Collapse
Affiliation(s)
- Milton Adesnik
- Dept of Cell Biology, New York University School of Medicine, 550 First Ave, Room MSB 698B, New York, NY 10016, USA.
| |
Collapse
|
24
|
Levy R, Wiedmann M, Kreibich G. In vitro binding of ribosomes to the beta subunit of the Sec61p protein translocation complex. J Biol Chem 2001; 276:2340-6. [PMID: 11036067 DOI: 10.1074/jbc.m004867200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sec61p complex forms the core element of the protein translocation complex (translocon) in the rough endoplasmic reticulum (rough ER) membrane. Translating or nontranslating ribosomes bind with high affinity to ER membranes that have been stripped of ribosomes or to liposomes containing purified Sec61p. Here we present evidence that the beta subunit of the complex (Sec61beta) makes contact with nontranslating ribosomes. A fusion protein containing the Sec61beta cytoplasmic domain (Sec61beta(c)) prevents the binding of ribosomes to stripped ER-derived membranes and also binds to ribosomes directly with an affinity close to the affinity of ribosomes for stripped ER-derived membranes. The ribosome binding activity of Sec61beta(c), like that of native ER membranes, is sensitive to high salt concentrations and is not based on an unspecific charge-dependent interaction of the relatively basic Sec61beta(c) domain with ribosomal RNA. Like stripped ER membranes, the Sec61beta(c) sequence binds to large ribosomal subunits in preference over small subunits. Previous studies have shown that Sec61beta is inessential for ribosome binding and protein translocation, but translocation is impaired by the absence of Sec61beta, and it has been proposed that Sec61beta assists in the insertion of nascent proteins into the translocation pore. Our results suggest a physical interaction of the ribosome itself with Sec61beta; this may normally occur alongside interactions between the ribosome and other elements of Sec61p, or it may represent one stage in a temporal sequence of binding.
Collapse
Affiliation(s)
- R Levy
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
25
|
Potter MD, Nicchitta CV. Ribosome-independent regulation of translocon composition and Sec61alpha conformation. J Biol Chem 2000; 275:2037-45. [PMID: 10636907 DOI: 10.1074/jbc.275.3.2037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contributions of membrane-bound ribosomes to the regulation of endoplasmic reticulum translocon composition and Sec61alpha conformation were examined. Following solubilization of rough microsomes (RM) with digitonin, ribosomes co-sedimented in complexes containing the translocon proteins Sec61alpha, ribophorin I, and TRAPalpha, and endoplasmic reticulum phospholipids. Complexes of similar composition were identified in digitonin extracts of ribosome-free membranes, indicating that the ribosome does not define the composition of the digitonin-soluble translocon. Whereas in digitonin solution a highly electrostatic ribosome-translocon junction is observed, no stable interactions between ribosomes and Sec61alpha, ribophorin I, or TRAPalpha were observed following solubilization of RM with lipid-derived detergents at physiological salt concentrations. Sec61alpha was found to exist in at least two conformational states, as defined by mild proteolysis. A protease-resistant form was observed in RM and detergent-solubilized RM. Removal of peripheral proteins and ribosomes markedly enhanced the sensitivity of Sec61alpha to proteolysis, yet the readdition of inactive ribosomes to salt-washed membranes yielded only modest reductions in protease sensitivity. Addition of sublytic concentrations of detergents to salt-washed RM markedly decreased the protease sensitivity of Sec61alpha, indicating that a protease-resistant conformation of Sec61alpha can be conferred in a ribosome-independent manner.
