1
|
Different Stages of Quiescence, Senescence, and Cell Stress Identified by Molecular Algorithm Based on the Expression of Ki67, RPS6, and Beta-Galactosidase Activity. Int J Mol Sci 2021; 22:ijms22063102. [PMID: 33803589 PMCID: PMC8002939 DOI: 10.3390/ijms22063102] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
During their life span, cells have two possible states: a non-cycling, quiescent state (G0) and a cycling, activated state. Cells may enter a reversible G0 state of quiescence or, alternatively, they may undergo an irreversible G0 state. The latter may be a physiological differentiation or, following a stress event, a senescent status. Discrimination among the several G0 states represents a significant investigation, since quiescence, differentiation, and senescence are progressive phenomena with intermediate transitional stages. We used the expression of Ki67, RPS6, and beta-galactosidase to identify healthy cells that progressively enter and leave quiescence through G0-entry, G0 and G0-alert states. We then evaluated how cells may enter senescence following a genotoxic stressful event. We identified an initial stress stage with the expression of beta-galactosidase and Ki67 proliferation marker. Cells may recover from stress events or become senescent passing through early and late senescence states. Discrimination between quiescence and senescence was based on the expression of RPS6, a marker of active protein synthesis that is present in senescent cells but absent in quiescent cells. Even taking into account that fixed G0 states do not exist, our molecular algorithm may represent a method for identifying turning points of G0 transitional states that continuously change.
Collapse
|
2
|
Lu T, Zhu Z, Wu J, She H, Han R, Xu H, Qin ZH. DRAM1 regulates autophagy and cell proliferation via inhibition of the phosphoinositide 3-kinase-Akt-mTOR-ribosomal protein S6 pathway. Cell Commun Signal 2019; 17:28. [PMID: 30902093 PMCID: PMC6431019 DOI: 10.1186/s12964-019-0341-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Macroautophagy (hereafter autophagy) is a tightly regulated process that delivers cellular components to lysosomes for degradation. Damage-regulated autophagy modulator 1 (DRAM1) induces autophagy and is necessary for p53-mediated apoptosis. However, the signalling pathways regulated by DRAM1 are not fully understood. METHODS HEK293T cells were transfected with FLAG-DRAM1 plasmid. Autophagic proteins (LC3 and p62), phosphorylated p53 and the phosphorylated proteins of the class I PI3K-Akt-mTOR-ribosomal protein S6 (rpS6) signalling pathway were detected with Western blot analysis. Cellular distribution of DRAM1 was determined with immunostaining. DRAM1 was knocked down in HEK293T cells using siRNA oligos which is confirmed by quantitative RT-PCR. Cells were serum starved for 18 h after overexpression or knockdown of DRAM1 to decrease the rpS6 activity to the basal level, and then the cells were stimulated with insulin growth factor, epidermal growth factor or serum. rpS6 phosphorylation and rpS6 were detected with Western blotting. Similarly, after overexpression or knockdown of DRAM1, phosphorylation of IGF-1Rβ and IGF-1R were examined with Western blotting. Cell viability was determined with CCK-8 assay and colony formation assay. Finally, human cancer cells Hela, SW480, and HCT116 were transfected with the FLAG-DRAM1 plasmid and phosphorylated rpS6 and rpS6 were detected with Western blot analysis. RESULTS DRAM1 induced autophagy and inhibited rpS6 phosphorylation in an mTORC1-dependent manner in HEK293T cells. DRAM1 didn't affect the phosphorylated and total levels of p53. Furthermore, DRAM1 inhibited the activation of the PI3K-Akt pathway stimulated with growth factors or serum. DRAM1 was localized at the plasma membrane and regulate the phosphorylation of IGF-1 receptor. DRAM1 decreased cell viability and colony numbers upon serum starvation. Additionally, DRAM1 inhibited rpS6 phosphorylation in several human cancer cells. CONCLUSIONS Here we provided evidence that DRAM1 inhibited rpS6 phosphorylation in multiple cell types. DRAM1 inhibited the phosphorylation of Akt and the activation of Akt-rpS6 pathway stimulated with growth factors and serum. Furthermore, DRAM1 regulated the activation of IGF-1 receptor. Thus, our results identify that the class I PI3K-Akt-rpS6 pathway is regulated by DRAM1 and may provide new insight into the potential role of DRAM1 in human cancers.
Collapse
Affiliation(s)
- Ting Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Zhou Zhu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Hua She
- Department of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Haidong Xu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China.
| |
Collapse
|
3
|
Watson SS, Dane M, Chin K, Tatarova Z, Liu M, Liby T, Thompson W, Smith R, Nederlof M, Bucher E, Kilburn D, Whitman M, Sudar D, Mills GB, Heiser LM, Jonas O, Gray JW, Korkola JE. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Syst 2018; 6:329-342.e6. [PMID: 29550255 PMCID: PMC5927625 DOI: 10.1016/j.cels.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/16/2017] [Accepted: 02/02/2018] [Indexed: 01/19/2023]
Abstract
Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ~2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-β1 (NRG1β), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Cell Line, Tumor
- Databases, Genetic
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, erbB-2/drug effects
- Genes, erbB-2/genetics
- Genes, erbB-2/physiology
- High-Throughput Screening Assays/methods
- Humans
- Lapatinib/pharmacology
- MCF-7 Cells
- Mice
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Quinazolines/pharmacology
- Quinolines/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-3/antagonists & inhibitors
- Signal Transduction/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/physiology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Spencer S Watson
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mark Dane
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Koei Chin
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Zuzana Tatarova
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Moqing Liu
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Tiera Liby
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Wallace Thompson
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rebecca Smith
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michel Nederlof
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Quantitative Imaging Systems LLC, 1410 NW Kearney Street, #1114, Portland, OR 97209, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - David Kilburn
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Matthew Whitman
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Damir Sudar
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Quantitative Imaging Systems LLC, 1410 NW Kearney Street, #1114, Portland, OR 97209, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Oliver Jonas
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - James E Korkola
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
4
|
Signal transduction in L-DOPA-induced dyskinesia: from receptor sensitization to abnormal gene expression. J Neural Transm (Vienna) 2018; 125:1171-1186. [PMID: 29396608 PMCID: PMC6060907 DOI: 10.1007/s00702-018-1847-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
Abstract
A large number of signaling abnormalities have been implicated in the emergence and expression of l-DOPA-induced dyskinesia (LID). The primary cause for many of these changes is the development of sensitization at dopamine receptors located on striatal projection neurons (SPN). This initial priming, which is particularly evident at the level of dopamine D1 receptors (D1R), can be viewed as a homeostatic response to dopamine depletion and is further exacerbated by chronic administration of l-DOPA, through a variety of mechanisms affecting various components of the G-protein-coupled receptor machinery. Sensitization of dopamine receptors in combination with pulsatile administration of l-DOPA leads to intermittent and coordinated hyperactivation of signal transduction cascades, ultimately resulting in long-term modifications of gene expression and protein synthesis. A detailed mapping of these pathological changes and of their involvement in LID has been produced during the last decade. According to this emerging picture, activation of sensitized D1R results in the stimulation of cAMP-dependent protein kinase and of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa. This, in turn, activates the extracellular signal-regulated kinases 1 and 2 (ERK), leading to chromatin remodeling and aberrant gene transcription. Dysregulated ERK results also in the stimulation of the mammalian target of rapamycin complex 1, which promotes protein synthesis. Enhanced levels of multiple effector targets, including several transcription factors have been implicated in LID and associated changes in synaptic plasticity and morphology. This article provides an overview of the intracellular modifications occurring in SPN and associated with LID.
