1
|
Tasnim S, Liu A, Jose AM. A simple yet reliable assay for chemotaxis in C. elegans. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001514. [PMID: 40161433 PMCID: PMC11953739 DOI: 10.17912/micropub.biology.001514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Animals can move towards or away from an odorant. Here we develop an assay for the nematode C. elegans that avoids use of chemical or physical immobilization when measuring response to odorants. We use opposing orientations of rectangular arenas to control for unknown gradients outside the arena and introduce a measure of dispersal to control for locomotion defects and unknown gradients within the arena, enabling the analysis of responses to a variety of chemicals. Using this setup, we found that unfed worms show reproducible movement towards the odorants butanone and benzaldehyde, and away from the odorant nonanone.
Collapse
Affiliation(s)
- Samiha Tasnim
- Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, Maryland, United States
| | - Amber Liu
- Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, Maryland, United States
| | - Antony M Jose
- Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, Maryland, United States
| |
Collapse
|
2
|
Mackie M, Le VV, Carstensen HR, Kushnir NR, Castro DL, Dimov IM, Quach KT, Cook SJ, Hobert O, Chalasani SH, Hong RL. Evolution of lateralized gustation in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.31.610597. [PMID: 39282255 PMCID: PMC11398344 DOI: 10.1101/2024.08.31.610597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Animals with small nervous systems have a limited number of sensory neurons that must encode information from a changing environment. This problem is particularly exacerbated in nematodes that populate a wide variety of distinct ecological niches but only have a few sensory neurons available to encode multiple modalities. How does sensory diversity prevail within this constraint in neuron number? To identify the genetic basis for patterning different nervous systems, we demonstrate that sensory neurons in Pristionchus pacificus respond to various salt sensory cues in a manner that is partially distinct from that of the distantly related nematode Caenorhabditis elegans. By visualizing neuronal activity patterns, we show that contrary to previous expectations based on its genome sequence, the salt responses of P. pacificus are encoded in a left/right asymmetric manner in the bilateral ASE neuron pair. Our study illustrates patterns of evolutionary stability and change in the gustatory system of nematodes.
Collapse
Affiliation(s)
- Marisa Mackie
- Department of Biology California State University, Northridge, CA, USA
| | - Vivian Vy Le
- Department of Biology California State University, Northridge, CA, USA
| | | | - Nicole R Kushnir
- Department of Biology California State University, Northridge, CA, USA
| | - Dylan L Castro
- Department of Biology California State University, Northridge, CA, USA
| | - Ivan M Dimov
- Department of Biology California State University, Northridge, CA, USA
| | - Kathleen T Quach
- Molecular Neurobiology Laboratory Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven J Cook
- Department of Biological Sciences Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Present address: Neural Coding Department Allen Institute for Brain Science, Seattle, WA, USA
| | - Oliver Hobert
- Department of Biological Sciences Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ray L Hong
- Department of Biology California State University, Northridge, CA, USA
| |
Collapse
|
3
|
Logan-Garbisch T, Fryer E, Seyahi LS, Rogel-Hernandez L, Rhee SY, Goodman MB. Satiety, TAX-4, and OSM-9 Tune the Attraction of C. elegans Nematodes to Microbial Fermentation Products. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639594. [PMID: 40060391 PMCID: PMC11888315 DOI: 10.1101/2025.02.21.639594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Animals are sensitive to selective pressures associated with nutrient acquisition, underscoring the evolutionary significance of chemosensation in foraging and its intersection with satiety. For the model nematode Caenorhabditis elegans, isoamyl alcohol (3-methyl-1-butanol) and 2-methyl-1-butanol are produced by microbial fermentation and present in bacterial food sources collected from the natural environments. Both compounds, which are structural isomers of one another, elicit strong attraction in laboratory settings. Using laboratory chemotaxis assays, we show that starvation attenuates attraction to both compounds. Well-fed C. elegans is largely insensitive to the biosynthetic precursors of both alcohols, with the exception of 4-methyl-2-oxovaleric acid, which is a mild repellent. C. elegans chemosensation relies on expression of tax-4 cyclic nucleotide-gated (CNG) and osm-9 transient receptor potential, vanilloid (TRPV) ion channels and animals lacking both genes are taste- and smell-blind. Animals lacking tax-4 fail to attract isoamyl alcohol and 2-methyl-1-butanol and those lacking osm-9 exhibit stronger attraction than the wild-type. Starvation not only attenuates attraction, but also enhances repulsion to 4-methyl-2-oxovaleric acid and uncovers repulsion in tax-4 mutants absent in their well-fed counterparts. Collectively, these findings implicate satiety in regulating response strength, tax-4-dependent chemotaxis in attraction to isoamyl alcohol and 2-methyl-1-butanol, and osm-9-dependent chemotaxis in suppressing responses to biosynthetic precursors.
Collapse
Affiliation(s)
- Theresa Logan-Garbisch
- Department of Molecular and Cellular Physiology, Stanford University
- Neuroscience Program, Stanford University
| | - Emily Fryer
- Department of Molecular and Cellular Physiology, Stanford University
- Department of Plant Biology, Carnegie Institution for Science
| | - Lara Selin Seyahi
- Department of Molecular and Cellular Physiology, Stanford University
| | | | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University
| |
Collapse
|
4
|
Cesar L, Morud J. Enhancing Reproducibility in Chemotaxis Assays for Caenorhabditis elegans. Curr Protoc 2025; 5:e70106. [PMID: 39964098 PMCID: PMC11834369 DOI: 10.1002/cpz1.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The ability of Caenorhabditis elegans (C. elegans) to navigate complex environments is essential for their survival. This natural behavior is commonly used in chemotaxis assays, which are important tools for studying the function of sensory neurons and neural circuits. Chemotaxis has been essential for discovering fundamental functions in neuronal signaling during the past decades. However, a lack of thoroughly optimized and standardized procedures can lead to variable results that can be difficult to interpret. To improve reproducibility, we optimized several aspects of chemotaxis protocols by testing different odorant concentrations, numbers of worms, and assay durations, as well as the preparation of chemotaxis plates and the washing procedures of worms. The usage of a 2-choice or a 4-choice assay was also evaluated. Our new protocol improves the clarity of results and simplifies worm counting. The protocol optimization is condensed into a 5-day step-by-step protocol that increases the reproducibility of chemotaxis in C. elegans. Compared to previously published chemotaxis protocols, the revised method reduces day-to-day variability using an improved and standardized assay design that ensures clear and reliable results. Several key components in the assay preparation and during the assay have been evaluated based on previous protocols, such as odor concentration, worm density, and assay length. By considering multiple factors that influence the worm's behavior, our optimized protocol enhances the reproducibility of chemotaxis assays in C. elegans, making them more reliable and accessible for studying phenotypes related to olfaction and neural circuit behavior. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Optimized Chemotaxis Assay for C. elegans.
Collapse
Affiliation(s)
- Leona Cesar
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Julia Morud
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
5
|
Kaiglová A, Hockicková P, Bárdyová Z, Reháková R, Melnikov K, Kucharíková S. The chemotactic response of Caenorhabditis elegans represents a promising tool for the early detection of cancer. Discov Oncol 2024; 15:817. [PMID: 39707061 DOI: 10.1007/s12672-024-01721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024] Open
Abstract
The nematode Caenorhabditis elegans, with its highly sensitive olfactory system, has emerged as a promising tool for testing chemotaxis. In the field of cancer diagnostics, there is a growing interest in the development of non-invasive screening methods for the detection of volatile organic compounds in a patient's urine. The objective of this study was to contribute to the existing body of knowledge by evaluating the ability of a Caenorhabditis elegans-based chemotaxis assay to discriminate between urine samples from healthy individuals and patients diagnosed with breast or colon cancer. Following synchronization of the developmental stages of C. elegans, nematodes were exposed to the urine of cancer patients and healthy individuals. Subsequently, chemotactic indices were calculated for each urine sample. Our results demonstrated a statistically significant difference in the chemotactic response of C. elegans to urine samples from cancer patients compared to healthy volunteers (p < 0.001). Furthermore, the test demonstrated promising diagnostic utility, with a sensitivity of 96%, a specificity of 62%, and a detection rate of 73% among patients with breast cancer and a sensitivity of 100%, a specificity of 62%, and a detection rate of 72% among those with colon cancer. Our findings expand on previous observations, confirming the remarkable sensitivity of C. elegans hermaphrodites to discriminating cancer-related volatile organic compounds in urine samples.