Collapse
Affiliation(s)
- M D Potter
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
26
|
Zhang JX, Braakman I, Matlack KE, Helenius A. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol Biol Cell 1997; 8:1943-54. [PMID: 9348535 PMCID: PMC25647 DOI: 10.1091/mbc.8.10.1943] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Unlike properly folded and assembled proteins, most misfolded and incompletely assembled proteins are retained in the endoplasmic reticulum of mammalian cells and degraded without transport to the Golgi complex. To analyze the mechanisms underlying this unique sorting process and its fidelity, the fate of C-terminally truncated fragments of influenza hemagglutinin was determined. An assortment of different fragments was generated by adding puromycin at low concentrations to influenza virus-infected tissue culture cells. Of the fragments generated, < 2% was secreted, indicating that the system for detecting defects in newly synthesized proteins is quite stringent. The majority of secreted species corresponded to folding domains within the viral spike glycoprotein. The retained fragments acquired a partially folded structure with intra-chain disulfide bonds and conformation-dependent antigenic epitopes. They associated with two lectin-like endoplasmic reticulum chaperones (calnexin and calreticulin) but not BiP/GRP78. Inhibition of the association with calnexin and calreticulin by the addition of castanospermine significantly increased fragment secretion. However, it also caused association with BiP/GRP78. These results indicated that the association with calnexin and calreticulin was involved in retaining the fragments. They also suggested that BiP/GRP78 could serve as a backup for calnexin and calreticulin in retaining the fragments. In summary, the results showed that the quality control system in the secretory pathway was efficient and sensitive to folding defects, and that it involved multiple interactions with endoplasmic reticulum chaperones.
Collapse
Affiliation(s)
- J X Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510-8002, USA
| | | | | | | |
Collapse
|
27
|
Borel AC, Simon SM. Biogenesis of polytopic membrane proteins: membrane segments of P-glycoprotein sequentially translocate to span the ER membrane. Biochemistry 1996; 35:10587-94. [PMID: 8718846 DOI: 10.1021/bi960950q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The initial steps in the biogenesis of membrane proteins parallel those of secretory proteins. However, membrane proteins contain a signal to stop translocation across the membrane. For polytopic membrane proteins, those with multiple transmembrane segments, little is known of the temporal sequence or relationship between synthesis of the nascent proteins, translocation, folding, and integration of the membrane segments into the bilayer. Here we demonstrate that latent membrane segments translocate sequentially as they emerge from the ribosome and do not accumulate on the cytosolic side to form loops, or larger structures, prior to translocation across the membrane.
Collapse
Affiliation(s)
- A C Borel
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
28
|
Borel AC, Simon SM. Biogenesis of polytopic membrane proteins: membrane segments assemble within translocation channels prior to membrane integration. Cell 1996; 85:379-89. [PMID: 8616893 DOI: 10.1016/s0092-8674(00)81116-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The initial steps in the biogenesis of membrane proteins parallel that of secretory proteins. The translocation of membrane proteins, however, must be interrupted prior to the complete traversal of the membrane. This is followed by their folding and integrating into the lipid bilayer. We have previously shown that as each latent transmembrane segment (TMS) in a polytopic membrane protein emerges from the ribosome, it sequentially translocates across the membrane. Here we demonstrate that these translocated TMSs can be extracted from the membrane with urea. This suggests that nascent TMSs do not integrate into the bilayer as they achieve a transmembrane topography. The integration is delayed until after the protein is synthesized and released from the ribosome. Prior to insertion into the bilayer, these TMSs appear to be stabilized by salt-sensitive electrostatic bonds within an aqueous-accessible compartment.
Collapse
Affiliation(s)
- A C Borel
- Laboratory of Celluar Biophysics, Rockefeller University, New York 10021, USA
| | | |
Collapse
|
29
|
Lyko F, Martoglio B, Jungnickel B, Rapoport TA, Dobberstein B. Signal sequence processing in rough microsomes. J Biol Chem 1995; 270:19873-8. [PMID: 7650000 DOI: 10.1074/jbc.270.34.19873] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Secretory proteins are synthesized with a signal sequence that is usually cleaved from the nascent protein during the translocation of the polypeptide chain into the lumen of the endoplasmic reticulum. To determine the fate of a cleaved signal sequence, we used a synchronized in vitro translocation system. We found that the cleaved signal peptide of preprolactin is further processed close to its COOH terminus. The resulting fragment accumulated in the microsomal fraction and with time was released into the cytosol. Signal sequence cleavage and processing could be reproduced with reconstituted vesicles containing Sec61, signal recognition particle receptor, and signal peptidase complex.