Collapse
|
5
|
Ladror DT, Frey BL, Scalf M, Levenstein ME, Artymiuk JM, Smith LM. Methylation of yeast ribosomal protein S2 is elevated during stationary phase growth conditions. Biochem Biophys Res Commun 2014; 445:535-41. [PMID: 24486316 DOI: 10.1016/j.bbrc.2014.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/14/2014] [Indexed: 01/12/2023]
Abstract
Ribosomes, as the center of protein translation in the cell, require careful regulation via multiple pathways. While regulation of ribosomal synthesis and function has been widely studied on the transcriptional and translational "levels," the biological roles of ribosomal post-translational modifications (PTMs) are largely not understood. Here, we explore this matter by using quantitative mass spectrometry to compare the prevalence of ribosomal methylation and acetylation for yeast in the log phase and the stationary phase of growth. We find that of the 27 modified peptides identified, two peptides experience statistically significant changes in abundance: a 1.9-fold decrease in methylation for k(Me)VSGFKDEVLETV of ribosomal protein S1B (RPS1B), and a 10-fold increase in dimethylation for r(DiMe)GGFGGR of ribosomal protein S2 (RPS2). While the biological role of RPS1B methylation has largely been unexplored, RPS2 methylation is a modification known to have a role in processing and export of ribosomal RNA. This suggests that yeast in the stationary phase increase methylation of RPS2 in order to regulate ribosomal synthesis. These results demonstrate the utility of mass spectrometry for quantifying dynamic changes in ribosomal PTMs.
Collapse
Affiliation(s)
- Daniel T Ladror
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Mark E Levenstein
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Jacklyn M Artymiuk
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Moolthiya P, Tohtong R, Keeratichamroen S, Leelawat K. Role of mTOR inhibitor in cholangiocarcinoma cell progression. Oncol Lett 2014; 7:854-860. [PMID: 24527093 PMCID: PMC3919862 DOI: 10.3892/ol.2014.1799] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/29/2013] [Indexed: 12/29/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy of the biliary epithelium. CCA is resistant to currently available chemotherapy; therefore, new drugs as well as new molecular targets must be identified for the development of an effective treatment for CCA. The present study showed that RAD001 (everolimus), a derivative of rapamycin and an orally bioavailable mammalian target of rapamycin (mTOR) inhibitor, exhibits cytotoxic and antimetastatic effects in a CCA cell line, RMCCA-1. Treatment with low concentrations of RAD001 resulted in a significant reduction of in vitro invasion and migration of RMCCA-1, concomitant with a reduction of filopodia and alteration of the actin cytoskeleton. Although, matrix metalloproteinase-9 and -14 activities were unaltered. However, at high concentrations, RAD001 exhibited cytotoxic effects, reducing cell proliferation and inducing apoptotic cell death. Overall, RAD001 exhibits multiple effects mediated by the inhibition of the mTOR, which may serve as a promising agent for the treatment of CCA.
Collapse
Affiliation(s)
- Penpak Moolthiya
- Department of Biochemistry, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Siriporn Keeratichamroen
- Department of Molecular Medicine, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Kawin Leelawat
- Department of Surgery, Rajavithi Hospital, Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Thapa M, Bommakanti A, Shamsuzzaman M, Gregory B, Samsel L, Zengel JM, Lindahl L. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes. Mol Biol Cell 2013; 24:3620-33. [PMID: 24109599 PMCID: PMC3842990 DOI: 10.1091/mbc.e13-02-0097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell stress caused by repression of 54 individual ribosomal genes in Saccharomyces cerevisiae is analyzed. Cell cycle progression and cell morphology responses are specific to the protein whose synthesis is repressed but bud site selection is not. Proteins that generate G2/M and G1 phenotypes map to separate areas of the ribosomal particle. The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.
Collapse
Affiliation(s)
- Mamata Thapa
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250 Flow Cytometry Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
8
|
Feyder M, Bonito-Oliva A, Fisone G. L-DOPA-Induced Dyskinesia and Abnormal Signaling in Striatal Medium Spiny Neurons: Focus on Dopamine D1 Receptor-Mediated Transmission. Front Behav Neurosci 2011; 5:71. [PMID: 22028687 PMCID: PMC3199545 DOI: 10.3389/fnbeh.2011.00071] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 11/13/2022] Open
Abstract
Dyskinesia is a serious motor complication caused by prolonged administration of l-DOPA to patients affected by Parkinson's disease. Accumulating evidence indicates that l-DOPA-induced dyskinesia (LID) is primarily caused by the development of sensitized dopamine D1 receptor (D1R) transmission in the medium spiny neurons (MSNs) of the striatum. This phenomenon, combined with chronic administration of l-DOPA, leads to persistent and intermittent hyper-activation of the cAMP signaling cascade. Activation of cAMP signaling results in increased activity of the cAMP-dependent protein kinase (PKA) and of the dopamine- and cAMP-dependent phosphoprotein of 32 kDa (DARPP-32), which regulate several downstream effector targets implicated in the control of the excitability of striatal MSNs. Dyskinesia is also accompanied by augmented activity of the extracellular signal-regulated kinases (ERK) and the mammalian target of rapamycin complex 1 (mTORC1), which are involved in the control of transcriptional and translational efficiency. Pharmacological or genetic interventions aimed at reducing abnormal signal transduction at the level of these various intracellular cascades have been shown to attenuate LID in different animal models. For instance, LID is reduced in mice deficient for DARPP-32, or following inhibition of PKA. Blockade of ERK obtained genetically or using specific inhibitors is also able to attenuate dyskinetic behavior in rodents and non-human primates. Finally, administration of rapamycin, a drug which blocks mTORC1, results in a strong reduction of LID. This review focuses on the abnormalities in signaling affecting the D1R-expressing MSNs and on their potential relevance for the design of novel anti-dyskinetic therapies.
Collapse
Affiliation(s)
- Michael Feyder
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Gangarossa G, Di Benedetto M, O'Sullivan GJ, Dunleavy M, Alcacer C, Bonito-Oliva A, Henshall DC, Waddington JL, Valjent E, Fisone G. Convulsant doses of a dopamine D1 receptor agonist result in Erk-dependent increases in Zif268 and Arc/Arg3.1 expression in mouse dentate gyrus. PLoS One 2011; 6:e19415. [PMID: 21559295 PMCID: PMC3086923 DOI: 10.1371/journal.pone.0019415] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
Activation of dopamine D1 receptors (D1Rs) has been shown to induce epileptiform activity. We studied the molecular changes occurring in the hippocampus in response to the administration of the D1-type receptor agonist, SKF 81297. SKF 81297 at 2.5 and 5.0 mg/kg induced behavioural seizures. Electrophysiological recordings in the dentate gyrus revealed the presence of epileptiform discharges peaking at 30-45 min post-injection and declining by 60 min. Seizures were prevented by the D1-type receptor antagonist, SCH 23390, or the cannabinoid CB1 receptor agonist, CP 55,940. The effect of SKF 81297 was accompanied by increased phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK), in the granule cells of the dentate gyrus. This effect was also observed in response to administration of other D1-type receptor agonists, such as SKF83822 and SKF83959. In addition, SKF 81297 increased the phosphorylation of the ribosomal protein S6 and histone H3, two downstream targets of ERK. These effects were prevented by genetic inactivation of D1Rs, or by pharmacological inhibition of ERK. SKF 81297 was also able to enhance the levels of Zif268 and Arc/Arg3.1, two immediate early genes involved in transcriptional regulation and synaptic plasticity. These changes may be involved in forms of activity-dependent plasticity linked to the manifestation of seizures and to the ability of dopamine to affect learning and memory.