Collapse
Affiliation(s)
- Alžbeta Kaiglová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Patrícia Hockicková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Zuzana Bárdyová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Radka Reháková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Kamila Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Soňa Kucharíková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia.
| |
Collapse
|
6
|
Molina-García L, Colinas-Fischer S, Benavides-Laconcha S, Lin L, Clark E, Treloar NJ, García-Minaur-Ortíz B, Butts M, Barnes CP, Barrios A. Conflict during learning reconfigures the neural representation of positive valence and approach behavior. Curr Biol 2024; 34:5470-5483.e7. [PMID: 39547234 DOI: 10.1016/j.cub.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Punishing and rewarding experiences can change the valence of sensory stimuli and guide animal behavior in opposite directions, resulting in avoidance or approach. Often, however, a stimulus is encountered with both positive and negative experiences. How is such conflicting information represented in the brain and resolved into a behavioral decision? We address this question by dissecting a circuit for sexual conditioning in C. elegans. In this learning paradigm, an odor is conditioned with both a punishment (starvation) and a reward (mates), resulting in odor approach. We find that negative and positive experiences are both encoded by the neuropeptide pigment dispersing factor 1 (PDF-1) being released from, and acting on, different neurons. Each experience creates a distinct memory in the circuit for odor processing. This results in the sensorimotor representation of the odor being different in naive and sexually conditioned animals, despite both displaying approach. Our results reveal that the positive valence of a stimulus is not represented in the activity of any single neuron class but flexibly represented within the circuit according to the experiences and predictions associated with the stimulus.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - Susana Colinas-Fischer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Lucy Lin
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Emma Clark
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Neythen J Treloar
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Milly Butts
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Tasnim S, Liu A, Jose AM. Reliable odorant sensing but variable associative learning in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625480. [PMID: 39651285 PMCID: PMC11623650 DOI: 10.1101/2024.11.26.625480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Animals can move towards or away from an odorant. Such chemotaxis has been used as a paradigm for learning when coupled with pre-exposure to the sensed odorant. Here we develop an assay for the nematode C. elegans that avoids the typical use of chemical or physical immobilization when measuring the response of worms to odorants. Using two sets of rectangular arenas that are oriented such that worms in one set must move in the opposite direction to worms in the other set for the same response, we found that unfed worms show reproducible movement towards the odorants butanone and benzaldehyde, and away from the odorant nonanone. In addition to the use of opposing orientations to control for gradients of unknown cues outside the arena, we introduce a measure of dispersal to control for locomotion defects and unknown cues within the arena. Since this assay avoids the use of paralytics or physical constraints, it is useful for the analysis of graded responses to a variety of chemicals and the discovery of underlying molecular mechanisms. Using this setup, we found that pre-exposure of unfed worms to butanone to induce an association of starvation with butanone resulted in different extents of such associative learning during different trials - from no learning to learned avoidance. Given this variation in associative learning despite the artificially controlled lab setting, we speculate that in dynamic natural environments such learning might be rare and highlight the challenge in discovering evolutionarily selected mechanisms that could underlie learning in the wild.
Collapse
|
8
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Rana M, Kowalski J. oxi-1 is required for chemotaxis to odorants sensed by AWA but not AWC neurons. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001282. [PMID: 39228993 PMCID: PMC11369694 DOI: 10.17912/micropub.biology.001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
This study examines the role of the oxi-1 UBE3B gene in chemotaxis of C. elegans to volatile odorants. Compared to wild type worms, oxi-1 mutants showed no difference in chemotaxis to the AWC-specific odorant, isoamyl alcohol but a significant decrease in chemotaxis compared to odr-7 mutants. Both oxi-1 and odr-7 mutants exhibited significant decreases in chemotaxis to AWA-specific odorants, pyrazine and diacetyl. For thiazole, which is sensed by both AWA and AWC neurons, only odr-7 mutants showed significantly decreased chemotaxis. These data demonstrate oxi-1 is required for chemotaxis to AWA- but not AWC-specific odorants, the mechanisms of which should be investigated.
Collapse
Affiliation(s)
- Muiz Rana
- Biological Sciences, Butler University, Indiana, United States of America
| | - Jennifer Kowalski
- Biological Sciences, Butler University, Indiana, United States of America
| |
Collapse
|
10
|
Kramer TS, Wan FK, Pugliese SM, Atanas AA, Hiser AW, Luo J, Bueno E, Flavell SW. Neural Sequences Underlying Directed Turning in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607076. [PMID: 39149398 PMCID: PMC11326294 DOI: 10.1101/2024.08.11.607076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Complex behaviors like navigation rely on sequenced motor outputs that combine to generate effective movement. The brain-wide organization of the circuits that integrate sensory signals to select and execute appropriate motor sequences is not well understood. Here, we characterize the architecture of neural circuits that control C. elegans olfactory navigation. We identify error-correcting turns during navigation and use whole-brain calcium imaging and cell-specific perturbations to determine their neural underpinnings. These turns occur as motor sequences accompanied by neural sequences, in which defined neurons activate in a stereotyped order during each turn. Distinct neurons in this sequence respond to sensory cues, anticipate upcoming turn directions, and drive movement, linking key features of this sensorimotor behavior across time. The neuromodulator tyramine coordinates these sequential brain dynamics. Our results illustrate how neuromodulation can act on a defined neural architecture to generate sequential patterns of activity that link sensory cues to motor actions.
Collapse
Affiliation(s)
- Talya S. Kramer
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flossie K. Wan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah M. Pugliese
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A. Atanas
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex W. Hiser
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Muirhead CS, Reddy KC, Guerra S, Rieger M, Hart MP, Srinivasan J, Chalasani SH. Neurexin drives Caenorhabditis elegans avoidance behavior independently of its post-synaptic binding partner neuroligin. G3 (BETHESDA, MD.) 2024; 14:jkae111. [PMID: 38781440 PMCID: PMC11304965 DOI: 10.1093/g3journal/jkae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Neurexins and their canonical binding partners, neuroligins, are localized to neuronal pre-, and post-synapses, respectively, but less is known about their role in driving behaviors. Here, we use the nematode C. elegans to show that neurexin, but not neuroligin, is required for avoiding specific chemorepellents. We find that adults with knockouts of the entire neurexin locus exhibit a strong avoidance deficit in response to glycerol and a weaker defect in response to copper. Notably, the C. elegans neurexin (nrx-1) locus, like its mammalian homologs, encodes multiple isoforms, α and γ. Using isoform-specific mutations, we find that the γ isoform is selectively required for glycerol avoidance. Next, we used transgenic rescue experiments to show that this isoform functions at least partially in the nervous system. We also confirm that the transgenes are expressed in the neurons and observe protein accumulation in neurites. Furthermore, we tested whether these mutants affect the behavioral responses of juveniles. We find that juveniles (4th larval stages) of mutants knocking out the entire locus or the α-isoforms, but not γ-isoform, are defective in avoiding glycerol. These results suggest that the different neurexin isoforms affect chemosensory avoidance behavior in juveniles and adults, providing a general principle of how isoforms of this conserved gene affect behavior across species.
Collapse
Affiliation(s)
- Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sophia Guerra
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Michael Rieger
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Haley JA, Chalasani SH. C. elegans foraging as a model for understanding the neuronal basis of decision-making. Cell Mol Life Sci 2024; 81:252. [PMID: 38849591 PMCID: PMC11335288 DOI: 10.1007/s00018-024-05223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024]
Abstract
Animals have evolved to seek, select, and exploit food sources in their environment. Collectively termed foraging, these ubiquitous behaviors are necessary for animal survival. As a foundation for understanding foraging, behavioral ecologists established early theoretical and mathematical frameworks which have been subsequently refined and supported by field and laboratory studies of foraging animals. These simple models sought to explain how animals decide which strategies to employ when locating food, what food items to consume, and when to explore the environment for new food sources. These foraging decisions involve integration of prior experience with multimodal sensory information about the animal's current environment and internal state. We suggest that the nematode Caenorhabditis elegans is well-suited for a high-resolution analysis of complex goal-oriented behaviors such as foraging. We focus our discussion on behavioral studies highlighting C. elegans foraging on bacteria and summarize what is known about the underlying neuronal and molecular pathways. Broadly, we suggest that this simple model system can provide a mechanistic understanding of decision-making and present additional avenues for advancing our understanding of complex behavioral processes.
Collapse
Affiliation(s)
- Jessica A Haley
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Julià I, Hiltpold I, Morton A, Garcia-Del-Pino F. Attraction of entomopathogenic nematodes to black truffle and its volatile organic compounds: A new approach for truffle beetle biocontrol. J Invertebr Pathol 2024; 203:108077. [PMID: 38402946 DOI: 10.1016/j.jip.2024.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The European truffle beetle, Leiodes cinnamomeus, is the most important pest in black truffle (Tuber melanosporum) plantations. Entomopathogenic nematodes (EPNs) are a promising biological control agents against L. cinnamomeus. EPNs may employ multiple sensory cues while seeking for hosts, such as volatile organic compounds (VOCs) and CO2 gradients. We report for the first time the attraction of EPNs to truffle fruitbodies, and identified some VOCs potentially playing a key role in this interaction. We conducted olfactometer assays to investigate the attraction behavior of Steinernema feltiae and Steinernema carpocapsae towards both T. melanosporum fruitbodies and larvae of L. cinnamomeus. Subsequently, a chemotaxis assay using agar plates was performed to determine which of the 14 of the main VOCs emitted by the fruitbodies attracted S. feltiae at low (0.1 %) and high (mg/100 g truffle) concentrations. Both EPN species were attracted to mature fruitbodies of T. melanosporum, which may enhance the likelihood of encountering L. cinnamomeus during field applications. L. cinnamomeus larvae in the presence of truffles did not significantly affect the behavior of EPNs 24 h after application, underscoring the importance of the chemical compounds emitted by truffles themselves. Chemotaxis assays showed that four long-chain alcohol compounds emitted by T. melanosporum fruitbodies attracted S. feltiae, especially at low concentration, providing a first hint in the chemical ecology of a little-studied ecological system of great economical value. Further studies should be conducted to gain a finer understanding of the tritrophic interactions between T. melanosporum, EPNs, and L. cinnamomeus, as this knowledge may have practical implications for the efficacy of EPNs in the biological control of this pest.