Collapse
Affiliation(s)
- F Lyko
- ZMBH, Universität Heidelberg, Germany
| | | | | | | | | |
Collapse
|
30
|
Nakahara D, Lingappa V, Chuck S. Translocational pausing is a common step in the biogenesis of unconventional integral membrane and secretory proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37332-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
31
|
|
32
|
Abstract
The past year has seen significant advances in the field of protein translocation: the roles of the signal recognition particle and its receptor have been understood in greater detail; many membrane components responsible for translocation have been identified; and insight has been gained into how proteins cross membranes.
Collapse
Affiliation(s)
- S Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York 10021
| |
Collapse
|
33
|
Affiliation(s)
- S M Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
34
|
Abstract
We propose that protein translocation across membranes is driven by biased random thermal motion. This "Brownian ratchet" mechanism depends on chemical asymmetries between the cis and trans sides of the membrane. Several mechanisms could contribute to rectifying the thermal motion of the protein, such as binding and dissociation of chaperonins to the translocating chain, chain coiling induced by pH and/or ionic gradients, glycosylation, and disulfide bond formation. This helps explain the robustness and promiscuity of these transport systems.
Collapse
Affiliation(s)
- S M Simon
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
35
|
Baba H, Karaplis AC, Wiren KM, Keutmann HT, Kronenberg HM. Interaction of nascent preproparathyroid hormone molecules with microsomal membranes. J Bone Miner Res 1992; 7:199-206. [PMID: 1570764 DOI: 10.1002/jbmr.5650070211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To characterize the early steps in the interaction of nascent chains of preproparathyroid hormone (prepro-PTH) with the secretory apparatus, such truncated nascent chains still attached to ribosomes were tested for binding to microsomal membranes and cleavage by signal peptidase. Nascent chains of 114, 97, 88, 81, 70, and 59 residues were tested for their ability to bind tightly to membranes and to undergo signal sequence cleavage. Chains of 81 residues and longer bound tightly to the membranes and were cleaved by signal peptidase. The 88- and 81-residue precursors and their corresponding pro-proteins were less efficiently associated with the membranes than were the 114- and 97-residue precursors and their corresponding pro-proteins. The 70-residue chain bound to the membrane but was not cleaved. When this peptide was subsequently released from the ribosome with puromycin, it was cleaved by signal peptidase. The 59-residue chain bound only slightly to the microsomal membrane and was not cleaved by signal peptidase, even when the nascent peptide was released from the ribosome with puromycin. Thus the critical length for productive binding to microsomal membranes is between 59 and 70 residues; the length required for signal cleavage is between 70 and 81 residues.