Collapse
Affiliation(s)
| | | | - Gerard J. O'Sullivan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mark Dunleavy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cristina Alcacer
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | | | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L. Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emmanuel Valjent
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
10
|
Cuesta R, Gupta M, Schneider RJ. The regulation of protein synthesis in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:255-92. [PMID: 20374744 DOI: 10.1016/s1877-1173(09)90007-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translational control of cancer is a multifaceted process, involving alterations in translation factor levels and activities that are unique to the different types of cancers and the different stages of disease. Translational alterations in cancer include adaptations of the tumor itself, of the tumor microenvironment, an integral component in disease, and adaptations that occur as cancer progresses from development to local disease and ultimately to metastatic disease. Adaptations include the overexpression and increased activity of specific translation factors, the physical or functional loss of translation regulatory components, increased production of ribosomes, selective mRNA translation, and alteration of signal transduction pathways to permit unfettered activation of protein synthesis. There is intense clinical interest to capitalize on the emerging new understanding of translational control in cancer by targeting specific components of the translation apparatus that are altered in disease for the development of specific cancer therapeutics. Clinical trial data are nascent but encouraging, suggesting that translational control constitutes an important new area for drug development in human cancer.
Collapse
Affiliation(s)
- Rafael Cuesta
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
11
|
Santini E, Heiman M, Greengard P, Valjent E, Fisone G. Inhibition of mTOR Signaling in Parkinson's Disease Prevents L-DOPA-Induced Dyskinesia. Sci Signal 2009; 2:ra36. [DOI: 10.1126/scisignal.2000308] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 2007; 25:209-26. [PMID: 18092230 DOI: 10.1080/08977190701779101] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current understanding of the mechanisms by which cell growth is regulated lags significantly behind our knowledge of the complex processes controlling cell cycle progression. Recent studies suggest that the mammalian target of rapamycin (mTOR) pathway is a key regulator of cell growth via the regulation of protein synthesis. The key mTOR effectors of cell growth are eukaryotic initiation factor 4E-binding protein 1 (4EBP-1) and the ribosomal protein S6 kinase (S6K). Here we will review the current models for mTOR dependent regulation of ribosome function and biogenesis as well as its role in coordinating growth factor and nutrient signaling to facilitate homeostasis of cell growth and proliferation. We will place particular emphasis on the role of S6K1 signaling and will highlight the points of cross talk with other key growth control pathways. Finally, we will discuss the impact of S6K signaling and the consequent feedback regulation of the PI3K/Akt pathway on disease processes including cancer.
Collapse
Affiliation(s)
- Katarzyna Jastrzebski
- Growth Control and Differentiation Program, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | | |
Collapse
|
13
|
Opferman JT, Zambetti GP. Translational research? Ribosome integrity and a new p53 tumor suppressor checkpoint. Cell Death Differ 2007; 13:898-901. [PMID: 16557265 DOI: 10.1038/sj.cdd.4401923] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- J T Opferman
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38138, USA.
| | | |
Collapse
|
14
|
JANTZEN HELGA, SCHULZE INGRID, HORSTMANN ULRIKE, CHRISTOFORI GERHARD. Control of Protein Synthesis in Acanthamoeba castellanii. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1550-7408.1983.tb02904.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N, Blenis J. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007; 282:14056-64. [PMID: 17360704 PMCID: PMC3618456 DOI: 10.1074/jbc.m700906200] [Citation(s) in RCA: 580] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Converging signals from the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) pathways are well established to modulate translation initiation. Less is known regarding the molecular basis of protein synthesis regulated by other inputs, such as agonists of the Ras/extracellular signal-regulated kinase (ERK) signaling cascade. Ribosomal protein (rp) S6 is a component of the 40S ribosomal subunit that becomes phosphorylated at several serine residues upon mitogen stimulation, but the exact molecular mechanisms regulating its phosphorylation and the function of phosphorylated rpS6 is poorly understood. Here, we provide evidence that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras is required for rpS6 phosphorylation downstream of the Ras/ERK signaling cascade. We demonstrate that while ribosomal S6 kinase 1 (S6K1) phosphorylates rpS6 at all sites, RSK exclusively phosphorylates rpS6 at Ser(235/236) in vitro and in vivo using an mTOR-independent mechanism. Mutation of rpS6 at Ser(235/236) reveals that phosphorylation of these sites promotes its recruitment to the 7-methylguanosine cap complex, suggesting that Ras/ERK signaling regulates assembly of the translation preinitiation complex. These data demonstrate that RSK provides an mTOR-independent pathway linking the Ras/ERK signaling cascade to the translational machinery.
Collapse
Affiliation(s)
- Philippe P Roux
- Department of Pathology and Cell Biology, Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Holland EC, Sonenberg N, Pandolfi PP, Thomas G. Signaling control of mRNA translation in cancer pathogenesis. Oncogene 2004; 23:3138-44. [PMID: 15094763 DOI: 10.1038/sj.onc.1207590] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The regulation of translation and the control of ribosome biogenesis are essential cellular processes whose impact on cell growth and proliferation is manifested at a number of specific levels. Disruption in one or more of the steps that control protein biosynthesis has been associated with alterations in the regulation of cell growth and cell cycle progression. Consistent with this, tumor suppressors and proto-oncogenes have been found to act on these functions and may therefore regulate malignant progression by affecting the protein synthetic machinery. Although many studies have correlated deregulation of protein biosynthesis with cancer, it remains to be established whether this process is necessary and/or sufficient for neoplastic transformation and metastasis.
Collapse
Affiliation(s)
- Eric C Holland
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
17
|
Pian JP, Huang TL, Tsai PC, Shi JP, Cu H, Pan BT. A 32 kDa protein?whose phosphorylation correlates with oncogenic Ras-induced cell cycle arrest in activatedXenopus egg extracts?is identified as ribosomal protein S6. J Cell Physiol 2004; 201:305-19. [PMID: 15334665 DOI: 10.1002/jcp.20069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oncogenic Ras induces cell-cycle arrest in mammalian cells and in fertilized Xenopus eggs. How oncogenic Ras induces cell-cycle arrest remains unclear. We previously showed that oncogenic Ras induces cell-cycle arrest in activated Xenopus egg extracts (cycling extracts) and that the induced cell-cycle arrest correlates with hyperphosphorylation of a 32 kDa protein. However, the identity of the 32 kDa protein was not known. By using a sucrose density-gradient centrifugation, Triton X-100-acetic acid-urea (TAU)-gel electrophoresis, composite agarose-polyacrylamide gel electrophoresis (CAPAGE), SDS-PAGE, and partial tryptic peptide sequence analysis, the 32 kDa protein has now been identified as S6, a 40S subunit ribosomal protein. Hence, our results indicate that the oncogenic Ras-induced cell-cycle arrest is correlated with hyperphosphorylation of S6, suggesting that phosphorylation of S6 plays an important role in the induced cell-cycle arrest. It has been shown that conditional deletion of gene encoding S6 in mammalian cells prevents proliferation, demonstrating the importance of S6 in cell proliferation. The exact role S6 plays in cell proliferation is unclear. However, phosphorylation of S6 has been implicated in the regulation of protein synthesis. Thus, our results are consistent with the concept that oncogenic Ras induces S6 phosphorylation to influence protein synthesis, thereby contributing to the cell-cycle arrest. In addition, our results also demonstrate that composite agarose-polyacrylamide gel electrophoresis is suitable for the separation of large molecular complexes.