Collapse
Affiliation(s)
- Ivan Julià
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ivan Hiltpold
- Entomology and Nematology, Plant Protection Strategic Research Division, Agroscope, 1260 Nyon, Switzerland
| | - Ana Morton
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Fernando Garcia-Del-Pino
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Yim H, Choe DT, Bae JA, Choi MK, Kang HM, Nguyen KCQ, Ahn S, Bahn SK, Yang H, Hall DH, Kim JS, Lee J. Comparative connectomics of dauer reveals developmental plasticity. Nat Commun 2024; 15:1546. [PMID: 38413604 PMCID: PMC10899629 DOI: 10.1038/s41467-024-45943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
A fundamental question in neurodevelopmental biology is how flexibly the nervous system changes during development. To address this, we reconstructed the chemical connectome of dauer, an alternative developmental stage of nematodes with distinct behavioral characteristics, by volumetric reconstruction and automated synapse detection using deep learning. With the basic architecture of the nervous system preserved, structural changes in neurons, large or small, were closely associated with connectivity changes, which in turn evoked dauer-specific behaviors such as nictation. Graph theoretical analyses revealed significant dauer-specific rewiring of sensory neuron connectivity and increased clustering within motor neurons in the dauer connectome. We suggest that the nervous system in the nematode has evolved to respond to harsh environments by developing a quantitatively and qualitatively differentiated connectome.
Collapse
Affiliation(s)
- Hyunsoo Yim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Daniel T Choe
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - J Alexander Bae
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Kyu Choi
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hae-Mook Kang
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ken C Q Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Kyu Bahn
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jinseop S Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
15
|
Nava S, Palma W, Wan X, Oh JY, Gharib S, Wang H, Revanna JS, Tan M, Zhang M, Liu J, Chen CH, Lee JS, Perry B, Sternberg PW. A cGAL-UAS bipartite expression toolkit for Caenorhabditis elegans sensory neurons. Proc Natl Acad Sci U S A 2023; 120:e2221680120. [PMID: 38096407 PMCID: PMC10743456 DOI: 10.1073/pnas.2221680120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
Animals integrate sensory information from the environment and display various behaviors in response to external stimuli. In Caenorhabditis elegans hermaphrodites, 33 types of sensory neurons are responsible for chemosensation, olfaction, and mechanosensation. However, the functional roles of all sensory neurons have not been systematically studied due to the lack of facile genetic accessibility. A bipartite cGAL-UAS system has been previously developed to study tissue- or cell-specific functions in C. elegans. Here, we report a toolkit of new cGAL drivers that can facilitate the analysis of a vast majority of the 60 sensory neurons in C. elegans hermaphrodites. We generated 37 sensory neuronal cGAL drivers that drive cGAL expression by cell-specific regulatory sequences or intersection of two distinct regulatory regions with overlapping expression (split cGAL). Most cGAL-drivers exhibit expression in single types of cells. We also constructed 28 UAS effectors that allow expression of proteins to perturb or interrogate sensory neurons of choice. This cGAL-UAS sensory neuron toolkit provides a genetic platform to systematically study the functions of C. elegans sensory neurons.
Collapse
Affiliation(s)
- Stephanie Nava
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wilber Palma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Xuan Wan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jun Young Oh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Shahla Gharib
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Han Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jasmin S. Revanna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Minyi Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Mark Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jonathan Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Chun-Hao Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - James S. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Barbara Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
16
|
Nunn LR, Juang TD, Beebe DJ, Wheeler NJ, Zamanian M. A high-throughput nematode sensory assay reveals an inhibitory effect of ivermectin on parasite gustation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538347. [PMID: 37163046 PMCID: PMC10168391 DOI: 10.1101/2023.04.25.538347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes.
Collapse
Affiliation(s)
- Leonardo R. Nunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Terry D. Juang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
17
|
Yuan H, Yuan W, Duan S, Jiao K, Zhang Q, Lim EG, Chen M, Zhao C, Pan P, Liu X, Song P. Microfluidic-Assisted Caenorhabditis elegans Sorting: Current Status and Future Prospects. CYBORG AND BIONIC SYSTEMS 2023; 4:0011. [PMID: 37287459 PMCID: PMC10243201 DOI: 10.34133/cbsystems.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/15/2023] [Indexed: 07/30/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) has been a popular model organism for several decades since its first discovery of the huge research potential for modeling human diseases and genetics. Sorting is an important means of providing stage- or age-synchronized worm populations for many worm-based bioassays. However, conventional manual techniques for C. elegans sorting are tedious and inefficient, and commercial complex object parametric analyzer and sorter is too expensive and bulky for most laboratories. Recently, the development of lab-on-a-chip (microfluidics) technology has greatly facilitated C. elegans studies where large numbers of synchronized worm populations are required and advances of new designs, mechanisms, and automation algorithms. Most previous reviews have focused on the development of microfluidic devices but lacked the summaries and discussion of the biological research demands of C. elegans, and are hard to read for worm researchers. We aim to comprehensively review the up-to-date microfluidic-assisted C. elegans sorting developments from several angles to suit different background researchers, i.e., biologists and engineers. First, we highlighted the microfluidic C. elegans sorting devices' advantages and limitations compared to the conventional commercialized worm sorting tools. Second, to benefit the engineers, we reviewed the current devices from the perspectives of active or passive sorting, sorting strategies, target populations, and sorting criteria. Third, to benefit the biologists, we reviewed the contributions of sorting to biological research. We expect, by providing this comprehensive review, that each researcher from this multidisciplinary community can effectively find the needed information and, in turn, facilitate future research.
Collapse
Affiliation(s)
- Hang Yuan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
| | - Wenwen Yuan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Sixuan Duan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Keran Jiao
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Chemistry,
Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Quan Zhang
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
| | - Eng Gee Lim
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Min Chen
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Chun Zhao
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Peng Pan
- Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Canada
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Canada
| | - Pengfei Song
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Nunn LR, Juang TD, Beebe DJ, Wheeler NJ, Zamanian M. A high-throughput sensory assay for parasitic and free-living nematodes. Integr Biol (Camb) 2023; 15:zyad010. [PMID: 37555835 PMCID: PMC10752570 DOI: 10.1093/intbio/zyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes. Insight box Nematodes are powerful model organisms for understanding the sensory biology of multicellular eukaryotes, and many parasitic species cause disease in humans. Simple sensory assays performed on agarose plates have been the bedrock for establishing the neuronal, genetic, and developmental foundations for many sensory modalities in nematodes. However, these classical assays are poorly suited for translational movement of many parasitic nematodes and the sensation of water-soluble molecules (gustation). We have designed a device for high-throughput nematode sensory assays in a gel matrix. This 'gustatory microplate' is amenable to several species and reveals novel responses by free-living and parasitic nematodes to cues and drugs.
Collapse
Affiliation(s)
- Leonardo R. Nunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Terry D. Juang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
19
|
Roman A, Palanski K, Nemenman I, Ryu WS. A dynamical model of C. elegans thermal preference reveals independent excitatory and inhibitory learning pathways. Proc Natl Acad Sci U S A 2023; 120:e2215191120. [PMID: 36940330 PMCID: PMC10068832 DOI: 10.1073/pnas.2215191120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/19/2023] [Indexed: 03/22/2023] Open
Abstract
Caenorhabditis elegans is capable of learning and remembering behaviorally relevant cues such as smells, tastes, and temperature. This is an example of associative learning, a process in which behavior is modified by making associations between various stimuli. Since the mathematical theory of conditioning does not account for some of its salient aspects, such as spontaneous recovery of extinguished associations, accurate modeling of behavior of real animals during conditioning has turned out difficult. Here, we do this in the context of the dynamics of the thermal preference of C. elegans. We quantify C. elegans thermotaxis in response to various conditioning temperatures, starvation durations, and genetic perturbations using a high-resolution microfluidic droplet assay. We model these data comprehensively, within a biologically interpretable, multi-modal framework. We find that the strength of the thermal preference is composed of two independent, genetically separable contributions and requires a model with at least four dynamical variables. One pathway positively associates the experienced temperature independently of food and the other negatively associates with the temperature when food is absent. The multidimensional structure of the association strength provides an explanation for the apparent classical temperature-food association of C. elegans thermal preference and a number of longstanding questions in animal learning, including spontaneous recovery, asymmetric response to appetitive vs. aversive cues, latent inhibition, and generalization among similar cues.