Collapse
Affiliation(s)
- H Baba
- Endocrine Unit, Massachusetts General Hospital, Boston
| | | | | | | | | |
Collapse
|
36
|
Behal A, Prakash K, D'Eustachio P, Adesnik M, Sabatini DD, Kreibich G. Structure and chromosomal location of the rat ribophorin I gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39065-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
37
|
Yu YH, Zhang YY, Sabatini DD, Kreibich G. Reconstitution of translocation-competent membrane vesicles from detergent-solubilized dog pancreas rough microsomes. Proc Natl Acad Sci U S A 1989; 86:9931-5. [PMID: 2602384 PMCID: PMC298616 DOI: 10.1073/pnas.86.24.9931] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dog pancreas rough microsomes were solubilized in 1% octyl beta-glucoside, and membrane vesicles were reconstituted by slow 30-fold dilution with a buffer of low ionic strength. Asymmetric assembly of the membranes occurred during reconstitution since the vesicles formed contained ribosomes bound only to the vesicular outer surfaces. The reconstituted vesicles were similar in protein composition to native rough microsomes, although these vesicles were largely devoid of luminal-content proteins. These reconstituted vesicles could translocate and process nascent secretory (human placental lactogen) and membrane proteins (influenza hemagglutinin and rat liver ribophorin I) synthesized in cell-free translation systems programmed with the corresponding mRNAs. Signal cleavage and N-glycosylation only occurred when the reconstituted membranes were present during translation, providing evidence that the translocation apparatus was asymmetrically assembled into the reconstituted membranes. When a supernatant lacking ribosomes and particles greater than 50S from centrifuging the detergent-solubilized microsomes at high speed was used for reconstitution, smooth-surfaced membrane vesicles were obtained that, except for the absence of ribosomal proteins, were similar in protein composition to that of the reconstituted vesicles from total solubilized rough microsomes. The reconstituted smooth-surfaced vesicles, however, were totally inactive in cotranslational processing and translocation of nascent polypeptides. These findings suggest that ribosomes and/or large macromolecular complexes, not dissociated under our solubilization conditions, are essential for in vitro assembly of a functional translocation apparatus.
Collapse
Affiliation(s)
- Y H Yu
- Department of Cell Biology, New York University Medical Center, NY 10016
| | | | | | | |
Collapse
|
38
|
|
39
|
Transport of Proteins into and across the Endoplasmic Reticulum Membrane. PROTEIN TRANSFER AND ORGANELLE BIOGENESIS 1988. [PMCID: PMC7155617 DOI: 10.1016/b978-0-12-203460-2.50005-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Robinson A, Austen B. The role of topogenic sequences in the movement of proteins through membranes. Biochem J 1987; 246:249-61. [PMID: 3318806 PMCID: PMC1148271 DOI: 10.1042/bj2460249] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent advances have led to considerable convergence in ideas of the way topogenic sequences act to translocate proteins across various intracellular membranes (Table 2). Whereas co-translational translocation and processing were previously considered the norm at the endoplasmic reticulum membrane, several instances of post-translational translocation into endoplasmic reticulum microsomes in vitro have now been described. However, it must be noted that post-translational translocation in vitro is much less efficient than when endoplasmic reticulum membranes are present during translation, and it is possible that in the intact cell translocation occurs during translation. Movement of proteins into chloroplasts and mitochondria occurs after translation. When translocation is post-translational, proteins may perhaps traverse the membrane as folded domains, and the conformational effects of topogenic sequences on these domains may be as envisaged in Wickner's 'membrane-trigger hypothesis'. Both signal and transit sequences possess amphipathic structures which are capable of interacting with phospholipid bilayers, and these interactions may disturb the bilayer sufficiently to allow entry of the following domains of protein. There is increasing evidence that GTP is required to bind ribosomes and their associated nascent chains to the endoplasmic reticulum membrane. Precisely how the cell's energy is applied to achieve translocation is not clear, but one possibility at the endoplasmic reticulum is that a GTP-hydrolysing transducing mechanism may exist to couple signal sequence receptor binding to movement of the nascent chain across the membrane. Electrochemical gradients are required for protein movement to the mitochondrial inner membrane and across the bacterial inner membrane. Cytoplasmic factors such as SRP, the secA gene product or a 40 kDa protein (for mitochondrial precursors) may act by binding to topogenic sequences and preventing precursor proteins as they are translated from folding into forms which cannot be translocated. Specificity in the cell may be achieved both by targetting interactions between these cytoplasmic factors and their receptors located in target membranes, and also by specific binding of the topogenic sequences to specific proteins integrated into the target membranes. Possible candidates for the latter are the protein of microsomal membranes that reacts with a photoreactive signal peptide to give a 45 kDa complex (Fig. 1), the secY gene product of the bacterial inner membrane, and receptors on the outer membranes of chloroplasts and mitochondria. Whether these aid translocation as well as recognition is not clear.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Robinson