Collapse
Affiliation(s)
- Jerry Pinghwa Pian
- Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ribosome biogenesis and translation control are essential cellular processes that are governed at numerous levels. Several tumour suppressors and proto-oncogenes have been found either to affect the formation of the mature ribosome or to regulate the activity of proteins known as translation factors. Disruption in one or more of the steps that control protein biosynthesis has been associated with alterations in the cell cycle and regulation of cell growth. Therefore, certain tumour suppressors and proto-oncogenes might regulate malignant progression by altering the protein synthesis machinery. Although many studies have correlated deregulation of protein biosynthesis with cancer, it remains to be established whether this translates directly into an increase in cancer susceptibility, and under what circumstances.
Collapse
Affiliation(s)
- Davide Ruggero
- Molecular Biology Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
19
|
Increased phosphorylation of a ribosomal protein during aggregation of the slime moldDictyostelium discoideum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)80191-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abstract
The identification of tags that can specifically mark activated synapses is important for understanding how long-term synaptic changes can be restricted to specific synapses. The maintenance of synapse-specific facilitation in Aplysia sensory to motor neuron cultures can be blocked by inhibitors of translation and by the drug rapamycin, which specifically blocks a signaling pathway that regulates phosphorylation of translational regulators. One important target of rapamycin is the phosphorylation and subsequent activation of S6 kinase. To test whether S6 kinase is the target for the ability of rapamycin to block synapse-specific facilitation in Aplysia, we cloned Aplysia S6 kinase, its substrate S6, and the S6 kinase kinase phosphoinositide-dependent kinase 1 (PDK-1). Serotonin, which induces synapse-specific facilitation, increased phosphorylation of Aplysia S6 kinase at threonine 399 in a rapamycin-sensitive manner in Aplysia synaptosomes. The phosphorylation of threonine 399 by 5-HT was independent of phosphoinositide-3 kinase, dependent on PKA and PKC, and occluded by the phosphatase inhibitor calyculin-A. 5-HT also increased S6 kinase activity and led to increased phosphorylation of S6 in synaptosomes. 5-HT increased levels of S6 in synaptosomes because of a rapamycin-sensitive increase in translation-stabilization of S6. Aplysia PDK-1 bound to and phosphorylated Aplysia S6 kinase but only modulated phosphorylation of threonine 399 indirectly. These results suggest a mechanism by which the levels of translation factors can be increased specifically at activated synapses generating a long-lasting synaptic tag.
Collapse
|
21
|
Khan A, Pepio AM, Sossin WS. Serotonin activates S6 kinase in a rapamycin-sensitive manner in Aplysia synaptosomes. J Neurosci 2001; 21:382-91. [PMID: 11160419 PMCID: PMC6763798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The identification of tags that can specifically mark activated synapses is important for understanding how long-term synaptic changes can be restricted to specific synapses. The maintenance of synapse-specific facilitation in Aplysia sensory to motor neuron cultures can be blocked by inhibitors of translation and by the drug rapamycin, which specifically blocks a signaling pathway that regulates phosphorylation of translational regulators. One important target of rapamycin is the phosphorylation and subsequent activation of S6 kinase. To test whether S6 kinase is the target for the ability of rapamycin to block synapse-specific facilitation in Aplysia, we cloned Aplysia S6 kinase, its substrate S6, and the S6 kinase kinase phosphoinositide-dependent kinase 1 (PDK-1). Serotonin, which induces synapse-specific facilitation, increased phosphorylation of Aplysia S6 kinase at threonine 399 in a rapamycin-sensitive manner in Aplysia synaptosomes. The phosphorylation of threonine 399 by 5-HT was independent of phosphoinositide-3 kinase, dependent on PKA and PKC, and occluded by the phosphatase inhibitor calyculin-A. 5-HT also increased S6 kinase activity and led to increased phosphorylation of S6 in synaptosomes. 5-HT increased levels of S6 in synaptosomes because of a rapamycin-sensitive increase in translation-stabilization of S6. Aplysia PDK-1 bound to and phosphorylated Aplysia S6 kinase but only modulated phosphorylation of threonine 399 indirectly. These results suggest a mechanism by which the levels of translation factors can be increased specifically at activated synapses generating a long-lasting synaptic tag.
Collapse
Affiliation(s)
- A Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
22
|
Ostrowski J, Woszczyński M, Kowalczyk P, Trzeciak L, Hennig E, Bomsztyk K. Treatment of mice with EGF and orthovanadate activates cytoplasmic and nuclear MAPK, p70S6k, and p90rsk in the liver. J Hepatol 2000; 32:965-74. [PMID: 10898317 DOI: 10.1016/s0168-8278(00)80101-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Although signal transduction pathways activated by EGF have been extensively studied in cultured cells, few such studies have been done in whole animals. In this study, activation of hepatic kinases, phosphatases, and DNA-binding activity of AP-1 was examined after intraperitoneal injections of either EGF or sodium orthovanadate into mice. METHODS Cytoplasmic and nuclear proteins, extracted from isolated hepatocytes or whole liver tissue, were immunoprecipitated with either anti-ERK1/2, anti-70S6k, or anti-p90rsk antibodies and kinase activities were measured using specific substrates. Kinase protein levels was evaluated by Western blot analysis. AP-1 DNA binding activity was measured by electrophoretic mobility shift assay. RESULTS Systemic administration of EGF induced simultaneous increase in the activities of cytoplasmic and nuclear MAPK, p70S6k, and p90rsk. MAPK and p70S6k were more potently activated in the cytosol while p90rsk activation was more pronounced in the nucleus. Orthovanadate also activated these kinases but to a much lesser degree than EGF. In vitro phosphatase assays showed that neither EGF nor orthovanadate induced measurable changes in phosphatase activities. EGF, but not orthovanadate, activated nuclear AP-1 DNA-binding activity in intact liver, indicating that activation of MAPK, p70S6k, and p90rsk by orthovanadate is not sufficient to activate this transcription factor. CONCLUSION These observations provide groundwork for future studies to examine the role of EGF-induced kinase cascades and transcription factors in liver regeneration and other growth factor-mediated hepatic processes.