Collapse
Affiliation(s)
- Ahmed Roman
- Department of Physics, Emory University, Atlanta, GA30322
| | | | - Ilya Nemenman
- Department of Physics, Emory University, Atlanta, GA30322
- Department of Biology, Emory University, Atlanta, GA30322
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, GA30322
| | - William S. Ryu
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
20
|
Petersen C, Krahn A, Leippe M. The nematode Caenorhabditis elegans and diverse potential invertebrate vectors predominantly interact opportunistically. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1069056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Some small animals migrate with the help of other, more mobile animals (phoresy) to leave short-lived and resource-poor habitats. The nematode Caenorhabditis elegans lives in ephemeral habitats such as compost, but has also been found associated with various potential invertebrate vectors. Little research has been done to determine if C. elegans is directly attracted to these invertebrates. To determine whether C. elegans is attracted to compounds and volatile odorants of invertebrates, we conducted chemotaxis experiments with the isopods Porcellio scaber, Oniscus asellus, and Armadillidium sp. and with Lithobius sp. myriapods, Drosophila melanogaster fruit flies, and Arion sp. slugs as representatives of natural vectors. Because phoresy is an important escape strategy in nature, especially for dauer larvae of C. elegans, we examined the attraction of the natural C. elegans isolate MY2079 in addition to the laboratory-adapted strain N2 at the dauer and L4 stage. We found that DMSO washing solution of Lithobius sp. and the odor of live D. melanogaster attracted C. elegans N2 L4 larvae. Surprisingly, the natural isolate MY2079 was not attracted to any invertebrate during either the dauer or L4 life stages and both C. elegans strains were repelled by various compounds from O. asellus, P. scaber, Armadillidium sp., Lithobius sp., and Arion sp. feces. We hypothesize that this is due to defense chemicals released by the invertebrates. Although compounds from Lithobius sp. and D. melanogaster odorants were mildly attractive, the lack of attraction to most invertebrates suggests a predominantly opportunistic association between C. elegans and invertebrate vectors.
Collapse
|
21
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
22
|
Gallo KJ, Wheeler NJ, Elmi AM, Airs PM, Zamanian M. Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target. Antimicrob Agents Chemother 2023; 67:e0118822. [PMID: 36602350 PMCID: PMC9872666 DOI: 10.1128/aac.01188-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The diversification of anthelmintic targets and mechanisms of action will help ensure the sustainable control of nematode infections in response to the growing threat of drug resistance. G protein-coupled receptors (GPCRs) are established drug targets in human medicine but remain unexploited as anthelmintic substrates despite their important roles in nematode neuromuscular and physiological processes. Bottlenecks in exploring the druggability of parasitic nematode GPCRs include a limited helminth genetic toolkit and difficulties establishing functional heterologous expression. In an effort to address some of these challenges, we profile the function and pharmacology of muscarinic acetylcholine receptors in the human parasite Brugia malayi, an etiological agent of human lymphatic filariasis. While acetylcholine-gated ion channels are intensely studied as targets of existing anthelmintics, comparatively little is known about metabotropic receptor contributions to parasite cholinergic signaling. Using multivariate phenotypic assays in microfilariae and adults, we show that nicotinic and muscarinic compounds disparately affect parasite fitness traits. We identify a putative G protein-linked acetylcholine receptor of B. malayi (Bma-GAR-3) that is highly expressed across intramammalian life stages and adapt spatial RNA in situ hybridization to map receptor transcripts to critical parasite tissues. Tissue-specific expression of Bma-gar-3 in Caenorhabditis elegans (body wall muscle, sensory neurons, and pharynx) enabled receptor deorphanization and pharmacological profiling in a nematode physiological context. Finally, we developed an image-based feeding assay as a reporter of pharyngeal activity to facilitate GPCR screening in parasitized strains. We expect that these receptor characterization approaches and improved knowledge of GARs as putative drug targets will further advance the study of GPCR biology across medically important nematodes.
Collapse
Affiliation(s)
- Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abdifatah M. Elmi
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Sy SKH, Chan DCW, Chan RCH, Lyu J, Li Z, Wong KKY, Choi CHJ, Mok VCT, Lai HM, Randlett O, Hu Y, Ko H. An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish. Nat Commun 2023; 14:227. [PMID: 36641479 PMCID: PMC9840631 DOI: 10.1038/s41467-023-35836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Studying chemosensory processing desires precise chemical cue presentation, behavioral response monitoring, and large-scale neuronal activity recording. Here we present Fish-on-Chips, a set of optofluidic tools for highly-controlled chemical delivery while simultaneously imaging behavioral outputs and whole-brain neuronal activities at cellular resolution in larval zebrafish. These include a fluidics-based swimming arena and an integrated microfluidics-light sheet fluorescence microscopy (µfluidics-LSFM) system, both of which utilize laminar fluid flows to achieve spatiotemporally precise chemical cue presentation. To demonstrate the strengths of the platform, we used the navigation arena to reveal binasal input-dependent behavioral strategies that larval zebrafish adopt to evade cadaverine, a death-associated odor. The µfluidics-LSFM system enables sequential presentation of odor stimuli to individual or both nasal cavities separated by only ~100 µm. This allowed us to uncover brainwide neural representations of cadaverine sensing and binasal input summation in the vertebrate model. Fish-on-Chips is readily generalizable and will empower the investigation of neural coding in the chemical senses.
Collapse
Affiliation(s)
- Samuel K H Sy
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Danny C W Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Roy C H Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jing Lyu
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhongqi Li
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hei-Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Owen Randlett
- Institut national de la santé et de la recherche médicale, Université Claude Bernard Lyon 1, Lyon, France
| | - Yu Hu
- Department of Mathematics and Division of Life Science, Faculty of Science, Hong Kong University of Science and Technology, Clear Water Bay, New Territories, Hong Kong SAR, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
24
|
Mabardi L, Sato H, Toyoshima Y, Iino Y, Kunitomo H. Different modes of stimuli delivery elicit changes in glutamate driven, experience-dependent interneuron response in C. elegans. Neurosci Res 2023; 186:33-42. [PMID: 36252701 DOI: 10.1016/j.neures.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Memory-related neuronal responses are often elicited by sensory stimuli that recapitulate previous experience. Despite the importance of this sensory input processing, its underlying mechanisms remain poorly understood. Caenorhabditis elegans chemotax towards salt concentrations experienced in the presence of food. The amphid sensory neurons ASE-left and ASE-right respond to increases and decreases of ambient salt concentration in opposite manners. AIA, AIB and AIY interneurons are post-synaptic to the ASE pair and are thought to be involved in the processing of salt information transmitted from ASE. However, it remains elusive how the responses of these interneurons are regulated by stimulus patterns. Here we show that AIY interneurons display an experience-dependent response to gradual salt concentration changes but not to abrupt stepwise concentration changes. Animals with AIY intact (but AIA and AIB ablated) chemotax towards low salt concentrations similarly to wild-type animals after cultivation with low salt. ASE neurons transmit salt information about the environment through glutamatergic signaling, directing the activity of the interneurons AIY that promote movement towards favorable conditions.
Collapse
Affiliation(s)
- Llian Mabardi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hirofumi Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Yu Toyoshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan.
| | - Hirofumi Kunitomo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan.
| |
Collapse
|
25
|
Clupper M, Gill R, Elsayyid M, Touroutine D, Caplan JL, Tanis JE. Kinesin-2 motors differentially impact biogenesis of extracellular vesicle subpopulations shed from sensory cilia. iScience 2022; 25:105262. [PMID: 36304122 PMCID: PMC9593189 DOI: 10.1016/j.isci.2022.105262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Extracellular vesicles (EVs) are bioactive lipid-bilayer enclosed particles released from nearly all cells. One specialized site for EV shedding is the primary cilium. Here, we discover the conserved ion channel CLHM-1 as a ciliary EV cargo. Imaging of EVs released from sensory neuron cilia of Caenorhabditis elegans expressing fluorescently tagged CLHM-1 and TRP polycystin-2 channel PKD-2 shows enrichment of these cargoes in distinct EV subpopulations that are differentially shed in response to mating partner availability. PKD-2 alone is present in EVs shed from the cilium distal tip, whereas CLHM-1 EVs bud from a secondary site(s), including the ciliary base. Heterotrimeric and homodimeric kinesin-2 motors have discrete impacts on PKD-2 and CLHM-1 colocalization in both cilia and EVs. Total loss of kinesin-2 activity decreases shedding of PKD-2 but not CLHM-1 EVs. Our data demonstrate that anterograde intraflagellar transport is required for selective enrichment of protein cargoes into heterogeneous EVs with different signaling potentials.
Collapse
Affiliation(s)
- Michael Clupper
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rachael Gill
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malek Elsayyid
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Denis Touroutine
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jeffrey L. Caplan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica E. Tanis
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
26
|
Lindsay JH, Mathies LD, Davies AG, Bettinger JC. A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2210462119. [PMID: 36343256 PMCID: PMC9674237 DOI: 10.1073/pnas.2210462119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated. We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.
Collapse
Affiliation(s)
- Jonathan H. Lindsay
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
| | - Laura D. Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| | - Andrew G. Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| | - Jill C. Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
27
|
Parida L. The locomotory characteristics of Caenorhabditis elegans in various external environments: A review. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Li Q, Marcu DC, Dear PH, Busch KE. Aerotaxis Assay in Caenorhabditis elegans to Study Behavioral Plasticity. Bio Protoc 2022; 12:e4492. [PMID: 36199707 PMCID: PMC9486685 DOI: 10.21769/bioprotoc.4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
C. elegans shows robust and reproducible behavioral responses to oxygen. Specifically, worms prefer O 2 levels of 5-10% and avoid too high or too low O 2 . Their O 2 preference is not fixed but shows plasticity depending on experience, context, or genetic background. We recently showed that this experience-dependent plasticity declines with age, providing a useful behavioral readout for studying the mechanisms of age-related decline of neural plasticity. Here, we describe a technique to visualize behavioral O 2 preference and its plasticity in C. elegans , by creating spatial gradients of [O 2 ] in a microfluidic polydimethylsiloxane (PDMS) chamber and recording the resulting spatial distribution of the animals.