- Department of Surgery, St. George's Hospital Medical School, Tooting, London, U.K
| | | |
Collapse
|
41
|
Hortsch M, Avossa D, Meyer DI. Characterization of secretory protein translocation: ribosome-membrane interaction in endoplasmic reticulum. J Cell Biol 1986; 103:241-53. [PMID: 3087996 PMCID: PMC2113795 DOI: 10.1083/jcb.103.1.241] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Secretory proteins are synthesized on ribosomes bound to the membrane of the endoplasmic reticulum (ER). After the selection of polysomes synthesizing secretory proteins and their direction to the membrane of the ER via signal recognition particle (SRP) and docking protein respectively, the polysomes become bound to the ER membrane via an unknown, protein-mediated mechanism. To identify proteins involved in protein translocation, beyond the (SRP-docking protein-mediated) recognition step, controlled proteolysis was used to functionally inactivate rough microsomes that had previously been depleted of docking protein. As the membranes were treated with increasing levels of protease, they lost their ability to be functionally reconstituted with the active cytoplasmic fragment of docking protein (DPf). This functional inactivation did not correlate with a loss of either signal peptidase activity, nor with the ability of the DPf to reassociate with the membrane. It did correlate, however, with a loss of the ability of the microsomes to bind ribosomes. Ribophorins are putative ribosome-binding proteins. Immunoblots developed with monoclonal antibodies against canine ribophorins I and II demonstrated that no correlation exists between the protease-induced inability to bind ribosomes and the integrity of the ribophorins. Ribophorin I was 85% resistant and ribophorin II 100% resistant to the levels of protease needed to totally eliminate ribosome binding. Moreover, no direct association was found between ribophorins and ribosomes; upon detergent solubilization at low salt concentrations, ribophorins could be sedimented in the presence or absence of ribosomes. Finally, the alkylating agent N-ethylmaleimide was shown to be capable of inhibiting translocation (beyond the SRP-docking protein-mediated recognition step), but had no affect on the ability of ribosomes to bind to ER membranes. We conclude that potentially two additional proteinaceous components, as yet unidentified, are involved in protein translocation. One is protease sensitive and possibly involved in ribosome binding, the other is N-ethylmaleimide sensitive and of unknown function.
Collapse
|
42
|
Perara E, Rothman RE, Lingappa VR. Uncoupling translocation from translation: implications for transport of proteins across membranes. Science 1986; 232:348-52. [PMID: 3961485 DOI: 10.1126/science.3961485] [Citation(s) in RCA: 153] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The segregation of secretory proteins into the cisternae of the endoplasmic reticulum (ER) is normally tightly coupled to their synthesis. This feature distinguishes their biogenesis from that of proteins targeted to many other organelles. In the examples presented, translocation across the ER membrane is dissociated from translation. Transport, which is normally cotranslational, may proceed in the absence of chain elongation. Moreover, translocation across the ER membrane does not proceed spontaneously since, even in the absence of protein synthesis, energy substrates are required for translocation. These conclusions have been extended to the cotranslational integration of newly synthesized transmembrane proteins.
Collapse
|
43
|
Fairbairn DJ, Law BA. Proteinases of psychrotrophic bacteria: their production, properties, effects and control. J DAIRY RES 1986; 53:139-77. [PMID: 3007589 DOI: 10.1017/s0022029900024742] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Briggs MS, Gierasch LM. Molecular mechanisms of protein secretion: the role of the signal sequence. ADVANCES IN PROTEIN CHEMISTRY 1986; 38:109-80. [PMID: 3541538 DOI: 10.1016/s0065-3233(08)60527-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Rapoport TA. Protein translocation across and integration into membranes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 20:73-137. [PMID: 3007024 DOI: 10.3109/10409238609115901] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review concentrates mainly on the translocation of proteins across the endoplasmic reticulum membrane and cytoplasmic membrane in bacteria. It will start with a short historical review and will pinpoint the crucial questions in the field. Special emphasis will be given to the present knowledge on the molecular details of the first steps, i.e., on the function of the signal recognition particle and its receptor. The knowledge on the signal peptidase and the ribosome receptor(s) will also be summarized. The various models for the translocation of proteins across and the integration of proteins into membranes will be critically discussed. In particular, the function of signal, stop-transfer, and insertion sequences will be dealt with and molecular differences discussed. The cotranslational mode of membrane transfer will be compared with the post-translational transport found for mitochondria and chloroplasts. This review will conclude with open questions and an outlook.