Collapse
Affiliation(s)
- J Ostrowski
- Department of Gastroenterology, Medical Center for Postgraduate Education in the Maria Sklodowska-Curie Memorial Cancer Center, Walrsaw, Poland.
| | | | | | | | | | | |
Collapse
|
23
|
Ostrowski J, Woszczynski M, Kowalczyk P, Wocial T, Hennig E, Trzeciak L, Janik P, Bomsztyk K. Increased activity of MAP, p70S6 and p90rs kinases is associated with AP-1 activation in spontaneous liver tumours, but not in adjacent tissue in mice. Br J Cancer 2000; 82:1041-50. [PMID: 10737387 PMCID: PMC2374428 DOI: 10.1054/bjoc.1999.1040] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth factor-responsive protein kinases regulate expression of genes involved in cell cycle control, cell proliferation and differentiation. To better understand the role of these kinases in the abnormal proliferation of malignant cells, we examined basal and epidermal growth factor (EGF)-inducible mitogen-activated protein kinase (MAPK), p70S6k and p90rsk activities in spontaneous hepatocellular neoplasms (adenomas and carcinomas) from CBA-T6 mice and in L1 sarcoma tumours implanted in livers of BALB/c mice. In spontaneous and implanted hepatic tumours, basal cytoplasmic and nuclear MAPK, p70S6k and p90rsk activities were significantly higher compared to the activities found in the part of the liver uninvolved by the tumour. Interestingly, the activities of these enzymes in the uninvolved tissue of the livers harbouring the tumour were higher compared to the livers from control mice. Basal kinase activities correlated with tumour morphology; they were lower in adenomas than in carcinomas and sarcomas. In contrast to basal activities, EGF-triggered kinase responses in normal livers and hepatic tumours were indistinguishable. Activating protein-1 (AP-1) DNA-binding activity was detected in tumours but not in the adjacent tissues. Constitutively activated kinases and AP-1 transcription factor found in hepatic malignancies are reminiscent of cells activated by EGF, suggesting that EGF and its intracellular effectors play a role in these malignancies.
Collapse
Affiliation(s)
- J Ostrowski
- Department of Gastroenterology, Medical Center of Postgraduate Education in the Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warszawa, Poland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Estimation of Phosphorus and Sulphur Contents in Nuclear Constituents by Means of Image-EELS Analysis Using Ribosomes as Internal Standards. Micron 1998. [DOI: 10.1016/s0968-4328(98)00022-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Pearson RB, Thomas G. Regulation of p70s6k/p85s6k and its role in the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:21-32. [PMID: 9552351 DOI: 10.1007/978-1-4615-1809-9_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two to three-fold increases in the rate of protein synthesis are required both to enter the G1 phase of the cell cycle from G0 and to proceed to S phase in response to growth factors and mitogens. This increase is in part regulated via multiple phosphorylation of the 40S ribosomal protein S6 by the mitogen-stimulated p70s6k/p85s6k. At the protein synthesis level this event appears to be involved in specifically increasing the efficiency of translation of a family of essential mRNAs containing a polypyrimidine tract at their 5' transcriptional start site. The activation of p70s6k/p85s6k and maintenance of its activity throughout G1 is controlled via multiple phosphorylation events mediated by a complex signalling network acting on distinct sets of phosphorylation sites.
Collapse
Affiliation(s)
- R B Pearson
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
26
|
Bragado MJ, Groblewski GE, Williams JA. p70s6k is activated by CCK in rat pancreatic acini. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C101-9. [PMID: 9252447 DOI: 10.1152/ajpcell.1997.273.1.c101] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression and activity of p70s6k-p85s6k in isolated rat pancreatic acini were revealed by Western blotting, immunoprecipitation, and kinase assay. Cholecystokinin (CCK) stimulation of p70s6k activity was biphasic, with an early phase maximum at 5 min and a late phase maximum at 60 min. The threshold concentration of CCK to increase p70s6k activity was 3 pM, and the maximal effect was seen at 1 nM CCK. Carbachol and bombesin, but not vasoactive intestinal peptide, also activated p70s6k. The protein kinase C (PKC) activator (12-O-tetradecanoylphorbol 13-acetate), the calcium ionophore (ionomycin), and a derivative of adenosine 3',5'-cyclic monophosphate induced only a slight increase in p70s6k activity. Rapamycin potently blocked both the basal and the CCK-stimulated p70s6k activity, and this inhibition was reversed by an excess of FK-506. The phosphatidylinositol 3-kinase inhibitor, wortmannin, potently inhibited p70s6k activation by CCK, whereas the tyrosine kinase inhibitor genistein had only a partial effect. Neither rapamycin nor wortmannin inhibited amylase release at concentrations that inhibited p70s6k activity. Thus the activation pathway of p70s6k by CCK is not mediated by PKC or mobilization of intracellular calcium but seems to be mediated by phosphatidylinositol 3-kinase. The effect of rapamycin to inhibit p70s6k activity is mediated by binding to the immunophyllin FK-506-binding protein of 12 kDa. The p70s6k is not involved in the secretion of digestive enzymes induced by CCK.
Collapse
Affiliation(s)
- M J Bragado
- Department of Physiology, University of Michigan, Ann Arbor 48109-0622, USA
| | | | | |
Collapse
|
27
|
EARLE-HUGHES JULIEA, LEE NORMANH, WEINSTOCK KEITHG, KIRKNESS EWENF, FULDNER REBECCAA, CLINE ROBINT, GLODEK ANNA, SUTTON GRANGERG, ADAMS MARKD, FRASER CLAIREM, VENTER JCRAIG. Differential Gene Expression Profiles in G1 and S Phase Synchronized Jurkat T Cell Leukemia Cells: Investigation Using an Expressed Sequence Tag Analysis. ACTA ACUST UNITED AC 1996. [DOI: 10.1089/gst.1996.1.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc Natl Acad Sci U S A 1994; 91:4441-5. [PMID: 8183928 PMCID: PMC43801 DOI: 10.1073/pnas.91.10.4441] [Citation(s) in RCA: 491] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The immunosuppressant rapamycin blocks p70s6k/p85s6k activation and phosphorylation of 40S ribosomal protein S6 in Swiss 3T3 cells. The same net result is obtained when the macrolide is added 3 hr after serum stimulation. In stimulated cells p70s6k/p85s6k inactivation is achieved within minutes, whereas S6 dephosphorylation requires 1-2 hr, supporting the concept that S6 dephosphorylation results from kinase inactivation. In parallel, rapamycin treatment causes a small, but significant, reduction in the initiation rate of protein synthesis, as measured both by [35S]methionine incorporation into protein and by recruitment of 80S ribosomes into polysomes. More striking, analysis of individual mRNA transcripts revealed that rapamycin selectively suppresses the translation of a family of mRNAs that is characterized by a polypyrimidine tract immediately after their N7-methylguanosine cap, a motif that can act as a translational modulator. This family includes transcripts for ribosomal proteins, elongation factors of protein synthesis, and proteins of as-yet-unknown function. The results imply that (i) 40S ribosomes containing phosphorylated S6 may selectively recognize this motif or proteins which bind to it and (ii) rapamycin may inhibit cell growth by blocking S6 phosphorylation and, thus, translation of these mRNAs.
Collapse
|
29
|
Platelet-derived growth factor stimulates the release of protein kinase A from the cell membrane. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37616-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Abstract
Activation of cell growth leads to the multiple phosphorylation of 40S ribosomal protein S6. The kinase responsible for controling this event is termed p70s6k/p85s6k. Both isoforms of the kinase are derived from a common gene activated by a complex set of phosphorylation events; each resides in a unique cellular compartment: the p70s6k in the cytoplasm and the p85s6k in the nucleus. Although p70s6k/p85s6k represent the first mitogen-activated serine/threonine kinase described, the signaling pathway leading to activation of both isoforms remains obscure. Recent studies have shown that this pathway is distinct from that of p21ras and the p42mapk/p44mapk, and that bifurcation of these pathways takes place at the level of the receptor. Experiments with point mutants of the PDGF receptor and inhibitors of phosphatidyl-inositol-3-OH kinase have implicated the latter molecule in this signaling event, but more recent findings suggest an alternative route may be employed. The p70s6k signaling pathway can also be ablated by the immunosuppressant rapamycin, which blocks p70s6k activation and S6 phosphorylation without affecting the other kinases whose activation is triggered by mitogen treatment. In parallel, rapamycin suppresses the translation of a family of mRNAs that contain a polypyrimidine tract at their 5' transcriptional start site. The implication is that this event is mediated by the phosphorylated form of S6 that may either (1) directly interact with the polypyrimidine tract or (2) alter the affinity of the 40S ribosome mRNA binding site for polypyrimidine tract mRNAs, or (3) recognize proteins that directly bind to the polypyrimidine tract.