Collapse
Affiliation(s)
- Qiaochu Li
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel-Cosmin Marcu
- Institute for Mind, Brain, and Behaviour, Faculty of Medicine, HMU Health and Medical University, Potsdam, Germany
| | | | - Karl Emanuel Busch
- Institute for Mind, Brain, and Behaviour, Faculty of Medicine, HMU Health and Medical University, Potsdam, Germany
| |
Collapse
|
29
|
Arrestin-mediated desensitization enables intraneuronal olfactory discrimination in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2116957119. [PMID: 35878038 PMCID: PMC9351366 DOI: 10.1073/pnas.2116957119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the mammalian olfactory system, cross-talk between olfactory signals is minimized through physical isolation: individual neurons express one or few olfactory receptors among those encoded in the genome. Physical isolation allows for segregation of stimuli during signal transduction; however, in the nematode worm Caenorhabditis elegans, ∼1,300 olfactory receptors are primarily expressed in only 32 neurons, precluding this strategy. Here, we report genetic and behavioral evidence that β-arrestin-mediated desensitization of olfactory receptors, working downstream of the kinase GRK-1, enables discrimination between intraneuronal olfactory stimuli. Our findings suggest that C. elegans exploits β-arrestin desensitization to maximize responsiveness to novel odors, allowing for behaviorally appropriate responses to olfactory stimuli despite the large number of olfactory receptors signaling in single cells. This represents a fundamentally different solution to the problem of olfactory discrimination than that which evolved in mammals, allowing for economical use of a limited number of sensory neurons.
Collapse
|
30
|
Ackley C, Washiashi L, Krishnamurthy R, Rothman JH. Large-Scale Gravitaxis Assay of Caenorhabditis Dauer Larvae. J Vis Exp 2022:10.3791/64062. [PMID: 35723485 PMCID: PMC9359452 DOI: 10.3791/64062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024] Open
Abstract
Gravity sensation is an important and relatively understudied process. Sensing gravity enables animals to navigate their surroundings and facilitates movement. Additionally, gravity sensation, which occurs in the mammalian inner ear, is closely related to hearing - thus, understanding this process has implications for auditory and vestibular research. Gravitaxis assays exist for some model organisms, including Drosophila. Single worms have previously been assayed for their orientation preference as they settle in solution. However, a reliable and robust assay for Caenorhabditis gravitaxis has not been described. The present protocol outlines a procedure for performing gravitaxis assays that can be used to test hundreds of Caenorhabditis dauers at a time. This large-scale, long-distance assay allows for detailed data collection, revealing phenotypes that may be missed on a standard plate-based assay. Dauer movement along the vertical axis is compared with horizontal controls to ensure that directional bias is due to gravity. Gravitactic preference can then be compared between strains or experimental conditions. This method can determine molecular, cellular, and environmental requirements for gravitaxis in worms.
Collapse
Affiliation(s)
- Caroline Ackley
- Molecular Cellular and Developmental Biology, University of California;
| | - Lindsey Washiashi
- Molecular Cellular and Developmental Biology, University of California
| | | | - Joel H Rothman
- Molecular Cellular and Developmental Biology, University of California
| |
Collapse
|
31
|
Crombie TA, Chikuturudzi C, Cook DE, Andersen EC. An automated approach to quantify chemotaxis index in C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000567. [PMID: 35647500 PMCID: PMC9136590 DOI: 10.17912/micropub.biology.000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
Abstract
Chemotaxis assays are used extensively to study behavioral responses of Caenorhabditis nematodes to environmental cues. These assays result in a chemotaxis index (CI) that denotes the behavioral response of a population of nematodes to a particular compound and can range from 1 (maximum attraction) to -1 (maximum avoidance). Traditional chemotaxis assays have low throughput because researchers must manually setup experimental populations and score CIs. Here, we describe an automated methodology that increases throughput by using liquid-handling robots to setup experimental populations and a custom image analysis package, ct, to automate the scoring of CIs from plate images.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Chido Chikuturudzi
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
32
|
Neural model generating klinotaxis behavior accompanied by a random walk based on C. elegans connectome. Sci Rep 2022; 12:3043. [PMID: 35197494 PMCID: PMC8866504 DOI: 10.1038/s41598-022-06988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Klinotaxis is a strategy of chemotaxis behavior in Caenorhabditis elegans (C. elegans), and random walking is evident during its locomotion. As yet, the understanding of the neural mechanisms underlying these behaviors has remained limited. In this study, we present a connectome-based simulation model of C. elegans to concurrently realize realistic klinotaxis and random walk behaviors and explore their neural mechanisms. First, input to the model is derived from an ASE sensory neuron model in which the all-or-none depolarization characteristic of ASEL neuron is incorporated for the first time. Then, the neural network is evolved by an evolutionary algorithm; klinotaxis emerged spontaneously. We identify a plausible mechanism of klinotaxis in this model. Next, we propose the liquid synapse according to the stochastic nature of biological synapses and introduce it into the model. Adopting this, the random walk is generated autonomously by the neural network, providing a new hypothesis as to the neural mechanism underlying the random walk. Finally, simulated ablation results are fairly consistent with the biological conclusion, suggesting the similarity between our model and the biological network. Our study is a useful step forward in behavioral simulation and understanding the neural mechanisms of behaviors in C. elegans.
Collapse
|
33
|
Suzuki M, Hattori Y, Saito T, Harada Y. Pond Assay for the Sensory Systems of Caenorhabditis elegans: A Novel Anesthesia-Free Method Enabling Detection of Responses to Extremely Low Chemical Concentrations. BIOLOGY 2022; 11:biology11020335. [PMID: 35205201 PMCID: PMC8868598 DOI: 10.3390/biology11020335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary We propose a pond assay for the sensory systems (PASS) of Caenorhabditis elegans as a novel method of behavioral analysis. In PASS, the test solution is injected into a recess(es) formed on agar and the response of C. elegans to its odor and/or taste is examined. Once C. elegans individuals fall into recesses (ponds) filled with liquid, they cannot return to the solid medium. In this way, the animals are trapped with certainty without the use of anesthesia. The anesthesia used to keep animals in the attractant area in conventional chemotaxis assays is no longer required, allowing pure evaluation of the response to specific substances. Furthermore, the test itself can be greatly streamlined because the preparation can be completed simply by providing a recess(es) and filling the liquid. The present paper reports the detailed method and effectiveness of the novel PASS through a series of chemotaxis assays. By using the PASS method, we found that the olfactory system of C. elegans accurately senses odors even at extremely low concentrations lower than the previously known detection threshold. This method can be applied to biosensor technology that uses C. elegans to detect chemical substances present at extremely low concentrations in environmental samples and biological samples with high sensitivity. Abstract Chemotaxis in the nematode Caenorhabditis elegans has basically been examined using conventional assay methods. Although these can be problematic, for example, in their use of anesthesia, the method has never been improved. We propose a pond assay for the sensory systems (PASS) of C. elegans as a novel population-based method of behavioral analysis. The test solution is injected into a recess(es) formed on agar and the response of C. elegans to its odor and/or taste is examined. Once C. elegans individuals fall into recesses (ponds) filled with liquid, they cannot return to a solid medium. In this way, the animals are trapped with certainty without the use of anesthesia. The anesthesia used to keep animals in the attractant area in conventional chemotaxis assays is no longer required, allowing pure evaluation of the attractant or repellent response to specific substances. Furthermore, the assay itself can be greatly streamlined because the preparation can be completed simply by providing a recess(es) and filling the liquid. The present paper reports the detailed method and effectiveness of the novel PASS.
Collapse
Affiliation(s)
- Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki 370-1292, Gunma, Japan;
- Correspondence: ; Tel.: +81-(0)27-346-9542; Fax: +81-(0)27-346-9353
| | - Yuya Hattori
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki 370-1292, Gunma, Japan;
| | - Toshiyuki Saito
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Chiba, Japan;
| | - Yoshinobu Harada
- Human Resources Development Center, National Institutes for Quantum Science and Technology (QST-CHRD), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Chiba, Japan;
| |
Collapse
|
34
|
Salim C, Kan AK, Batsaikhan E, Patterson EC, Jee C. Neuropeptidergic regulation of compulsive ethanol seeking in C. elegans. Sci Rep 2022; 12:1804. [PMID: 35110557 PMCID: PMC8810865 DOI: 10.1038/s41598-022-05256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the catastrophic consequences of alcohol abuse, alcohol use disorders (AUD) and comorbidities continue to strain the healthcare system, largely due to the effects of alcohol-seeking behavior. An improved understanding of the molecular basis of alcohol seeking will lead to enriched treatments for these disorders. Compulsive alcohol seeking is characterized by an imbalance between the superior drive to consume alcohol and the disruption or erosion in control of alcohol use. To model the development of compulsive engagement in alcohol seeking, we simultaneously exploited two distinct and conflicting Caenorhabditis elegans behavioral programs, ethanol preference and avoidance of aversive stimulus. We demonstrate that the C. elegans model recapitulated the pivotal features of compulsive alcohol seeking in mammals, specifically repeated attempts, endurance, and finally aversion-resistant alcohol seeking. We found that neuropeptide signaling via SEB-3, a CRF receptor-like GPCR, facilitates the development of ethanol preference and compels animals to seek ethanol compulsively. Furthermore, our functional genomic approach and behavioral elucidation suggest that the SEB-3 regulates another neuropeptidergic signaling, the neurokinin receptor orthologue TKR-1, to facilitate compulsive ethanol-seeking behavior.