Collapse
|
46
|
Hortsch M, Meyer DI. Transfer of secretory proteins through the membrane of the endoplasmic reticulum. INTERNATIONAL REVIEW OF CYTOLOGY 1986; 102:215-42. [PMID: 3021646 DOI: 10.1016/s0074-7696(08)61276-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Perara E, Lingappa VR. A former amino terminal signal sequence engineered to an internal location directs translocation of both flanking protein domains. J Cell Biol 1985; 101:2292-301. [PMID: 3864782 PMCID: PMC2113988 DOI: 10.1083/jcb.101.6.2292] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To determine whether a functional amino terminal signal sequence can be active at an internal position, a hybrid gene was constructed in which the entire coding region of bovine preprolactin cDNA was inserted into chimpanzee alpha-globin cDNA 109 codons downstream from the initiation codon of globin. When RNA synthesized in vitro from this plasmid (pSPGP1) was translated in the rabbit reticulocyte cell-free system, a 32-kD protein was produced that was both prolactin and globin immunoreactive. When microsomal membranes were present during translation (but not when added posttranslationally), a 26-kD and a 14-kD product were also observed. By immunoreactivity and electrophoretic mobility, the 26-kD protein was identical to mature prolactin, and the 14-kD protein appeared to be the globin domain with the prolactin signal sequence attached at its carboxy terminus. From (a) posttranslational proteolysis in the presence and absence of detergent, (b) sedimentation of vesicles in the presence and absence of sodium carbonate pH 11.5, and (c) N-linked glycosylation of the globin-immunoreactive fragment after insertion of an Asn-X-Ser N-linked glycosylation site into the globin coding region of pSPGP1, it appears that all of the 26-kD and some of the 14-kD products, but none of the 32-kD precursor, have been translocated to the lumen of the membrane vesicles. Thus, when engineered to an internal position, the prolactin signal sequence is able to translocate both flanking protein domains. These data have implications for the understanding of translocation of proteins across the membrane of the endoplasmic reticulum.
Collapse
|
48
|
Abstract
Protein localization in cells is initiated by the binding of characteristic leader (signal) peptides to specific receptors on the membranes of mitochondria or endoplasmic reticulum or, in bacteria, to the plasma membrane. There are differences in the timing of protein synthesis and translocation into or across the bilayer and in the requirement for a transmembrane electrochemical potential. Comparisons of protein localization in these different membranes suggest underlying common mechanisms.
Collapse
|
49
|
Khawaja JA, Lindholm DB. Vectorial discharge and localization of nascent polypeptides in rough endoplasmic reticulum of developing neuronal perikarya of rat brain cortex. J Neurochem 1984; 42:930-3. [PMID: 6699644 DOI: 10.1111/j.1471-4159.1984.tb12693.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rough endoplasmic reticulum (RER) prepared from bulk-isolated neuronal perikarya of rat brain cortex of different postnatal ages was found to be active in vectorial discharge of nascent proteins through the membrane; this activity increased with the increasing age of animals and reached maximal values in adults. RER isolated from whole cortical tissue (containing all cell types) exhibited vectorial release only up to 18 days of age; the preparation from adult animals was essentially devoid of secretory activity. Controlled proteolysis of various preparations suggested that in neuronal RER of 8-day-old rats the proportion of nascent proteins operationally retained in the intravesicular space was about twice that retained by cortical preparations. For the purpose of comparison, these parameters were studied also in liver RER.
Collapse
|
50
|
|