Collapse
Affiliation(s)
- S Ferrari
- Tumor Biology Center, Freiburg, Germany
| | | |
Collapse
|
31
|
Abstract
Using biochemical techniques similar to those used by Krebs and Fischer in elucidating the cAMP kinase cascade, a protein kinase cascade has been found that represents a new pathway for signal transduction. This pathway is activated in almost all cells that have been examined by many different growth and differentiation factors, suggesting control of different cell responses. At this writing, four tiers of growth factor regulated kinases, each tier represented by more than one enzyme, have been reconstituted in vitro to form the MAP kinase cascade. Preliminary findings suggesting multiple feedback or feedforward regulation of several components in the cascade predict higher complexity than a simple linear pathway.
Collapse
Affiliation(s)
- N G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309
| |
Collapse
|
32
|
Desbois C, Gandrillon O, Samarut J, Madjar JJ. v-erbB oncogene expression accounts for most variations in protein synthesis after avian erythroblastosis virus infection of chicken embryo fibroblasts: a two-dimensional electrophoresis study. Electrophoresis 1992; 13:383-8. [PMID: 1354610 DOI: 10.1002/elps.1150130178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effect of the v-erbA and/or v-erbB oncogenes on cellular gene expression was investigated after separation by two-dimensional polyacrylamide gel electrophoresis of [35S]methionine-labelled proteins from chicken embryo fibroblasts (CEF), infected by either the avian erythroblastosis virus (AEV) carrying both oncogenes, or by viruses carrying only one of them. We observed significant changes in the synthesis of 34 proteins in AEV-transformed CEF as compared with control cells. The synthesis of 24 of them was increased while the synthesis of the other 10 proteins was decreased. The expression of v-erbB alone is necessary and sufficient to induce changes in the synthesis of 27 proteins while the 7 remaining modifications are observed only in cells expressing v-erbB together with v-erbA. Moreover, the deregulation of protein synthesis by v-erbB-expressing viruses was correlated with the morphological transformation state of cells.
Collapse
Affiliation(s)
- C Desbois
- Immuno-Virologie Moléculaire et Cellulaire, Université Claude Bernard, CNRS UMR 30, Faculté de Médicine Alexis Carrel, Lyon, France
| | | | | | | |
Collapse
|
33
|
Welsh GI, Proud CG. Regulation of protein synthesis in Swiss 3T3 fibroblasts. Rapid activation of the guanine-nucleotide-exchange factor by insulin and growth factors. Biochem J 1992; 284 ( Pt 1):19-23. [PMID: 1599397 PMCID: PMC1132691 DOI: 10.1042/bj2840019] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Insulin, whole serum, phorbol esters and epidermal growth factor each rapidly stimulate protein synthesis in serum-depleted Swiss 3T3 fibroblasts. The activation of protein synthesis by each of these agents is associated with stimulation of the activity of the guanine-nucleotide-exchange factor (GEF). This protein recycles the initiation factor eIF-2 by promoting exchange of GDP bound to eIF-2 for GTP. Activation of GEF is rapid, becoming maximal within 15 min. The degree of activation of GEF by these stimuli (to greater than 170% of control for insulin, serum or epidermal growth factor; 120% for phorbol dibutyrate) is more than enough to account for their effects on the overall rate of translation. Stimulation of protein synthesis and GEF activity occurs at low nanomolar insulin concentrations, indicating they are mediated through the insulin receptor. The best-characterized mechanism for regulating GEF activity is through changes in the phosphorylation of the smallest subunit of eIF-2 (eIF-2 alpha); however, none of the stimuli studied altered the level of phosphorylation of eIF-2 alpha in Swiss fibroblasts. It seems that direct regulation of GEF activity may be occurring here, and possible mechanisms for this are discussed.
Collapse
Affiliation(s)
- G I Welsh
- Department of Biochemistry, School of Medical Sciences, University of Bristol, U.K
| | | |
Collapse
|
34
|
Affiliation(s)
- C G Proud
- Department of Biochemistry, School of Medical Sciences, University of Bristol, England
| |
Collapse
|
35
|
Mutoh T, Rudkin BB, Guroff G. Differential responses of the phosphorylation of ribosomal protein S6 to nerve growth factor and epidermal growth factor in PC12 cells. J Neurochem 1992; 58:175-85. [PMID: 1309232 DOI: 10.1111/j.1471-4159.1992.tb09293.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies from this laboratory have shown that the phosphorylation of the S6 protein of the ribosomes is catalyzed by at least two different and separable kinase activities in PC12 cells. One of these activities is increased by treatment of the cells with nerve growth factor, the other by treatment of the cells with epidermal growth factor. The present work shows that these two factors stimulate the phosphorylation of S6 with quite different kinetics, and that both the number of phosphates incorporated into S6 and the phosphopeptide pattern of S6 are different in cells treated with nerve growth factor than in cells treated with epidermal growth factor. The characteristics of the nerve growth factor-sensitive S6 kinase and of the epidermal growth factor-sensitive kinase were also clearly different. Substrate specificity and inhibitor studies indicated that neither was identical to cyclic AMP-dependent kinase, kinase C, or the calcium/calmodulin-dependent kinases. However, two major phosphopeptides produced by S6 phosphorylation in nerve growth factor-treated cells were also seen on phosphorylation of S6 by cyclic AMP-dependent kinase in vitro. In addition, when rat liver 40S ribosomal subunits were pretreated with cyclic AMP-dependent kinase in vitro, the action of the nerve growth factor-sensitive S6 kinase was increased about twofold.