Collapse
Affiliation(s)
- Chinnu Salim
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Ann Ke Kan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Enkhzul Batsaikhan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - E Clare Patterson
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA.
| |
Collapse
|
35
|
Bentley-Ford MR, LaBonty M, Thomas HR, Haycraft CJ, Scott M, LaFayette C, Croyle MJ, Andersen RS, Parant JM, Yoder BK. Evolutionarily conserved genetic interactions between nphp-4 and bbs-5 mutations exacerbate ciliopathy phenotypes. Genetics 2022; 220:iyab209. [PMID: 34850872 PMCID: PMC8733634 DOI: 10.1093/genetics/iyab209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are sensory and signaling hubs with a protein composition that is distinct from the rest of the cell due to the barrier function of the transition zone (TZ) at the base of the cilium. Protein transport across the TZ is mediated in part by the BBSome, and mutations disrupting TZ and BBSome proteins cause human ciliopathy syndromes. Ciliopathies have phenotypic variability even among patients with identical genetic variants, suggesting a role for modifier loci. To identify potential ciliopathy modifiers, we performed a mutagenesis screen on nphp-4 mutant Caenorhabditis elegans and uncovered a novel allele of bbs-5. Nphp-4;bbs-5 double mutant worms have phenotypes not observed in either individual mutant strain. To test whether this genetic interaction is conserved, we also analyzed zebrafish and mouse mutants. While Nphp4 mutant zebrafish appeared overtly normal, Bbs5 mutants exhibited scoliosis. When combined, Nphp4;Bbs5 double mutant zebrafish did not exhibit synergistic effects, but the lack of a phenotype in Nphp4 mutants makes interpreting these data difficult. In contrast, Nphp4;Bbs5 double mutant mice were not viable and there were fewer mice than expected carrying three mutant alleles. In addition, postnatal loss of Bbs5 in mice using a conditional allele compromised survival when combined with an Nphp4 allele. As cilia are still formed in the double mutant mice, the exacerbated phenotype is likely a consequence of disrupted ciliary signaling. Collectively, these data support an evolutionarily conserved genetic interaction between Bbs5 and Nphp4 alleles that may contribute to the variability in ciliopathy phenotypes.
Collapse
Affiliation(s)
- Melissa R Bentley-Ford
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Melissa LaBonty
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mikyla Scott
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cameron LaFayette
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Reagan S Andersen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
36
|
A single chemosensory GPCR is required for a concentration-dependent behavioral switching in C. elegans. Curr Biol 2021; 32:398-411.e4. [PMID: 34906353 DOI: 10.1016/j.cub.2021.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Animals detect and discriminate countless environmental chemicals for their well-being and survival. Although a single chemical can trigger opposing behavioral responses depending on its concentration, the mechanisms underlying such a concentration-dependent switching remain poorly understood. Here, we show that C. elegans exhibits either attraction or avoidance of the bacteria-derived volatile chemical dimethyl trisulfide (DMTS) depending on its concentration. This behavioral switching is mediated by two different types of chemosensory neurons, both of which express the DMTS-sensitive seven-transmembrane G protein-coupled receptor (GPCR) SRI-14. These two sensory neurons share downstream interneurons that process and translate DMTS signals via distinct glutamate receptors to generate the appropriate behavioral outcome. Thus, our results present one mechanism by which an animal connects two distinct types of chemosensory neurons detecting a common ligand to alternate downstream circuitry, thus efficiently switching between specific behavioral programs based on ligand concentration.
Collapse
|
37
|
Narla AV, Cremer J, Hwa T. A traveling-wave solution for bacterial chemotaxis with growth. Proc Natl Acad Sci U S A 2021; 118:e2105138118. [PMID: 34819366 PMCID: PMC8640786 DOI: 10.1073/pnas.2105138118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial cells navigate their environment by directing their movement along chemical gradients. This process, known as chemotaxis, can promote the rapid expansion of bacterial populations into previously unoccupied territories. However, despite numerous experimental and theoretical studies on this classical topic, chemotaxis-driven population expansion is not understood in quantitative terms. Building on recent experimental progress, we here present a detailed analytical study that provides a quantitative understanding of how chemotaxis and cell growth lead to rapid and stable expansion of bacterial populations. We provide analytical relations that accurately describe the dependence of the expansion speed and density profile of the expanding population on important molecular, cellular, and environmental parameters. In particular, expansion speeds can be boosted by orders of magnitude when the environmental availability of chemicals relative to the cellular limits of chemical sensing is high. Analytical understanding of such complex spatiotemporal dynamic processes is rare. Our analytical results and the methods employed to attain them provide a mathematical framework for investigations of the roles of taxis in diverse ecological contexts across broad parameter regimes.
Collapse
Affiliation(s)
- Avaneesh V Narla
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Jonas Cremer
- Biology Department, Stanford University, Stanford, CA 94305
| | - Terence Hwa
- Department of Physics, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
38
|
Almazan EMP, Ryan JF, Rouhana L. Regeneration of Planarian Auricles and Reestablishment of Chemotactic Ability. Front Cell Dev Biol 2021; 9:777951. [PMID: 34901022 PMCID: PMC8662385 DOI: 10.3389/fcell.2021.777951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of chemical stimuli is crucial for living systems and also contributes to quality of life in humans. Since loss of olfaction becomes more prevalent with aging, longer life expectancies have fueled interest in understanding the molecular mechanisms behind the development and maintenance of chemical sensing. Planarian flatworms possess an unsurpassed ability for stem cell-driven regeneration that allows them to restore any damaged or removed part of their bodies. This includes anteriorly-positioned lateral flaps known as auricles, which have long been thought to play a central role in chemotaxis. The contribution of auricles to the detection of positive chemical stimuli was tested in this study using Girardia dorotocephala, a North American planarian species known for its morphologically prominent auricles. Behavioral experiments staged under laboratory conditions revealed that removal of auricles by amputation leads to a significant decrease in the ability of planarians to find food. However, full chemotactic capacity is observed as early as 2 days post-amputation, which is days prior from restoration of auricle morphology, but correlative with accumulation of ciliated cells in the position of auricle regeneration. Planarians subjected to x-ray irradiation prior to auricle amputation were unable to restore auricle morphology, but were still able to restore chemotactic capacity. These results indicate that although regeneration of auricle morphology requires stem cells, some restoration of chemotactic ability can still be achieved in the absence of normal auricle morphology, corroborating with the initial observation that chemotactic success is reestablished 2-days post-amputation in our assays. Transcriptome profiles of excised auricles were obtained to facilitate molecular characterization of these structures, as well as the identification of genes that contribute to chemotaxis and auricle development. A significant overlap was found between genes with preferential expression in auricles of G. dorotocephala and genes with reduced expression upon SoxB1 knockdown in Schmidtea mediterranea, suggesting that SoxB1 has a conserved role in regulating auricle development and function. Models that distinguish between possible contributions to chemotactic behavior obtained from cellular composition, as compared to anatomical morphology of the auricles, are discussed.
Collapse
Affiliation(s)
| | - Joseph F. Ryan
- Whitney Laboratory of Marine Biosciences, University of Florida, St. Augustine, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, Dayton, OH, United States
| |
Collapse
|
39
|
Iliff AJ, Wang C, Ronan EA, Hake AE, Guo Y, Li X, Zhang X, Zheng M, Liu J, Grosh K, Duncan RK, Xu XZS. The nematode C. elegans senses airborne sound. Neuron 2021; 109:3633-3646.e7. [PMID: 34555314 PMCID: PMC8602785 DOI: 10.1016/j.neuron.2021.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
Unlike olfaction, taste, touch, vision, and proprioception, which are
widespread across animal phyla, hearing is found only in vertebrates and some
arthropods. The vast majority of invertebrate species are thus considered
insensitive to sound. Here, we challenge this conventional view by showing that
the earless nematode C. elegans senses airborne sound at
frequencies reaching the kHz range. Sound vibrates C. elegans
skin, which acts as a pressure-to-displacement transducer similar to vertebrate
eardrum, activates sound-sensitive FLP/PVD neurons attached to the skin, and
evokes phonotaxis behavior. We identified two nAChRs that transduce sound
signals independently of ACh, revealing an unexpected function of nAChRs in
mechanosensation. Thus, the ability to sense airborne sound is not restricted to
vertebrates and arthropods as previously thought, and might have evolved
multiple times independently in the animal kingdom, suggesting convergent
evolution. Our studies also demonstrate that animals without ears may not be
presumed to be sound insensitive. Hearing is thought to exist only in vertebrates and some arthropods, but
not other animal phyla. Here, Xu and colleagues report that the earless nematode
C. elegans senses airborne sound and engages in phonotaxis.
Thus, hearing might have evolved multiple times independently in the animal
kingdom, suggesting convergent evolution.