Collapse
Affiliation(s)
- T Mutoh
- Section on Growth Factors, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
36
|
Olivier AR, Thomas G. Three forms of phosphatase type 1 in Swiss 3T3 fibroblasts. Free catalytic subunit appears to mediate s6 dephosphorylation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45727-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Price DJ, Gunsalus JR, Avruch J. Insulin activates a 70-kDa S6 kinase through serine/threonine-specific phosphorylation of the enzyme polypeptide. Proc Natl Acad Sci U S A 1990; 87:7944-8. [PMID: 2122450 PMCID: PMC54868 DOI: 10.1073/pnas.87.20.7944] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The dominant insulin-stimulated ribosomal protein S6 kinase activity was purified to near homogeneity from insulin-treated 32P-labeled rat H4 hepatoma cells and found to copurify with a 70-kDa 32P-labeled polypeptide. The dominant S6 kinase purified from livers of cycloheximide-treated rats is also a 70-kDa polypeptide. Antiserum raised against rat liver S6 kinase specifically immunoprecipitates the purified 32P-labeled H4 hepatoma insulin-stimulated S6 kinase. This antiserum also specifically precipitates insulin-stimulated S6 kinase activity directly from cytosolic extracts of H4 cells. Immune complexes prepared from the cytosol of 32P-labeled H4 cells contain several 32P-labeled polypeptides; only a 70-kDA 32P-labeled peptide, however, is specifically displaced by preadsorption of the antiserum with nonradioactive rat liver S6 kinase. Insulin treatment increases the 32P content of the immunoprecipitated 70-kDa S6 kinase polypeptide 3- to 4-fold over basal levels; 32P-labeled serine, some 32P-labeled threonine, but no 32P-labeled tyrosine are detected after partial acid hydrolysis. Tryptic peptide maps indicate that the insulin-stimulated S6 kinase purified from 32P-labeled H4 cells is phosphorylated at multiple sites distinct from those which participate in autophosphorylation in vitro. Autophosphorylation of rat liver S6 kinase in vitro does not modify S6 kinase activity. The S6 kinases purified from liver of cycloheximide-treated rat and H4 hepatoma insulin-stimulated enzyme are each completely deactivated by incubation with protein phosphatase type 2A in both autophosphorylating and 40S S6 phosphorylating activities. The phosphatase 2A-deactivated 70-kDa S6 kinase is neither reactivated nor phosphorylated by partially purified insulin-stimulated microtubule-associated protein 2 kinase, in experiments where Xenopus S6 kinase II undergoes phosphorylation and partial reactivation. Thus insulin activates the 70-kDa S6 kinase by promoting phosphorylation of specific serine/threonine residues on the enzyme polypeptide, probably through activating an as-yet-unidentified serine/threonine protein kinase distinct from microtubule-associated protein 2 kinase.
Collapse
Affiliation(s)
- D J Price
- Diabetes Unit, Massachusetts General Hospital, Boston 02129
| | | | | |
Collapse
|
38
|
Woppmann A, Patschinsky T, Bringmann P, Godt F, Lührmann R. Characterisation of human and murine snRNP proteins by two-dimensional gel electrophoresis and phosphopeptide analysis of U1-specific 70K protein variants. Nucleic Acids Res 1990; 18:4427-38. [PMID: 2143816 PMCID: PMC331261 DOI: 10.1093/nar/18.15.4427] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proteins of the major human snRNPs U1, U2, U4/U6 and U5 were characterised by two-dimensional electrophoresis, with isoelectric focussing in the first dimension and SDS-polyacrylamide gel electrophoresis in the second. With the exception of protein F, which exhibits an acidic pl value (pl = 3.3), the snRNP proteins are basic. Post-translational modification was found among the proteins associated specifically with the U1 and U2 particles. The most complex modification pattern was observed for the U1-specific 70K protein. This was found in at least 13 isoelectric variants, with pl values ranging from 6.7 to 8.7; these variants differed also in molecular weight. All of the 70K variants are phosphorylated in the cell. Thin-layer analysis of their tryptic phosphopeptides revealed that the 70K variants have four major phosphopeptides in common, in addition to which at least four additional serine residues are phosphorylated to different extents. The comparative phosphopeptide analysis shows that differential phosphorylation alone is not sufficient to explain the occurrence of the many isoelectric variants of 70K, so that the final charge of the 70K variants is determined both by phosphorylation and by other, as yet unidentified posttranslational modifications. By two-dimensional separation of snRNP proteins obtained from mouse Ehrlich ascites tumour cells, it was shown that the pattern of pl values of the mouse proteins was almost identical with the corresponding pattern for human proteins. Even the complex modification patterns of the 70K protein are identical in mouse and man, indicating that the presence in the cell of so many variants of this protein may have functional importance. The major difference between murine and human snRNP proteins is the absence of protein B' from mouse snRNPs. This suggests that the homologous protein B may be able to carry out the task of protein B'.
Collapse
Affiliation(s)
- A Woppmann
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, FRG
| | | | | | | | | |
Collapse
|
39
|
Paretsky D. The biology of Coxiella burnetti and the pathobiochemistry of Q fever and its endotoxicosis. Ann N Y Acad Sci 1990; 590:416-21. [PMID: 2378468 DOI: 10.1111/j.1749-6632.1990.tb42249.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
C. burnetii possesses a battery of host-independent enzymes which mediate endergonic and exergonic reactions. The biochemical and biophysical lesions responsible for the organism's obligate intracellular parasitic state have not been identified. Clues to this fundamental problem may lie in the agent's acidophilic metabolism and proliferation within the host cell's phagolysomal vacuole. What are the modifiers of transcription and translation? What constituents of the lysosomal vacuole contribute to the parasite's metabolism? Does the parasite have intrinsic cell-wall synthesizing capability? The isolation of plasmids from C. burnetii opens lines of investigation which should lead to solution of the problem, thereby helping to answer the general question of what is the nature of obligate parasitism. An understanding of the pathobiochemistry of Q fever and of its endotoxicosis rests on elucidating closely interrelated regulatory events. Stimulated hepatic transcription and translation of certain RNA and protein species attend the development of the disease, as do phosphorylation and dephosphorylation of central RNA and protein species. Phosphorylation and dephosphorylation are central regulators in protein synthesis. Whole animal experiments differ from those with cultured cells in important responses. Glycogenolysis, hepatic steatogenesis, and lipase activation are obvious examples of such differences. Stimulation of the production of lymphokines and of hormones is absent in HepG2 cells, and insulin seems to be critical in regulating the phosphorylation-dephosphorylation equilibrium which leads to regulation of protein synthesis. Newly synthesized, so far unidentified proteins may be involved in convalescence, re-establishing the homeostasis of the uninfected state. The model of pathobiochemical regulation in Q fever and endotoxicosis may be applicable to other febrile infections and endotoxicoses.
Collapse
Affiliation(s)
- D Paretsky
- Department of Microbiology, University of Kansas, Lawrence 66045
| |
Collapse
|
40
|
Kaspar RL, Rychlik W, White MW, Rhoads RE, Morris DR. Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39637-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Abstract
Many cell lines respond to mitogenic stimuli (serum, growth factors) with rapid phosphorylation of the ribosomal protein S6 at several serine sites. We have tried to identify the protein kinase(s) mediating this effect of growth stimuli. Examining post-DEAE chromatography fractions of S49 kin- cell extracts, we could detect a highly active effector-independent S6 kinase with specificity for serine residues. The study was extended to the presumably homologous human enzyme, using HeLa S3 cells as model system. Activity yields increased up to sevenfold when exhausted HeLa cells were supplied with fresh medium plus serum. The enzyme uses ATP, not GTP, as cosubstrate, 40-S or 80-S (reassociated from subunits) ribosomal particles being substrate. The optimal K+ concentration, measured at 3 mM Mg2+, is 35 mM. Under optimized assay conditions S6 phosphorylation proceeded faster in vitro than it appeared to do in vivo. The apparent Mr of the enzyme, as estimated by gel filtration on Sephadex G-100, is 56,000 (determination in the presence of 200 mM KCl in 25 mM phosphate buffer). Tighter binding to DEAE-Sephacel and higher specificity for S6 distinguishes this enzyme from the following S6-phosphorylating protein kinases: protein kinase C, protease-activated kinase II, histone-4 phosphotransferase and an enzyme with the properties of casein kinase I. In published summaries of observations shown here and in a follow-up study with chick embryo fibroblasts, the enzyme(s) has been referred to as mitogen-responsive S6 kinase(s) [Martini, O. H. W. and Lawen, A. (1985) in Hormones and cell regulation (Dumont, J. E., Hamprecht, B. and Nunez, J., eds) vol. 9, pp. 411-412, Elsevier Company, North-Holland, Amsterdam; Lawen, A. and Martini, O. H. W. (1985) FEBS Lett. 185, 272-276].