Collapse
Affiliation(s)
- Adam J Iliff
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Can Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Elizabeth A Ronan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alison E Hake
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuling Guo
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xia Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinxing Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maohua Zheng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - R Keith Duncan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
40
|
Vuong-Brender TT, Flynn S, Vallis Y, Sönmez SE, de Bono M. Neuronal calmodulin levels are controlled by CAMTA transcription factors. eLife 2021; 10:e68238. [PMID: 34499028 PMCID: PMC8428840 DOI: 10.7554/elife.68238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/28/2021] [Indexed: 01/18/2023] Open
Abstract
The ubiquitous Ca2+ sensor calmodulin (CaM) binds and regulates many proteins, including ion channels, CaM kinases, and calcineurin, according to Ca2+-CaM levels. What regulates neuronal CaM levels, is, however, unclear. CaM-binding transcription activators (CAMTAs) are ancient proteins expressed broadly in nervous systems and whose loss confers pleiotropic behavioral defects in flies, mice, and humans. Using Caenorhabditis elegans and Drosophila, we show that CAMTAs control neuronal CaM levels. The behavioral and neuronal Ca2+ signaling defects in mutants lacking camt-1, the sole C. elegans CAMTA, can be rescued by supplementing neuronal CaM. CAMT-1 binds multiple sites in the CaM promoter and deleting these sites phenocopies camt-1. Our data suggest CAMTAs mediate a conserved and general mechanism that controls neuronal CaM levels, thereby regulating Ca2+ signaling, physiology, and behavior.
Collapse
Affiliation(s)
- Thanh Thi Vuong-Brender
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Sean Flynn
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Yvonne Vallis
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Saliha E Sönmez
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mario de Bono
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
41
|
Plasticity in gustatory and nociceptive neurons controls decision making in C. elegans salt navigation. Commun Biol 2021; 4:1053. [PMID: 34504291 PMCID: PMC8429449 DOI: 10.1038/s42003-021-02561-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
A conventional understanding of perception assigns sensory organs the role of capturing the environment. Better sensors result in more accurate encoding of stimuli, allowing for cognitive processing downstream. Here we show that plasticity in sensory neurons mediates a behavioral switch in C. elegans between attraction to NaCl in naïve animals and avoidance of NaCl in preconditioned animals, called gustatory plasticity. Ca2+ imaging in ASE and ASH NaCl sensing neurons reveals multiple cell-autonomous and distributed circuit adaptation mechanisms. A computational model quantitatively accounts for observed behaviors and reveals roles for sensory neurons in the control and modulation of motor behaviors, decision making and navigational strategy. Sensory adaptation dynamically alters the encoding of the environment. Rather than encoding the stimulus directly, therefore, we propose that these C. elegans sensors dynamically encode a context-dependent value of the stimulus. Our results demonstrate how adaptive sensory computation can directly control an animal’s behavioral state. Martijn Dekkers and Felix Salfelder et al. combine experimental approaches and mathematical modeling to determine the contribution of the two main NaCl sensory neurons (termed ASEL and ASER) and the nociceptive neurons (termed ASH) in C. elegans to the context-dependent switching between NaCl attraction and avoidance. Their results show that regulated sensitivity of these sensory neurons to NaCl allows the animal to dynamically modulate its behavioral response and suggest a role for sensory modulation in balancing exploration and exploitation during foraging.
Collapse
|
42
|
Dan X, Wechter N, Gray S, Mohanty JG, Croteau DL, Bohr VA. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res Rev 2021; 70:101416. [PMID: 34325072 PMCID: PMC8373788 DOI: 10.1016/j.arr.2021.101416] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Alterations in olfactory functions are proposed to be early biomarkers for neurodegeneration. Many neurodegenerative diseases are age-related, including two of the most common, Parkinson's disease (PD) and Alzheimer's disease (AD). The establishment of biomarkers that promote early risk identification is critical for the implementation of early treatment to postpone or avert pathological development. Olfactory dysfunction (OD) is seen in 90% of early-stage PD patients and 85% of patients with early-stage AD, which makes it an attractive biomarker for early diagnosis of these diseases. Here, we systematically review widely applied smelling tests available for humans as well as olfaction assessments performed in some animal models and the relationships between OD and normal aging, PD, AD, and other conditions. The utility of OD as a biomarker for neurodegenerative disease diagnosis and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiuli Dan
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noah Wechter
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Gray
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joy G Mohanty
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
43
|
Almeida L, Estrada-Rodriguez G, Oliver L, Peurichard D, Poulain A, Vallette F. Treatment-induced shrinking of tumour aggregates: a nonlinear volume-filling chemotactic approach. J Math Biol 2021; 83:29. [PMID: 34427771 DOI: 10.1007/s00285-021-01642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/24/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022]
Abstract
Motivated by experimental observations in 3D/organoid cultures derived from glioblastoma, we propose a novel mechano-transduction mechanism where the introduction of a chemotherapeutic treatment induces mechanical changes at the cell level. We analyse the influence of these individual mechanical changes on the properties of the aggregates obtained at the population level. We employ a nonlinear volume-filling chemotactic system of partial differential equations, where the elastic properties of the cells are taken into account through the so-called squeezing probability, which depends on the concentration of the treatment in the extracellular microenvironment. We explore two scenarios for the effect of the treatment: first, we suppose that the treatment acts only on the mechanical properties of the cells and, in the second one, we assume it also prevents cell proliferation. We perform a linear stability analysis which enables us to identify the ability of the system to create patterns and fully characterize their size. Moreover, we provide numerical simulations in 1D and 2D that illustrate the shrinking of the aggregates due to the presence of the treatment.
Collapse
Affiliation(s)
- Luis Almeida
- Laboratoire Jacques-Louis Lions, UMR7598, Sorbonne Université, CNRS, Inria, Université de Paris, 75005, Paris, France
| | - Gissell Estrada-Rodriguez
- Laboratoire Jacques-Louis Lions, UMR7598, Sorbonne Université, CNRS, Inria, Université de Paris, 75005, Paris, France.
| | - Lisa Oliver
- UMR 1232, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, Université de Nantes, Nantes, France
| | - Diane Peurichard
- Sorbonne Université, Inria, Université de Paris, CNRS, Laboratoire Jacques-Louis Lions, 75005, Paris, France
| | - Alexandre Poulain
- Laboratoire Jacques-Louis Lions, UMR7598, Sorbonne Université, CNRS, Inria, Université de Paris, 75005, Paris, France
| | - Francois Vallette
- UMR 1232, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, Université de Nantes, Nantes, France
| |
Collapse
|
44
|
Hallinen KM, Dempsey R, Scholz M, Yu X, Linder A, Randi F, Sharma AK, Shaevitz JW, Leifer AM. Decoding locomotion from population neural activity in moving C. elegans. eLife 2021; 10:66135. [PMID: 34323218 PMCID: PMC8439659 DOI: 10.7554/elife.66135] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activity during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons positively correlated with AVA during movement become negatively correlated during immobilization and vice versa. This work provides needed experimental measurements that inform and constrain ongoing efforts to understand population dynamics underlying locomotion in C. elegans.
Collapse
Affiliation(s)
- Kelsey M Hallinen
- Department of Physics, Princeton University, Princeton, United States
| | - Ross Dempsey
- Department of Physics, Princeton University, Princeton, United States
| | - Monika Scholz
- Department of Physics, Princeton University, Princeton, United States
| | - Xinwei Yu
- Department of Physics, Princeton University, Princeton, United States
| | - Ashley Linder
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Francesco Randi
- Department of Physics, Princeton University, Princeton, United States
| | - Anuj K Sharma
- Department of Physics, Princeton University, Princeton, United States
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, United States.,Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, United States
| | - Andrew M Leifer
- Department of Physics, Princeton University, Princeton, United States.,Princeton Neuroscience Institute, Princeton University, Princeton, United States
| |
Collapse
|
45
|
Queirós L, Monteiro L, Marques C, Pereira JL, Gonçalves FJM, Aschner M, Pereira P. Measurement of the Effects of Metals on Taxis-to-Food Behavior in Caenorhabditis elegans. Curr Protoc 2021; 1:e131. [PMID: 33974358 DOI: 10.1002/cpz1.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chemosensation in nematodes is linked to processes that affect their ability to survive, such as the search for food and the avoidance of toxic substances. Since the 1970s, numerous studies have assessed chemotaxis in the nematode species Caenorhabditis elegans, focusing on a multitude of agents, including bacteria (food), ions, salts, hormones, volatile organic compounds, and, to a lesser extent, metal-contaminated medium/food. The few studies evaluating metal exposure have reported a variety of responses (neutral, attraction, avoidance), which generally appear to be contaminant and/or concentration specific. Differences in experimental designs, however, hinder appropriate comparison of the findings and attainment of firm conclusions. Therefore, we herein propose and describe a detailed protocol for the assessment of the effects of metals on taxis-to-food behavior in C. elegans. Distinct approaches are proposed in two innovative stages of testing to (1) screen metals' effects on taxis-to-food behavior and (2) classify the behavioral response as attraction/avoidance/indifference or preference. Use of such a standard protocol will allow for easy comparison across studies and direct interpretation of results. Findings using this model system can contribute to a deeper understanding of the real risks of metal contamination to nematodes and how such contaminants could impact ecosystems in general, given the key environmental roles that these organisms play. © 2021 Wiley Periodicals LLC. Basic Protocol: Assessing the effects of metal contamination on taxis-to-food behavior in Caenorhabditis elegans Support Protocol 1: Synchronization of C. elegans by hand-picking gravid worms Support Protocol 2: Synchronization of C. elegans by using a bleaching solution.