Collapse
Affiliation(s)
- A Lawen
- Institut für Virologie und Immunbiologie, Universität Würzburg
| | | | | |
Collapse
|
42
|
Arredondo-Vega FX, Charlton JA, Edwards YH, Hopkinson DA, Whitehouse DB. Isozyme and DNA analysis of human S-adenosyl-L-homocysteine hydrolase (AHCY). Ann Hum Genet 1989; 53:157-67. [PMID: 2574561 DOI: 10.1111/j.1469-1809.1989.tb01780.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Erythrocyte and tissue isozymes of human AHCY have been studied by starch gel electrophoresis, cellulose acetate electrophoresis, isoelectric focusing and Na dodecyl sulphate electrophoresis. The same isozyme was observed in all the tissues studied, suggesting that human AHCY is encoded by a single structural locus. Two variant alleles were identified in erythrocyte AHCY using starch gel electrophoresis in a sample of 166 unrelated individuals from the British population. The gene frequencies were 0.024 for AHCY*2 and 0.006 for AHCY*3. The variant isozyme patterns could not be distinguished by isoelectric focusing. Using the homologous rat cDNA AHCY probe, human AHCY cDNA recombinants were isolated from a placental cDNA library. The human and rat sequences show considerable homology in the coding region of the gene and also, but to a lesser extent, in the distal part of the 3' untranslated region. Preliminary observations suggest the occurrence of a high frequency PvuII site RFLP identified with the human AHCY probe.
Collapse
Affiliation(s)
- F X Arredondo-Vega
- MRC Human Biochemical Genetics Unit, Galton Laboratory, University College London
| | | | | | | | | |
Collapse
|
43
|
Purification and Characterization of a 40 S Ribosomal Protein S6 Kinase from Vanadate-stimulated Swiss 3T3 Cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)85084-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Mohan C, Geiger PJ, Bessman SP. The intracellular site of action of insulin: the mitochondrial Krebs cycle. CURRENT TOPICS IN CELLULAR REGULATION 1989; 30:105-42. [PMID: 2515941 DOI: 10.1016/b978-0-12-152830-0.50006-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- C Mohan
- Department of Pharmacology and Nutrition, University of Southern California School of Medicine, Los Angeles 90033
| | | | | |
Collapse
|
45
|
Nemenoff RA, Price DJ, Mendelsohn MJ, Carter EA, Avruch J. An S6 kinase activated during liver regeneration is related to the insulin-stimulated S6 kinase in H4 hepatoma cells. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77655-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Ballou LM, Siegmann M, Thomas G. S6 kinase in quiescent Swiss mouse 3T3 cells is activated by phosphorylation in response to serum treatment. Proc Natl Acad Sci U S A 1988; 85:7154-8. [PMID: 2845397 PMCID: PMC282142 DOI: 10.1073/pnas.85.19.7154] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To investigate the role of phosphorylation in the activation of S6 kinase, the enzyme was isolated from 32P-labeled Swiss mouse 3T3 cells before and after stimulation with serum. The kinase activity was followed through several purification steps, and a radioactive protein of Mr 70,000 was obtained from the stimulated cells. This band was not detected in resting cells. The Mr 70,000 protein exhibited the same size upon NaDodSO4/PAGE as the homogeneous kinase, and it comigrated with the in vitro autophosphorylated form of the enzyme. Treatment of the in vivo-labeled material with phosphatase 2A led to a loss of kinase activity concomitant with a release of 32Pi from the Mr 70,000 protein. The partially dephosphorylated protein migrated faster during PAGE, displaying distinct species of Mr 69,000 and 68,000. Most importantly, phospho amino acid analysis of the labeled S6 kinase showed only phosphoserine and phosphothreonine. These results argue that the S6 kinase is phosphorylated at multiple sites in vivo and that it is activated by serine/threonine phosphorylation.
Collapse
Affiliation(s)
- L M Ballou
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
47
|
Krieg J, Hofsteenge J, Thomas G. Identification of the 40 S ribosomal protein S6 phosphorylation sites induced by cycloheximide. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37981-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Novak-Hofer I, Küng W, Fabbro D, Matter A, Eppenberger U. Regulation of ribosomal protein S6 kinase in human mammary tumor cells: effect of estrogen, growth factors and phorbol ester. EXPERIENTIA 1988; 44:162-6. [PMID: 3278921 DOI: 10.1007/bf01952203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growth of human mammary tumor cells ZR-75-1 is stimulated by estradiol (E2), epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I). In these cells ribosomal protein S6 kinase is activated by EGF, IGF-I, insulin and phorbol 12-myristate 13-acetate (TPA) but not by E2. The human mammary tumor cell line MDA-MB 231, which is E2-receptor negative, has receptors for EGF, IGF-I and insulin but is unresponsive to these factors in terms of growth and S6 kinase activation. The role of protein kinase C (PKC) in the activation of S6 kinase by growth factors and TPA was investigated in ZR-75-1 cells. Down regulation of PKC activity by treatment with TPA for 48-h blocks the stimulation of S6 kinase by TPA but leaves the activation by EGF, IGF-I and insulin unaffected. In intact ZR-75-1 cells staurosporine blocks activation of S6 kinase by EGF and TPA, however with different IC50. The results show that S6 kinase is not activated by estradiol, that its activation by EGF, IGE-I and insulin does not depend on the presence of PKC activity and that its activation by TPA is mediated by a different (PKC-dependent) pathway.
Collapse
Affiliation(s)
- I Novak-Hofer
- Dept of Research, University Clinic Medical School, Basel, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Mizutani T, Hitaka T. Stronger affinity of reticulocyte release factor than natural suppressor tRNASer for the opal termination codon. FEBS Lett 1988; 226:227-31. [PMID: 3338554 DOI: 10.1016/0014-5793(88)81428-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animal natural suppressor tRNA did not affect the release reaction of reticulocyte release factor (RF) at the same concentration of tRNA (both estimated as being present at a similar level of 3-5 X 10(-8) M in vivo); even at a 10-fold greater concentration the tRNA did not prevent the release reaction with RF. In order to confirm this result, the Ka values were determined. The Ka value between RF and UGA was 1.26 X 10(6) M-1 and that between the suppressor tRNA and UGA amounted to 8 X 10(3) M-1. This result showed that RF had a 150-fold stronger affinity than suppressor tRNA for the opal termination codon. Incorporation of phosphoserine into phosphoprotein via phosphoseryl-tRNA was inhibited by addition of RF to the reaction mixture. These results suggest that animal natural suppressor tRNA in the normal state does not perform its suppressor function, except in special cases where mRNA has the context structure near the opal termination codon (UGA).
Collapse
Affiliation(s)
- T Mizutani
- Faculty of Pharmaceutical Sciences, Nagoya City University, Japan
| | | |
Collapse
|
50
|
Ballou LM, Jenö P, Thomas G. Control of S6 phosphorylation during the mitogenic response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 231:445-52. [PMID: 3414443 DOI: 10.1007/978-1-4684-9042-8_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- L M Ballou
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|