Collapse
Affiliation(s)
- Libânia Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Luana Monteiro
- Marine Biology Research Group, Biology Department, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Carlos Marques
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Patrícia Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
46
|
Queirós L, Marques C, Pereira JL, Gonçalves FJM, Aschner M, Pereira P. Overview of Chemotaxis Behavior Assays in Caenorhabditis elegans. Curr Protoc 2021; 1:e120. [PMID: 33974354 PMCID: PMC8162703 DOI: 10.1002/cpz1.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmental pollution related to anthropogenic pressures, and the associated repercussions on public health, represent a worldwide problem. Thus, the study of the effects that environmental contaminants can pose to natural ecosystems and human health is of vital importance. Laboratory model organisms such as Caenorhabditis elegans have played a significant role in clarifying multilevel effects of those agents. Although the evaluation of contaminant effects at the behavioral level of organisms is an emerging approach in ecotoxicology, studies assessing chemotaxis behavior in C. elegans within the ecotoxicological research context are still scarce. Chemotaxis studies in C. elegans have contributed to the understanding of both the neuronal mechanisms involved in the behavioral effects triggered by environmental cues and the impact of contaminants on natural ecosystems. Its compact and well-characterized nervous system, as well as the availability of transgenic strains and molecular tools, allows a detailed examination of behavioral, molecular, and genetic chemosensation mechanisms. This overview provides a summary and general comparison of methods used to measure chemotaxis behavior in C. elegans, with the aim of helping researchers select the most suitable approach in their chemotaxis studies. We compare methods based on the type of chemical tested, advantages and drawbacks of the different approaches, and specific experimental goals. Lastly, we hope to encourage the evaluation of C. elegans chemotaxis behavior in ecotoxicology studies, as well as its potential integration in standardized protocols assessing environmental quality. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Libânia Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Marques
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana L. Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J. M. Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Patrícia Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
47
|
Ji N, Venkatachalam V, Rodgers HD, Hung W, Kawano T, Clark CM, Lim M, Alkema MJ, Zhen M, Samuel ADT. Corollary discharge promotes a sustained motor state in a neural circuit for navigation. eLife 2021; 10:e68848. [PMID: 33880993 PMCID: PMC8139836 DOI: 10.7554/elife.68848] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Animals exhibit behavioral and neural responses that persist on longer timescales than transient or fluctuating stimulus inputs. Here, we report that Caenorhabditis elegans uses feedback from the motor circuit to a sensory processing interneuron to sustain its motor state during thermotactic navigation. By imaging circuit activity in behaving animals, we show that a principal postsynaptic partner of the AFD thermosensory neuron, the AIY interneuron, encodes both temperature and motor state information. By optogenetic and genetic manipulation of this circuit, we demonstrate that the motor state representation in AIY is a corollary discharge signal. RIM, an interneuron that is connected with premotor interneurons, is required for this corollary discharge. Ablation of RIM eliminates the motor representation in AIY, allows thermosensory representations to reach downstream premotor interneurons, and reduces the animal's ability to sustain forward movements during thermotaxis. We propose that feedback from the motor circuit to the sensory processing circuit underlies a positive feedback mechanism to generate persistent neural activity and sustained behavioral patterns in a sensorimotor transformation.
Collapse
Affiliation(s)
- Ni Ji
- Department of Physics and Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Vivek Venkatachalam
- Department of Physics and Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Hillary Denise Rodgers
- Department of Physics and Center for Brain Science, Harvard UniversityCambridgeUnited States
- Department of Neurobiology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai HospitalTorontoCanada
- Departments of Molecular Genetics, and Physiology, University of TorontoTorontoCanada
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai HospitalTorontoCanada
- Departments of Molecular Genetics, and Physiology, University of TorontoTorontoCanada
| | - Christopher M Clark
- Department of Neurobiology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Maria Lim
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai HospitalTorontoCanada
- Departments of Molecular Genetics, and Physiology, University of TorontoTorontoCanada
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai HospitalTorontoCanada
- Departments of Molecular Genetics, and Physiology, University of TorontoTorontoCanada
| | - Aravinthan DT Samuel
- Department of Physics and Center for Brain Science, Harvard UniversityCambridgeUnited States
| |
Collapse
|
48
|
Lavorato M, Mathew ND, Shah N, Nakamaru-Ogiso E, Falk MJ. Comparative Analysis of Experimental Methods to Quantify Animal Activity in Caenorhabditis elegans Models of Mitochondrial Disease. J Vis Exp 2021:10.3791/62244. [PMID: 33871460 PMCID: PMC8572545 DOI: 10.3791/62244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Caenorhabditis elegans is widely recognized for its central utility as a translational animal model to efficiently interrogate mechanisms and therapies of diverse human diseases. Worms are particularly well-suited for high-throughput genetic and drug screens to gain deeper insight into therapeutic targets and therapies by exploiting their fast development cycle, large brood size, short lifespan, microscopic transparency, low maintenance costs, robust suite of genomic tools, mutant repositories, and experimental methodologies to interrogate both in vivo and ex vivo physiology. Worm locomotor activity represents a particularly relevant phenotype that is frequently impaired in mitochondrial disease, which is highly heterogeneous in causes and manifestations but collectively shares an impaired capacity to produce cellular energy. While a suite of different methodologies may be used to interrogate worm behavior, these vary greatly in experimental costs, complexity, and utility for genomic or drug high-throughput screens. Here, the relative throughput, advantages, and limitations of 16 different activity analysis methodologies were compared that quantify nematode locomotion, thrashing, pharyngeal pumping, and/or chemotaxis in single worms or worm populations of C. elegans at different stages, ages, and experimental durations. Detailed protocols were demonstrated for two semi-automated methods to quantify nematode locomotor activity that represent novel applications of available software tools, namely, ZebraLab (a medium-throughput approach) and WormScan (a high-throughput approach). Data from applying these methods demonstrated similar degrees of reduced animal activity occurred at the L4 larval stage, and progressed in day 1 adults, in mitochondrial complex I disease (gas-1(fc21)) mutant worms relative to wild-type (N2 Bristol) C. elegans. This data validates the utility for these novel applications of using the ZebraLab or WormScan software tools to quantify worm locomotor activity efficiently and objectively, with variable capacity to support high-throughput drug screening on worm behavior in preclinical animal models of mitochondrial disease.
Collapse
Affiliation(s)
- Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Nina Shah
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine;
| |
Collapse
|
49
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
50
|
Ikeda M, Matsumoto H, Izquierdo EJ. Persistent thermal input controls steering behavior in Caenorhabditis elegans. PLoS Comput Biol 2021; 17:e1007916. [PMID: 33417596 PMCID: PMC7819614 DOI: 10.1371/journal.pcbi.1007916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/21/2021] [Accepted: 11/17/2020] [Indexed: 11/23/2022] Open
Abstract
Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small animals convert subtle spatial difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering curvature are modulated by temporally persistent thermal signals sensed beyond the time scale of sinusoidal locomotion of C. elegans. Persistent rise in temperature decreases steering curvature resulting in straight movement of model worms, whereas fall in temperature increases curvature resulting in crooked movement. This relation between temperature change and steering curvature reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans. Our results suggest that employments of temporally persistent sensory signals enable small animals to steer toward a destination in natural environment with variable, noisy, and subtle cues. A free-living nematode Caenorhabditis elegans memorizes an environmental temperature and steers toward the remembered temperature on a thermal gradient. How does the C. elegans nervous system, consisting of 302 neurons, achieve the thermotactic steering behavior? Here, we address this question through neuroanatomical modeling and simulation analyses. We find that persistent thermal input modulates steering curvature of model worms; worms run straight when they move up to a destination temperature, whereas run crookedly when move away from the destination. As a result, worms steer toward the destination temperature as observed in experiments. Our analysis also shows that persistent thermal signals are transmitted from a thermosensory neuron to dorsal and ventral neck motor neurons, regulating the balance of dorsoventral muscle contractions of model worms and generating steering behavior. This study indicates that C. elegans can steer toward a destination temperature without processing acute thermal input that informs to which direction it should steer. Such indirect mechanism of steering behavior is potentially employed in other motile organisms.
Collapse
Affiliation(s)
- Muneki Ikeda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Japan
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Hirotaka Matsumoto
- Laboratory for Bioinformatics Research RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Eduardo J. Izquierdo
- Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|